F系列、G系列算例参数及文档更新;新增F01及F02结构走非结构装配流程算例、新增G08二维储气罐泄漏算例

This commit is contained in:
hechao 2023-06-16 16:39:58 +08:00
parent 243058d1ec
commit e15d25f771
72 changed files with 11669 additions and 6268 deletions

View File

@ -0,0 +1,2 @@
本算例结构网格重叠装配过程在读网格阶段会在结构网格上重新构建非结构网格信息,然后按照非结构的方式进行重叠网格装配过程
用户如需使用结构重叠则需使用2171版本代码及相应算例库版本的F01结构重叠算例

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,41 @@
#########################################################################
# Grid data type #
#########################################################################
// gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid.
// 1 -- Structured grid.
// nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// axisRotateOrder : axis rotating order.
// 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
// from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE
// 1 -- HyperFLOW( PHengLEI ), *.fts.
// 2 -- CGNS, *.cgns.
// 3 -- Plot3D type of structured grid, *.dat/*.grd.
// 4 -- Fieldview type of unstructured grid, *.dat/*.inp.
// 5 -- Fluent, *.cas/*.msh.
// 6 -- Ustar, mgrid.in.
// 7 -- Hybrid, include both of unstructured and structured grid, *.fts.
// 8 -- GMSH, *.msh.
int gridtype = 1;
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
int from_gtype = 2;
#########################################################################
# File path #
#########################################################################
// from_gfile: path of original data file for unstructure grid convert from.
// out_gfile: path of target file for grid convert to, *.fts type of file usually.
int numberOfGridFile = 4;
string from_gfile = "./grid/30p30n-background.cgns";
string from_gfile1 = "./grid/30p30n-main.cgns";
string from_gfile2 = "./grid/30p30n-flap.cgns";
string from_gfile3 = "./grid/30p30n-slat.cgns";

View File

@ -0,0 +1,57 @@
string title = "PHengLEI Main Parameter Control File";
// IMPORTANT NOTICE: DON NOT MODIFY THE FOWLLOWING LINE.
string defaultParaFile = "./bin/cfd_para.hypara";
// ndim: Dimensional of the grid, 2 or 3.
// nparafile: the number of parameter files.
// nsimutask: simulation task type.
// 0 -- CFD Solver of NS or Turbulation.
// 1 -- Grid generation: for special typical cases, such as cylinder, flat plate, etc.
// Grid conversion: from other format to PHengLEI format (.fts).
// Grid reconstruction: such as grid adaptation.
// Grid merging: merge two blocks into one block.
// Grid repairing: repair the original grid in order to remove the negative volume cells.
// 2 -- Wall distance computation for turb-solver.
// 3 -- Grid partition.
// 4 -- Knowledge repository / examples of PHengLEI-API.
int ndim = 2;
int nparafile = 1;
int nsimutask = 0;
string parafilename = "./bin/cfd_para_subsonic.hypara";
//string parafilename = "./bin/cfd_para_transonic.hypara";
//string parafilename = "./bin/cfd_para_supersonic.hypara";
//string parafilename = "./bin/cfd_para_hypersonic.hypara";
//string parafilename = "./bin/cfd_para_incompressible.hypara";
//string parafilename1 = "./bin/overset_config.hypara";
int nsimutask = 1;
string parafilename = "./bin/grid_para.hypara";
//int nsimutask = 2;
//string parafilename = "./bin/cfd_para.hypara";
int nsimutask = 3;
string parafilename = "./bin/partition.hypara";
//int nsimutask = 1;
//string parafilename = "./bin/grid_deform_para.hypara";
//int nsimutask = 1;
//string parafilename = "./bin/grid_refine_para.hypara";
int nsimutask = 6;
string parafilename = "./bin/overset_config.hypara";
//int nsimutask = 14;
//string parafilename = "./bin/integrative_solver.hypara";
//int nsimutask = 99;
//string parafilename = "./bin/post_processing.hypara";
// ---------------- Advanced Parameters, DO NOT care it ----------------
int numberOfGridProcessor = 0;
// ATP read
//@string parafilename1 = ""
//@string parafilename2 = "";

View File

@ -0,0 +1,35 @@
// ----------------- overlap configuration ------------------------------
// numberOfGridGroups: The number of grid groups.
// codeOfOversetGrid: Overlapping(overset) grid or not.
// 0 -- NON-overlapping grid.
// 1 -- Overlapping grid.
// readOversetFileOrNo: Whether to read overset-file(.ovs) that has been generated.
// 0 -- no.
// 1 -- yes.
// symetryOrNot: If there exist symetryplanes(XY plane, the coordinate of Z direction is 0) in
the current overset grid(only for three dimension).
// 0 -- no.
// 1 -- yes.
// readInAuxiliaryInnerGrid: Whether to read auxiliary inner grid
// 0 -- no.
// 1 -- yes.
// twoOrderInterpolationOrNot: The number of interpolated cell layers in the overlapping boundary.
// 0 -- one layer.
// 1 -- two layers.
// keyEnlargeOfActiveNodes: The number of enlarged overset-boundary layers in the buffer region.
// outTecplotOverset: Whether to dump out the flowfield data after the progress of overset configure.
// 0 -- no.
// 1 -- yes.
int numberOfGridGroups = 4;
string gridfile = "./grid/30p30n-background__4.fts";
string gridfile1 = "./grid/30p30n-main__4.fts";
string gridfile2 = "./grid/30p30n-slat__4.fts";
string gridfile3 = "./grid/30p30n-flap__4.fts";
int codeOfOversetGrid = 1;
int twoOrderInterpolationOrNot = 1;
int keyEnlargeOfActiveNodes = 0;
double gridScaleFactor = 0.001;
int outTecplotOverset = 1;

View File

@ -0,0 +1,31 @@
// pgridtype: The grid type.
// 0 -- unstruct grid
// 1 -- struct grid
// maxproc: The number of partition zones that want to be divided into,
// which is equal to the number of CPU processors you want.
// Usually, 50~100 thousands structured cells per CPU-Core is suggested.
// 30~70 thousands unstructured cells per CPU-Core is suggested.
// original_grid_file : original grid file that want to be divided(HyperFLOW/PHengLEI type, *.fts).
// partition_grid_file : target partition grid file(HyperFLOW/PHengLEI type, *.fts).
int numberOfGridFile = 4;
int pgridtype = 1;
int pgridtype1 = 1;
int pgridtype2 = 1;
int pgridtype3 = 1;
int maxproc = 4;
int maxproc1 = 4;
int maxproc2 = 4;
int maxproc3 = 4;
string original_grid_file = "./grid/30p30n-background.fts";
string original_grid_file1 = "./grid/30p30n-main.fts";
string original_grid_file2 = "./grid/30p30n-flap.fts";
string original_grid_file3 = "./grid/30p30n-slat.fts";
// Number of multi-grid levels, ONLY used for structured grid.
// 1 -- single level, 2 -- 2 level, N -- N level, ..., et al.
int numberOfMultigrid = 1;

