forked from jiuyuan/InfiniTensor
50 lines
1.4 KiB
C++
50 lines
1.4 KiB
C++
#pragma once
|
|
#include "core/operator.h"
|
|
|
|
namespace infini {
|
|
/**
|
|
* @brief The Broadcast operation copies an N-element buffer on the root rank to
|
|
* all ranks.
|
|
*
|
|
* For more details:
|
|
* https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/collectives.html#broadcast
|
|
*/
|
|
class BroadcastObj : public OperatorObj {
|
|
public:
|
|
/**
|
|
* @brief Construct a new Broadcast object.
|
|
*
|
|
* @param graph The computation graph that this operator belongs to.
|
|
* @param input The input tensor. Only root needs to initialize it with
|
|
* data.
|
|
* @param output The output tensor, same size as input.
|
|
* @param root The root rank who performs the broadcast.
|
|
*/
|
|
BroadcastObj(GraphObj *graph, Tensor input, Tensor output, int root);
|
|
OP_CLONE(BroadcastObj);
|
|
|
|
int numInputs() const override { return 1; }
|
|
int numOutputs() const override { return 1; }
|
|
|
|
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override {
|
|
return {{inputs[0]->getDims()}};
|
|
};
|
|
|
|
std::string toString() const override;
|
|
|
|
int getRoot() const { return root; }
|
|
|
|
private:
|
|
vector<int> getWorkloadVector() const override;
|
|
vector<int> getOpAttrVector() const override;
|
|
vector<DataType> inferDataType(const TensorVec &inputs) const override {
|
|
return {inputs[0]->getDType()};
|
|
};
|
|
|
|
protected:
|
|
// The rank who broadcasts data among this communication group
|
|
int root;
|
|
};
|
|
|
|
} // namespace infini
|