View File

@ -0,0 +1,5 @@
红山开源风雷算例库原始网格获取百度网盘链接:
链接http://pan.baidu.com/s/1aZ9cdkp6CkT9il4fEpnTcA
提取码w47m
plot3D格式网格需同时下载.grd和.inp文件

View File

@ -0,0 +1,2 @@
本算例结构网格重叠装配过程在读网格阶段会在结构网格上重新构建非结构网格信息,然后按照非结构的方式进行重叠网格装配过程
用户如需使用结构重叠则需使用2171版本代码及相应算例库版本的F01结构重叠算例

View File

@ -1,64 +0,0 @@
# nBoundaryConditons : number of global boundary conditions.
# bcName : Boundary Condition Name.
# bcType(in PHengLEI): Boundary Condition Type.
# Account of how to set boundaryconditon.
# string bcName = "Farfield";
# {
# int bcType = 4;
# int inflowParaType = 1;
# double attackd = 0;
# double refReNumber = 6.5e6;
# double refMachNumber = 3.5;
# double angleSlide = 0;
# }
int nBoundaryConditons = 8;
string bcName = "SOLID_SURFACE";
{
int bcType = 2;
}
string bcName = "Wall_11";
{
int bcType = 11;
}
string bcName = "Wall_12";
{
int bcType = 12;
}
string bcName = "Wall_13";
{
int bcType = 13;
}
string bcName = "Wall_8";
{
int bcType = 8;
}
string bcName = "SYMMETRY";
{
int bcType = 3;
}
string bcName = "FARFIELD";
{
int bcType = 4;
}
string bcName = "POLE";
{
int bcType = 7;
}
# 'bcType' is defined as following:
# 99: PERIODIC
# -2: WAKE
# -1: INTERFACE
# 0 : NO_BOUNDARY_CONDITION
# 1 : EXTRAPOLATION
# 2 : SOLID_SURFACE
# 3 : SYMMETRY
# 4 : FARFIELD
# 5 : INFLOW
# 6 : OUTFLOW
# 52: PRESSURE_INLET
# 62: PRESSURE_OUTLET
# 61: OUTFLOW_CONFINED
# 7 : POLE

View File

@ -4,12 +4,15 @@
// gridtype: Grid type for generation, conversion, reconstruction, merging. // gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid. // 0 -- Unstructured grid.
// 1 -- Structured grid. // 1 -- Structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion. // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// 1 -- Y upward. (default) // axisRotateOrder : axis rotating order.
// 2 -- Z upward. // 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
// from_gtype: Type of grid data type in grid conversion process. // from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE. // -1 -- MULTI_TYPE
// 1 -- PHengLEI, *.fts. // 1 -- HyperFLOW( PHengLEI ), *.fts.
// 2 -- CGNS, *.cgns. // 2 -- CGNS, *.cgns.
// 3 -- Plot3D type of structured grid, *.dat/*.grd. // 3 -- Plot3D type of structured grid, *.dat/*.grd.
// 4 -- Fieldview type of unstructured grid, *.dat/*.inp. // 4 -- Fieldview type of unstructured grid, *.dat/*.inp.
@ -18,13 +21,22 @@
// 7 -- Hybrid, include both of unstructured and structured grid, *.fts. // 7 -- Hybrid, include both of unstructured and structured grid, *.fts.
// 8 -- GMSH, *.msh. // 8 -- GMSH, *.msh.
int gridtype = 1; int gridtype = 1;
int axisup = 1; int nAxisRotateTimes = 1;
int from_gtype = 3; int axisRotateOrder[] = [1];
double axisRotateAngles[] = [90.0];
int from_gtype = 2;
######################################################################### #########################################################################
# File path # # File path #
######################################################################### #########################################################################
// from_gfile: path of original data file for unstructure grid convert from. // from_gfile: path of original data file for unstructure grid convert from.
// out_gfile: path of target file for grid convert to, *.fts type of file usually. // out_gfile: path of target file for grid convert to, *.fts type of file usually.
string from_gfile = "./grid/updatedgrid.grd"; int numberOfGridFile = 4;
string out_gfile = "./grid/updatedgrid.fts"; string from_gfile = "./grid/wing.cgns";
string from_gfile1 = "./grid/missile1.cgns";
string from_gfile2 = "./grid/missile2.cgns";
string from_gfile3 = "./grid/missile3.cgns";

View File

@ -18,34 +18,36 @@ string defaultParaFile = "./bin/cfd_para.hypara";
int ndim = 3; int ndim = 3;
int nparafile = 1; int nparafile = 1;
int nsimutask = 0; //int nsimutask = 0;
//string parafilename = "./bin/cfd_para_subsonic.hypara"; //string parafilename = "./bin/cfd_para_subsonic.hypara";
string parafilename = "./bin/cfd_para_transonic.hypara"; //string parafilename = "./bin/cfd_para_transonic.hypara";
//string parafilename = "./bin/cfd_para_supersonic.hypara"; //string parafilename = "./bin/cfd_para_supersonic.hypara";
//string parafilename = "./bin/cfd_para_hypersonic.hypara"; //string parafilename = "./bin/cfd_para_hypersonic.hypara";
//string parafilename = "./bin/incompressible.hypara"; //string parafilename = "./bin/cfd_para_incompressible.hypara";
//string parafilename1 = "./bin/overset_config.hypara";
//string parafilename2 = "./bin/kinetic_para.hypara";
//int nsimutask = 1; int nsimutask = 1;
//string parafilename = "./bin/grid_para.hypara"; string parafilename = "./bin/grid_para.hypara";
//int nsimutask = 2; //int nsimutask = 2;
//string parafilename = "./bin/cfd_para.hypara"; //string parafilename = "./bin/cfd_para.hypara";
//int nsimutask = 3; int nsimutask = 3;
//string parafilename = "./bin/partition.hypara"; string parafilename = "./bin/partition.hypara";
//int nsimutask = 4; //int nsimutask = 1;
//string parafilename = "./bin/repository.hypara"; //string parafilename = "./bin/grid_deform_para.hypara";
//int nsimutask = 5; //int nsimutask = 1;
//string parafilename = "./bin/overset_grid_view.hypara"; //string parafilename = "./bin/grid_refine_para.hypara";
int nsimutask = 6;
string parafilename = "./bin/overset_config.hypara";
//int nsimutask = 14; //int nsimutask = 14;
//string parafilename = "./bin/integrative_solver.hypara"; //string parafilename = "./bin/integrative_solver.hypara";
//int nsimutask = 22;
//string parafilename = "./bin/grid_para.hypara";
//int nsimutask = 99; //int nsimutask = 99;
//string parafilename = "./bin/post_processing.hypara"; //string parafilename = "./bin/post_processing.hypara";

View File

@ -1,17 +0,0 @@
int taskSelector = 1;
int codeOfLargeScale = 0;
int numberOfMultigrid = 1;
int numberOfProcessors = 8;
string originalGridFile = "./grid/duodan.grd";
string originalBoundaryFile = "./grid/duodan.inp";
int numberOfGridGroups = 4;
int zoneSpan[numberOfGridGroups] = 34,34,34,32;
int solidBcSize = 4;
int solidColorList[solidBcSize] = 2,11,12,13;
int outerBcSize = 1;
int outerColorList[outerBcSize] = 8;

View File

@ -0,0 +1,36 @@
// ----------------- overlap configuration ------------------------------
// numberOfGridGroups: The number of grid groups.
// codeOfOversetGrid: Overlapping(overset) grid or not.
// 0 -- NON-overlapping grid.
// 1 -- Overlapping grid.
// symetryOrNot: If there exist symetryplanes(XY plane, the coordinate of Z direction is 0) in
the current overset grid(only for three dimension).
// 0 -- no.
// 1 -- yes.
// readInAuxiliaryInnerGrid: Whether to read auxiliary inner grid
// 0 -- no.
// 1 -- yes.
// twoOrderInterpolationOrNot: The number of interpolated cell layers in the overlapping boundary.
// 0 -- one layer.
// 1 -- two layers.
// keyEnlargeOfActiveNodes: The number of enlarged overset-boundary layers in the buffer region.
// outTecplotOverset: Whether to dump out the flowfield data after the progress of overset configure.
// 0 -- no.
// 1 -- yes.
int numberOfGridGroups = 4;
string gridfile = "./grid/wing__8.fts";
string gridfile1 = "./grid/missile1__8.fts";
string gridfile2 = "./grid/missile2__8.fts";
string gridfile3 = "./grid/missile3__8.fts";
int codeOfOversetGrid = 1;
int symetryOrNot = 0;
double walldistMainZone = 1.0;
double toleranceForOversetSearch = 1.0e-5;
double toleranceForOversetBox = 1.0e-5;
int twoOrderInterpolationOrNot = 0;
int keyEnlargeOfActiveNodes = 0;
int oversetInterpolationMethod = 1;
int outTecplotOverset = 1;
int outPutOversetVisualization = 0;

View File

@ -0,0 +1,30 @@
// pgridtype: The grid type.
// 0 -- unstruct grid.
// 1 -- struct grid.
// maxproc: The number of partition zones that want to be divided into,
// which is equal to the number of CPU processors you want.
// Usually, 50~100 thousands structured cells per CPU-Core is suggested.
// 30~70 thousands unstructured cells per CPU-Core is suggested.
// original_grid_file: Original grid file that want to be divided(PHengLEI type, *.fts).
// partition_grid_file: Target partition grid file(PHengLEI type, *.fts).
int numberOfGridFile = 4;
int pgridtype = 1;
int pgridtype1 = 1;
int pgridtype2 = 1;
int pgridtype3 = 1;
int maxproc = 8;
int maxproc1 = 8;
int maxproc2 = 8;
int maxproc3 = 8;
string original_grid_file = "./grid/wing.fts";
string original_grid_file1 = "./grid/missile1.fts";
string original_grid_file2 = "./grid/missile2.fts";
string original_grid_file3 = "./grid/missile3.fts";
// numberOfMultigrid: Number of multi-grid levels, ONLY used for structured grid.
// 1 -- single level.
// 2 -- 2 level.
// N -- N level,..., et al.
int numberOfMultigrid = 1;

View File

@ -1,2 +0,0 @@
针对本算例风雷代码cmake构建的时候需要勾选USE_OVERSET选项
该算例当前只支持2171版本

View File

@ -8,6 +8,7 @@
// Platform for Hybrid Engineering Simulation of Flows + // Platform for Hybrid Engineering Simulation of Flows +
// China Aerodynamics Research and Development Center + // China Aerodynamics Research and Development Center +
// (C) Copyright, Since 2010 + // (C) Copyright, Since 2010 +
// PHengLEI 2212 +
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
########################################################################### ###########################################################################
# Default parameters for Grid conversion # # Default parameters for Grid conversion #
@ -46,19 +47,24 @@ int gridobj = 1;
int multiblock = 0; int multiblock = 0;
int iadapt = 0; int iadapt = 0;
int SymmetryFaceVector = 1; int SymmetryFaceVector = 1;
int gridReorder = 0; int gridReorder = 0;
int faceReorderMethod = 0; int faceReorderMethod = 0;
// axisup: Type of Cartisien coordinates system, used in grid conversion. // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// 1 -- Y upward. (default) // axisRotateOrder : axis rotating order.
// 2 -- Z upward. // 1 -- X-axis.
int axisup = 1; // 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
// omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition". // omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition".
// 0 -- Interface. (default) // 0 -- Interface. (default)
// 1 -- Physical boundary condition, used in Hybrid solver. // 1 -- Physical boundary condition, used in Hybrid solver.
int omit_no_bound_bc = 0; int omit_no_bound_bc = 0;
int omitRepeatInterface = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# Grid data type # # Grid data type #
@ -89,7 +95,6 @@ int dumpOldGrid = 0;
int numberOfGridFile = 1; int numberOfGridFile = 1;
string from_gfile = "./grid/rae2822_hybrid2d.cas"; string from_gfile = "./grid/rae2822_hybrid2d.cas";
string from_gfile1 = ""; string from_gfile1 = "";
string out_gfile = "./grid/flat_laminr_133_85_2d.fts"; string out_gfile = "./grid/flat_laminr_133_85_2d.fts";
// ----------------- some advanced choices ------------------------------ // ----------------- some advanced choices ------------------------------
@ -178,7 +183,6 @@ double influencePara = 25.0;
which only support one direction. which only support one direction.
// rotationAngle: The relative angle between two periodic face. // rotationAngle: The relative angle between two periodic face.
which is recorded in degrees. which is recorded in degrees.
int periodicType = 0; int periodicType = 0;
double translationLength[] = [0.0, 0.0, 0.0]; double translationLength[] = [0.0, 0.0, 0.0];
double rotationAngle = 0.0; double rotationAngle = 0.0;
@ -192,7 +196,6 @@ double rotationAngle = 0.0;
// 2 -- refine structured grid. // 2 -- refine structured grid.
// maxproc: The number of partition zones that want to be divided into. // maxproc: The number of partition zones that want to be divided into.
// numberOfMultifile: The number of partition grid files that want to be dumped out. // numberOfMultifile: The number of partition grid files that want to be dumped out.
int pgridtype = 0; int pgridtype = 0;
int maxproc = 4; int maxproc = 4;
int numberOfMultifile = 1; int numberOfMultifile = 1;
@ -207,8 +210,8 @@ int blockIndexOfMark = 0;
int cellIndexOfMark[] = [185, 30, 1]; int cellIndexOfMark[] = [185, 30, 1];
// parallelStrategy: // parallelStrategy:
//! -# 0 : each zone is assigned to the one that defined in grid partition procedure. // 0 -- each zone is assigned to the one that defined in grid partition procedure.
//! -# 1 : random assigned for each zone or by some else ways. // 1 -- random assigned for each zone or by some else ways.
int parallelStrategy = 1; int parallelStrategy = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
@ -232,7 +235,6 @@ string partition_grid_file = "./grid/sphere_mixed__4.fts";
// 1 -- perfect balance. // 1 -- perfect balance.
// maxproc -- perfect imbalance. // maxproc -- perfect imbalance.
// 1.05 -- recommended. // 1.05 -- recommended.
int omit_no_bound_bc = 0; int omit_no_bound_bc = 0;
int npartmethod = 1; int npartmethod = 1;
int parallelPartitionMethod = 2; int parallelPartitionMethod = 2;
@ -253,24 +255,30 @@ int numberOfMultigrid = 1;
// intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved. // intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved.
// intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved. // intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved.
// intervalStepRes: The step intervals for residual file 'res.dat' saved. // intervalStepRes: The step intervals for residual file 'res.dat' saved.
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
int maxSimuStep = 20000; int maxSimuStep = 20000;
int intervalStepFlow = 1000; int intervalStepFlow = 1000;
int intervalStepPlot = 1000; int intervalStepPlot = 1000;
int intervalStepSample = 1000; int intervalStepSample = 1000;
int intervalStepForce = 100; int intervalStepForce = 100;
int intervalStepRes = 10; int intervalStepRes = 10;
int ifLowSpeedPrecon = 0;
// compressible: // compressible:
// 0 -- incompressible flow. // 0 -- incompressible flow.
// 1 -- compressible flow. (default) // 1 -- compressible flow. (default)
int compressible = 1; int compressible = 1;
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
// Kprec: The coefficient K for the cut-off velocity.
// 1.0~3.0 is suggested. (default, 3.0)
// preconFarfieldBCMethod: The precondition method for farfield boundary condition.
// 0 -- precondition far-field boundary based on riemann invariants.
// 1 -- Turkel's simplified far-field boundary condition.
int ifLowSpeedPrecon = 0;
double Kprec = 3.0;
int preconFarfieldBCMethod = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# CFD Control Parameter # # CFD Control Parameter #
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
@ -281,9 +289,12 @@ int compressible = 1;
// 0 -- the nondimensional conditions. // 0 -- the nondimensional conditions.
// 1 -- the flight conditions. // 1 -- the flight conditions.
// 2 -- the experiment conditions. // 2 -- the experiment conditions.
// 3 -- the subsonic boundary conditions. // 3 -- the subsonic boundary conditions. (Useless!)
// 4 -- the condition that the velocity, temperature and density are given. // 4 -- the condition that the velocity, temperature and density are given.
// 5 -- the condition that the velocity, temperature and pressure are given. // 5 -- the condition that the velocity, temperature and pressure are given.
//flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -303,11 +314,11 @@ int compressible = 1;
// condition is radiation equilibrium temperature, and 0.8 is the default value. // condition is radiation equilibrium temperature, and 0.8 is the default value.
// refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol. // refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol.
// Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on. // Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on.
int directionMethod = 0; int directionMethod = 0;
double refMachNumber = 0.73; double refMachNumber = 0.73;
double attackd = 2.79; double attackd = 2.79;
double angleSlide = 0.00; double angleSlide = 0.00;
int flowInitMethod = 0;
int inflowParaType = 0; int inflowParaType = 0;
double refReNumber = 6.5e6; double refReNumber = 6.5e6;
@ -321,14 +332,6 @@ double freestream_vibration_temperature = 300.00;
//double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2). //double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2).
//double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)). //double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)).
//int inflowParaType = 3;
//int nsubsonicInlet = 1;
//int nsubsonicOutlet = 1;
//string inLetFileName = "./bin/subsonicInlet.hypara";
//string outLetFileName = "./bin/subsonicOutlet.hypara";
//double refDimensionalTemperature = 288.144;
//double refDimensionalPressure = 1.01313E05;
// The velocity, temperature and density are fixed. // The velocity, temperature and density are fixed.
//int inflowParaType = 4; //int inflowParaType = 4;
//double refDimensionalVelocity = 1000.0; //double refDimensionalVelocity = 1000.0;
@ -341,9 +344,15 @@ double freestream_vibration_temperature = 300.00;
// The MachNumber, temperature and pressure are fixed. // The MachNumber, temperature and pressure are fixed.
//int inflowParaType = 6; //int inflowParaType = 6;
//double refDimensionalTemperature = 293; //double refDimensionalTemperature = 293.0;
//double refDimensionalPressure = 8886.06; //double refDimensionalPressure = 8886.06;
// The velocity, temperature and pressure are read from file.
//int inflowParaType = 7;
//string weatherDataFilePath = "./WRFData/";
//double longitude = 110.95
//double latitude = 19.61;
double wallTemperature = -1.0; double wallTemperature = -1.0;
double radiationCoef = 0.8; double radiationCoef = 0.8;
@ -357,35 +366,35 @@ double forceReferenceArea = 1.0; // unit of meter^2.
double TorqueRefX = 0.0; // unit of meter. double TorqueRefX = 0.0; // unit of meter.
double TorqueRefY = 0.0; // unit of meter. double TorqueRefY = 0.0; // unit of meter.
double TorqueRefZ = 0.0; // unit of meter. double TorqueRefZ = 0.0; // unit of meter.
double knudsenLength = 1.0; // unit of meter.
double refMolecularWeight = 28.9644; // unit of g/mol. double refMolecularWeight = 28.9644; // unit of g/mol.
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# Spatial Discretisation # # Spatial Discretisation #
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
#******************************************************************* #************************************************************************
# Struct Solver * # Struct Solver *
#******************************************************************* #************************************************************************
// inviscidSchemeName: Spatial discretisation scheme of struct grid. // inviscidSchemeName: Spatial discretisation scheme of struct grid.
// Using this when solve structered grid or hybrid. // Using this when solve structered grid or hybrid.
// -- "vanleer", "steger", "hlle", "lax_f". // -- "vanleer", "steger", "hlle", "lax_f",
// -- "roe", "modified_roe". // -- "roe", "modified_roe",
// -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+". // -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+".
// isWennScheme: If using WENN Scheme of struct grid. // isWennScheme: If using WENN Scheme of struct grid.
// 0 -- NO. (default) // 0 -- NO. (default)
// 1 -- Yes. // 1 -- Yes.
// str_limiter_name: Limiter of struct grid. // str_limiter_name: Limiter of struct grid.
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth". // -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth",
// -- "nolim", no limiter. // -- "nolim", no limiter,
// -- "vanalbada_clz", clz supersonic version. // -- "vanalbada_clz", clz supersonic version,
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3" // -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3".
string inviscidSchemeName = "roe"; string inviscidSchemeName = "roe";
int isWennScheme = 0; int isWennScheme = 0;
string str_limiter_name = "vanalbada"; string str_limiter_name = "vanalbada";
#******************************************************************* #************************************************************************
# UnStruct Solver or Common * # UnStruct Solver or Common *
#******************************************************************* #************************************************************************
// viscousType: Viscous model. // viscousType: Viscous model.
// 0 -- Euler. // 0 -- Euler.
// 1 -- Lamilar. // 1 -- Lamilar.
@ -410,11 +419,11 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle". // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod". // -- "barth", "vencat", "vanleer", "minmod",
// -- "vanalbada", "smooth", "nnd", "lpz", "1st". // -- "vanalbada", "smooth", "nnd", "lpz", "1st",
// -- "nolim", no limiter. // -- "nolim", no limiter.
// uns_vis_name: Discretisation method of viscous term. // uns_vis_name: Discretisation method of viscous term.
// -- "std", "test", "aver", "new1", "new2". // -- "std", "test", "aver", "new1", "new2".
@ -442,7 +451,7 @@ string str_limiter_name = "vanalbada";
// 3 -- Harten type, which is default used. // 3 -- Harten type, which is default used.
// roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0. // roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0.
// It is used to scale the default Roe entropy fix coefficients. // It is used to scale the default Roe entropy fix coefficients.
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0 // AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0.
//int viscousType = 0; //int viscousType = 0;
//string viscousName = "Euler"; //string viscousName = "Euler";
@ -475,9 +484,9 @@ double roeEntropyScale = 1.0;
double AusmpwPlusLimiter = 1.0; double AusmpwPlusLimiter = 1.0;
//----------------------------------------------------------------------- #************************************************************************
# Temporal Discretisation # # Temporal Discretisation *
//----------------------------------------------------------------------- #************************************************************************
// iunsteady: Steady or unsteady. // iunsteady: Steady or unsteady.
// 0 -- steady. // 0 -- steady.
// 1 -- unsteay. // 1 -- unsteay.
@ -504,11 +513,18 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// useLUSGSprecond: Initialize flow field for GMRES.
// 0 --Initialize by first order Jacobian matrix.
// 1 --Initialize by LUSGS.
// GMRESInitStep : the number of iteration step of irst order Jacobian matrix or LUSGS for initialize flow field.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -533,7 +549,6 @@ double AusmpwPlusLimiter = 1.0;
// 2 -- Pab3D wall function. // 2 -- Pab3D wall function.
// RKStage: The number of Runge-Kutta step. // RKStage: The number of Runge-Kutta step.
// lamda: Cofficient of Runge-Kutta step. // lamda: Cofficient of Runge-Kutta step.
int iunsteady = 0; int iunsteady = 0;
double physicalTimeStep = 0.01; double physicalTimeStep = 0.01;
double physicalTimeStepDimensional = -0.001; double physicalTimeStepDimensional = -0.001;
@ -543,7 +558,7 @@ int ifStaticsReynoldsStress = 0;
int startStatisticStep = 800000; int startStatisticStep = 800000;
double statisticalTimePeriod = -1.0; double statisticalTimePeriod = -1.0;
int statisticMethod = 0; int statisticMethod = 0;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2; int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2.
int methodOfDualTime = 3; int methodOfDualTime = 3;
int min_sub_iter = 50; int min_sub_iter = 50;
@ -558,7 +573,10 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 9;
int useLUSGSprecond = 1;
int GMRESInitStep = 1000;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -575,7 +593,7 @@ int order = 2;
double visl_min = 0.01; double visl_min = 0.01;
double turbCFLScale = 1.0; double turbCFLScale = 1.0;
double csrv = 2.0; double csrv = 1.0;
double timemax = 1.0e10; double timemax = 1.0e10;
double dtsave = -1.0; double dtsave = -1.0;
int maxale = 10; int maxale = 10;
@ -591,10 +609,9 @@ double lamda[] = [0.5, 1.0];
//int RKStage = 4; //int RKStage = 4;
//double lamda[] = [0.25, 0.33333333333, 0.5, 1.0]; //double lamda[] = [0.25, 0.33333333333, 0.5, 1.0];
#************************************************************************
//----------------------------------------------------------------------- # File In or Out *
# File In or Out # #************************************************************************
//-----------------------------------------------------------------------
// numberOfGridGroups: The number of grid groups. // numberOfGridGroups: The number of grid groups.
// gridfile: The partitioned Grid file path, using relative path, // gridfile: The partitioned Grid file path, using relative path,
// which is relative to the working directory. // which is relative to the working directory.
@ -618,10 +635,8 @@ double lamda[] = [0.5, 1.0];
// nIsComputeWallDist: Whether to compute the wall distance. // nIsComputeWallDist: Whether to compute the wall distance.
// 0 -- Compute wall distance. // 0 -- Compute wall distance.
// 1 -- Not compute. // 1 -- Not compute.
//
// protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism. // protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism.
// wall_heatfluxfile: The file to output the MaxHeatFlux of wall. // wall_heatfluxfile: The file to output the MaxHeatFlux of wall.
int numberOfGridGroups = 1; int numberOfGridGroups = 1;
string gridfile = "./grid/rae2822_hybrid2d__4.fts"; string gridfile = "./grid/rae2822_hybrid2d__4.fts";
string wallTemperaturefile = ""; string wallTemperaturefile = "";
@ -632,10 +647,12 @@ int cellMethodOrNodeMethod = 0;
string resSaveFile = "results/res.dat"; string resSaveFile = "results/res.dat";
string turbresfile = "results/turbres.dat"; string turbresfile = "results/turbres.dat";
string transitionResFile = "results/transitionRes.dat";
string aircoeffile = "results/aircoef.dat"; string aircoeffile = "results/aircoef.dat";
string restartNSFile = "results/flow.dat"; string restartNSFile = "results/flow.dat";
string turbfile = "results/turb.dat"; string turbfile = "results/turb.dat";
string transitionFile = "results/transition.dat";
string visualfile = "results/tecflow.plt"; string visualfile = "results/tecflow.plt";
string wall_aircoefile = "results/wall_aircoef.dat"; string wall_aircoefile = "results/wall_aircoef.dat";
@ -645,11 +662,15 @@ string protectionFile0 = "results/flow0.dat";
string protectionFile1 = "results/flow1.dat"; string protectionFile1 = "results/flow1.dat";
string wall_heatfluxfile = "results/wall_heatflux.dat"; string wall_heatfluxfile = "results/wall_heatflux.dat";
string protectionTurbFile0 = "results/turb0.dat";
string protectionTurbFile1 = "results/turb1.dat";
string protectionTransitionFile0 = "results/transition0.dat";
string protectionTransitionFile1 = "results/transition1.dat";
int nDumpSurfaceInfo = 0; int nDumpSurfaceInfo = 0;
string wall_varfile = ""; string wall_varfile = "";
string jetDefineFile = "bin/jet.hypara";
string sixDofFileName = "results/sixDofInfo.dat"; string sixDofFileName = "results/sixDofInfo.dat";
string derivativeFileName = "results/identify.dat"; string derivativeFileName = "results/identify.dat";
string hysteresisFileName = "results/force_beta.plt"; string hysteresisFileName = "results/force_beta.plt";
@ -659,7 +680,8 @@ int plotFieldType = 0;
// visualfileType: The file type of visualfile. // visualfileType: The file type of visualfile.
// 0 -- Tecplot binary. // 0 -- Tecplot binary.
// 1 -- Tecplot ASCII. // 1 -- Tecplot ASCII.
// 2 -- Ensight binary.
// 3 -- Ensight ASCII.
int visualfileType = 1; int visualfileType = 1;
// samplefileMode: The dump mode of sample file. // samplefileMode: The dump mode of sample file.
@ -697,21 +719,21 @@ double upperPlotFieldBox[] = [1.0 1.0 1.0];
// -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36), // -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36),
// -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40), // -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40),
// -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47), // -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47),
// -- transition intermittency(intermittency, 51), -transition momentum thickness reynolds(MomentumThicknessReynolds, 52), // -- transition intermittency(intermittency, 51), transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- overlap iblank(iblank, 81) // -- local CFL Number(localCFL, 57), minimal CFL Number(minCFL, 58),
// -- overlap iblank(iblank, 81),
// -- specific heat ratio(gama, 56) // -- specific heat ratio(gama, 56), Knudsen number(kn, 60), Damkohler number(Da, 61), vibrational nonequilibrium number(Vi, 62).
// Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!! // Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!!
// Variables order must from small to big. // Variables order must from small to big.
//-----------the optional parameters list for the wall boundary condition---------------- //-----------the optional parameters list for the wall boundary condition----------------
// nVisualWallVariables: The number of visual variables on wall. // nVisualWallVariables: The number of visual variables on wall.
// visualWallVariables : dumped variable types, listed as following: // visualWallVariables : dumped variable types, listed as following:
// -coefficient of pressure(cp, 0), -coefficient of friction(cf, 1), yplus(2), -non-dimensional heat flux(Q_NonDim, 3), -dimensional heat flux(Q_Dim, 4), // -- coefficient of pressure(cp, 0), coefficient of friction(cf, 1), yplus(2), non-dimensional heat flux(Q_NonDim, 3), dimensional heat flux(Q_Dim, 4),
// -pressure on wall(pw, 5), -temperature on wall(Tw, 6), -density on wall(rhow, 7), -heat flux of translational-rotational temperature term(Qtr, 8), // -- pressure on wall(pw, 5), temperature on wall(Tw, 6), density on wall(rhow, 7), heat flux of translational-rotational temperature term(Qtr, 8),
// -heat flux of species diffusion term(Qs, 9), -heat flux of vibrational temperature term(Qv, 10), -heat flux of electron temperature term(Qe, 11), // -- heat flux of species diffusion term(Qs, 9), heat flux of vibrational temperature term(Qv, 10), heat flux of electron temperature term(Qe, 11),
// -species mass fractions(Ns, 12), -x component of wall velocity(Vx, 13), -y component of wall velocity(Vy, 14), -z component of wall velocity(Vz, 15) // -- species mass fractions(Ns, 12), x component of wall velocity(Vx, 13), y component of wall velocity(Vy, 14), z component of wall velocity(Vz, 15),
// -slip translational-rotational temperature(Tts, 16), -slip vibrational temperature(Tvs, 17), -slip electron temperature(Tes, 18), -absolute wall velocity(Vs, 19) // -- slip translational-rotational temperature(Tts, 16), slip vibrational temperature(Tvs, 17), slip electron temperature(Tes, 18), absolute wall velocity(Vs, 19),
// -Stanton number(St, 20), -coefficient of heat rate(Ch, 21), -temperature jump(deltaT, 22), -Grid Reynolds number on wall(Re_w, 23) // -- Stanton number(St, 20), coefficient of heat rate(Ch, 21), temperature jump(deltaT, 22), Grid Reynolds number on wall(Re_w, 23), Knudsen number(Kn_wall, 24).
int nVisualVariables = 8; int nVisualVariables = 8;
int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15]; int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15];
@ -739,7 +761,9 @@ int dumpStandardModel = 0;
// 1 -- Real cell where the probe is located. // 1 -- Real cell where the probe is located.
// nProbeVariables: Number of variables want to be dumped for probes monitered. // nProbeVariables: Number of variables want to be dumped for probes monitered.
// probeVariables : Variable types dumped, listed as following: // probeVariables : Variable types dumped, listed as following:
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6). // -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6),
// -- dimensioanl_density(7), dimensioanl_u(8), dimensioanl_v(9),
// -- dimensioanl_w(10), dimensioanl_pressure(11), dimensioanl_temperature(12).
// Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!! // Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!!
// probeVariables order must from small to big. // probeVariables order must from small to big.
// probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables. // probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables.
@ -761,12 +785,13 @@ string probesDefineFile = "bin/probes_XYZ.dat";
int searchCellsMethod = 0; int searchCellsMethod = 0;
int nProbeVariables = 7; int nProbeVariables = 14;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6]; int probeVariables[] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13];
int probeVariablesInterpolationMethod = 0; int probeVariablesInterpolationMethod = 0;
//-----------------------------------------------------------------------
# Turbulence Parameter # #************************************************************************
//----------------------------------------------------------------------- # Turbulence Parameter *
#************************************************************************
// turbInterval: Iteration number of turbulence. // turbInterval: Iteration number of turbulence.
// kindOfTurbSource: Kinds of turbulent source. // kindOfTurbSource: Kinds of turbulent source.
// 0 -- Original. // 0 -- Original.
@ -774,15 +799,12 @@ int probeVariablesInterpolationMethod = 0;
// transitionType: transition model type // transitionType: transition model type
// 0 -- none. // 0 -- none.
// 2 -- gama-re-theta. // 2 -- gama-re-theta.
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition // turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition.
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not // freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not.
int turbInterval = 1; int turbInterval = 1;
int turbOrderStruct = 2; int turbOrderStruct = 2;
int kindOfTurbSource = 0; int kindOfTurbSource = 0;
int mod_turb_res = 0; int mod_turb_res = 0;
double turb_relax = 1.0;
double freeStreamViscosity = 1.0e-3; double freeStreamViscosity = 1.0e-3;
double muoo = 3.0; double muoo = 3.0;
double kwoo = 5.0; double kwoo = 5.0;
@ -791,28 +813,27 @@ double turbIntensity = -1.0;
int freeturbIntensitySRModify = 0; int freeturbIntensitySRModify = 0;
double freeDecayXLocation = 0.0; double freeDecayXLocation = 0.0;
int compressibleCorrection = 0; int compressibleCorrection = 0;
int prandtlNumberCorrection = 0;
int transitionMaFix = 1; int transitionMaFix = 1;
# maximum eddy viscosity (myt/my) max. // maximum eddy viscosity (myt/my) max.
double eddyViscosityLimit = 1.0e10; double eddyViscosityLimit = 1.0e10;
int monitor_vistmax = 0; int monitor_vistmax = 0;
//----------------------------------------------------------------------- #************************************************************************
# LES Parameter # # LES Parameter *
//----------------------------------------------------------------------- #************************************************************************
// iLES: Create LESSolver or not. // iLES: Create LESSolver or not.
// = 1 - Create LESSolver; // = 1 -- Create LESSolver;
// != 1 - not. // != 1 -- not.
// amplitudeofDisturb: Amplitude of adding disturb. // amplitudeofDisturb: Amplitude of adding disturb.
// disturbstep: Unsteady time step or steady iteration of adding random disturb. // disturbstep: Unsteady time step or steady iteration of adding random disturb.
// iterdisturb: Add random disturb in every sub-iter or only first sub-iter. // iterdisturb: Add random disturb in every sub-iter or only first sub-iter.
// = 0 - in only first sub-iter; // = 0 -- in only first sub-iter;
// != 0 - in every sub-iter. // != 0 -- in every sub-iter.
// ipraddisturb: Add density and pressure disturb or not. // ipraddisturb: Add density and pressure disturb or not.
// ibodyforce: Add body force in source flux of NS equations or not. // ibodyforce: Add body force in source flux of NS equations or not.
// = 0 - not; // = 0 -- not;
// != 0 - Add body force. // != 0 -- Add body force.
// bodyforce: Body force in source flux of NS equations or not. // bodyforce: Body force in source flux of NS equations or not.
// utau: friction velocity, using in DNSDisturb. // utau: friction velocity, using in DNSDisturb.
// sgsmodel: subgrid scale model. // sgsmodel: subgrid scale model.
@ -820,23 +841,22 @@ int monitor_vistmax = 0;
// = "dsmCom"; // = "dsmCom";
// = "wale"; // = "wale";
// = "sigma". // = "sigma".
// deltaFunctionType: = 1 - MAX(deltai, deltaj, deltak); // deltaFunctionType: = 1 -- MAX(deltai, deltaj, deltak);
// = 2 - pow(deltai * deltaj *deltak, 1/3); // = 2 -- pow(deltai * deltaj *deltak, 1/3);
// = 3 - Devloped by Scotti. // = 3 -- Devloped by Scotti.
// wallDampingFunctionType: = 0 - no wall function; // wallDampingFunctionType: = 0 -- no wall function;
// = 1 - van Driest; // = 1 -- van Driest;
// = 2 - developed by Dr. Deng Xiaobing; // = 2 -- developed by Dr. Deng Xiaobing;
// = 3 - developed by Piomelli. // = 3 -- developed by Piomelli.
// turbViscousCutType: turbulent viscosity cut type. // turbViscousCutType: turbulent viscosity cut type.
// = 0 - mu_total = mut + mul; // = 0 -- mu_total = mut + mul;
// = 1 - mu_total = max(mut-mul,0)+ mul; // = 1 -- mu_total = max(mut-mul, 0) + mul;
// = 2 - mu_total = max(mut ,0)+ mul. // = 2 -- mu_total = max(mut , 0) + mul.
// smagConstant: constant of smagorinsky model. // smagConstant: constant of smagorinsky model.
// waleConstant: constant of wale model. // waleConstant: constant of wale model.
// filterDirection [3]: filter variables in i, j, k direction or not. // filterDirection [3]: filter variables in i, j, k direction or not.
// averageDirection[3]: average variables in i, j, k direction or not. // averageDirection[3]: average variables in i, j, k direction or not.
// isotropicConstant: constant of isotropic part of SGS stress. // isotropicConstant: constant of isotropic part of SGS stress.
int iLES = 0; int iLES = 0;
string sgsmodel = "smagorinsky"; string sgsmodel = "smagorinsky";
int deltaFunctionType = 2; int deltaFunctionType = 2;
@ -852,9 +872,9 @@ double testFilterScale = 2.0;
int averageWidth = 1; int averageWidth = 1;
int monitorNegativeConstant = 0; int monitorNegativeConstant = 0;
//----------------------------------------------------------------------- #************************************************************************
# Other Parameters for Hypersonic Non-equilibrium Gas # # Other Parameters for Hypersonic Non-equilibrium Gas *
//----------------------------------------------------------------------- #************************************************************************
// dg_high_order: // dg_high_order:
// 0 -- generic order accuracy. // 0 -- generic order accuracy.
// 1 -- high order accuracy. // 1 -- high order accuracy.
@ -862,9 +882,6 @@ int monitorNegativeConstant = 0;
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver,
// isAdaptiveSolver>0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -886,14 +903,13 @@ int monitorNegativeConstant = 0;
// nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied. // nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied.
// 0 -- perfect gas. // 0 -- perfect gas.
// 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component. // 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component.
// nPCWCycleStep: the maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition. // nPCWCycleStep: The maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: the maximum step number of iteration in the module of computing radiation equilibrium temperature on wall. // nRETCycleStep: The maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:the maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction. // nSLIPCycleStep:The maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nSlipBCModel: The computational model of slip boundary conditions. // nSlipBCModel: The computational model of slip boundary conditions.
// 0 -- no slip. // 0 -- no slip.
// 1 -- the conventional Maxwell slip conditions. // 1 -- the conventional Maxwell slip conditions.
// 2 -- the Gokcen slip conditions. // 2 -- the Gokcen slip conditions.
@ -913,10 +929,13 @@ int monitorNegativeConstant = 0;
// 1 -- One-temperature model. // 1 -- One-temperature model.
// 2 -- Two-temperature model. // 2 -- Two-temperature model.
// 3 -- Three-temperature model. // 3 -- Three-temperature model.
// isUseNoneqCond:
// 0 -- compute the source terms without any conditions.
// 1 -- compute the source terms using the non-equilibrium condition.
// frozenCondition: the threshold value of frozen chemical flow condition, 0.1 is the default value.
// nIdealState: whether take all gas species as ideal gas for gas-mixture process. // nIdealState: whether take all gas species as ideal gas for gas-mixture process.
// 0 -- No. // 0 -- No.
// 1 -- Yes. // 1 -- Yes. // nTEnergyModel: the method to computing temperature energy model.
// nTEnergyModel: the method to computing temperature energy model.
// 0 -- the energy term is computed using the conventional method. // 0 -- the energy term is computed using the conventional method.
// 1 -- the energy term is computed using the polynomial fitting method. // 1 -- the energy term is computed using the polynomial fitting method.
// 2 -- the energy term is computed using the piecewise polynomial fitting method. // 2 -- the energy term is computed using the piecewise polynomial fitting method.
@ -946,14 +965,13 @@ int monitorNegativeConstant = 0;
// 1.0 -- proposed by Maxwell. // 1.0 -- proposed by Maxwell.
// sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall. // sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall.
// 1.146 -- proposed for an additional "fictitious" velocity slip. // 1.146 -- proposed for an additional "fictitious" velocity slip.
// chemicalRelaxCorf: The value is in range of [0.001, 1.0]. // chemicalRelaxCorf: The value is in range of [0.001, 1.0].
// spectrumRadiusCoef: The value is in range of [0.0, 2.0]. // spectrumRadiusCoef: The value is in range of [0.0, 2.0].
// staticPressureRelaxCorf: The value is in range of [0.1, 1.0]. // staticPressureRelaxCorf: The value is in range of [0.1, 1.0].
// nIsChemicalFreeze: the flag to freeze the chemical reactions. // nIsChemicalFreeze: the flag to freeze the chemical reactions.
// 0 -- not freeze, the chemical reaction sources will be calculated. // 0 -- not freeze, the chemical reaction sources will be calculated.
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.// veTemperatureMin: The minimum of Tv and Te // 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.
// veTemperatureMin: The minimum of Tv and Te.
// maxViscous: the maximum of Viscous. // maxViscous: the maximum of Viscous.
// trTemperatureMin: the minimum value of trTemperature. // trTemperatureMin: the minimum value of trTemperature.
// veTemperatureMin: the minimum value of veTemperature. // veTemperatureMin: the minimum value of veTemperature.
@ -965,36 +983,34 @@ int monitorNegativeConstant = 0;
// nSpeciesLimit: limitter of gas species // nSpeciesLimit: limitter of gas species
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction // nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction.
// 0 -- method 0. // 0 -- method 0.
// 1 -- method 1. // 1 -- method 1.
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid // nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nViscosityPeModified: Pe Modified for ViscosityCoef // nViscosityPeModified: Pe Modified for ViscosityCoef.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nChemcalSourceModified: Modified on ChemcalSource // nChemcalSourceModified: Modified on ChemcalSource.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nChemcalSourceEsMethod: Modified on ChemcalSource // nChemcalSourceEsMethod: Modified on ChemcalSource.
// 0 -- approximation algorithm 1 (Ori.) // 0 -- approximation algorithm 1 (Ori).
// 1 -- approximation algorithm 2 (New) // 1 -- approximation algorithm 2 (New).
// nMaxStepTemperature: the iterative steps of temperature. // nMaxStepTemperature: the iterative steps of temperature.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs // 0 -- not used.
// 0 -- not used // 1 -- used.
// 1 -- used // nDiagonalModified: Modified on Diagonal.
// 0 -- not used.
// nDiagonalModified: Modified on Diagonal // 1 -- new.
// 0 -- not used // nDiagonalModifiedTurb: Modified on Diagonal for turbulence.
// 1 -- Ori. // 0 -- not used.
// 2 -- new // 1 -- new.
// nGradPrimtiveMethod: // nGradPrimtiveMethod:
// 0 -- Ori. // 0 -- Ori.
// 1 -- new // 1 -- new.
// nAblation: // nAblation:
// 0 -- The wall ablation is not computed. // 0 -- The wall ablation is not computed.
// 1 -- The wall ablation is computed. // 1 -- The wall ablation is computed.
@ -1017,8 +1033,8 @@ int monitorNegativeConstant = 0;
// "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas. // "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas.
// "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions. // "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions.
// "Gas-Mixture" -- indicates the process of mixing gas without reacting. // "Gas-Mixture" -- indicates the process of mixing gas without reacting.
// for struct solver mixing two species£¨SpeciesA, SpeciesB£©. // for struct solver mixing two species<65><73>SpeciesA, SpeciesB<73><42>.
// for unstruct solver mixing multi-species£¨O2 NO CO CO2 H2 N2 Air CH4£©. // for unstruct solver mixing multi-species<65><73>O2 NO CO CO2 H2 N2 Air CH4<48><34>.
// For self-definition model, the gasfile is used to indicate the file path of the new gas model. // For self-definition model, the gasfile is used to indicate the file path of the new gas model.
// speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma. // speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma.
// initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName. // initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName.
@ -1040,13 +1056,16 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting : Setting for HyFLOW GUI.
// 0 -- PHengLEI
// 1 -- HyFLOW
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no // 0 -- no.
// 1 -- yes // 1 -- yes.
// nTvChange: Judge whether the Tv equals Ttr.
// 0 -- yes.
// 1 -- no.
// isMoleFractionType: 1 indicates the mass fractions, or else the mole fractions.
// nFraction: the initial fractions type of species.
// 0 -- mass fraction.
// 1 -- mole fraction.
int dg_high_order = 0; int dg_high_order = 0;
int iapplication = 0; int iapplication = 0;
int isAdaptiveSolver = 0; int isAdaptiveSolver = 0;
@ -1114,6 +1133,7 @@ double densityMin = 1.0e-8;
double densityMinFactor = 0.1; double densityMinFactor = 0.1;
double tAdjustmentFactor = 10.0; double tAdjustmentFactor = 10.0;
double iniSpeedCoef = 1.0; double iniSpeedCoef = 1.0;
int iniSpeedMode = 0;
int nDebug = 0; int nDebug = 0;
int nSpeciesLimit = 1; int nSpeciesLimit = 1;
@ -1125,18 +1145,21 @@ int nChemcalSourceEsMethod = 1;
int nMaxStepTemperature = 5; int nMaxStepTemperature = 5;
int veTemperatureMinModified = 1; int veTemperatureMinModified = 1;
int nDiagonalModified = 0; int nDiagonalModified = 0;
int nDiagonalModifiedTurb = 0;
int nGradPrimtiveMethod = 1; int nGradPrimtiveMethod = 1;
int nInviscidFluxModify = 1; int nInviscidFluxModify = 1;
int nQlLimitMethod = 2; int nQlLimitMethod = 2;
int nSpeciesForWallMethod = 1; int nSpeciesForWallMethod = 1;
int nDensityForWallMethod = 0; int nDensityForWallMethod = 0;
int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
int nMarsModel = 0; int nMarsModel = 0;
int nTvChange = 0;
int isMoleFractionType = 0;
string gasfile = "DK5"; string gasfile = "DK5";
//string gasfile = "./chemical/Dunn-Kang_air5s11r.dat"; //string gasfile = "./chemical/Dunn-Kang_air5s11r.dat";
string speciesName = "O, O2, NO, N, N2"; string speciesName = "O, O2, NO, N, N2";
@ -1173,9 +1196,17 @@ double molecularWeightSpeciesB = 30.0;
//string speciesName = "O2, N2"; //string speciesName = "O2, N2";
//string initMassFraction = "1.0, 0.0"; //string initMassFraction = "1.0, 0.0";
int nFraction = 0;
int nContinueModel = 0; int nContinueModel = 0;
int nChemicalFlowStep = 0; int nChemicalFlowStep = 0;
int ifStartFromPerfectGasResults = 0; int ifStartFromPerfectGasResults = 0;
int isUseNoneqCond = 0;
double frozenCondition = 0.01;
int nLeakageMonitor = 0;
double totalLeakageVolume = 1000.0;
double monitorThresholdValue = 0.05;
double sprayFactor = 0.0;
######################################################################### #########################################################################
// Multi-Grid parameters. // Multi-Grid parameters.
@ -1196,7 +1227,6 @@ int ifStartFromPerfectGasResults = 0;
// 1 -- zero order. // 1 -- zero order.
// 2 -- first-order. (default) // 2 -- first-order. (default)
// mgCorrectionLimit: Multi-grid correction limit. // mgCorrectionLimit: Multi-grid correction limit.
int nMGLevel = 1; int nMGLevel = 1;
int MGCoarsestIteration = 1; int MGCoarsestIteration = 1;
int MGPreIteration = 1; int MGPreIteration = 1;
@ -1226,9 +1256,9 @@ string holeFullFileName = "./grid/holeFullFile.dat";
string linkFileName = "./grid/topology.dat"; string linkFileName = "./grid/topology.dat";
string zoneInverseFileName = "./grid/zoneInverseMapping.inp"; string zoneInverseFileName = "./grid/zoneInverseMapping.inp";
######################################################################### #************************************************************************
# High Order Struct Solver # # High Order Struct Solver *
######################################################################### #************************************************************************
// isFVMOrFDM: // isFVMOrFDM:
// 0 -- NSSolverStruct using Finite Volume Method. // 0 -- NSSolverStruct using Finite Volume Method.
// 1 -- NSSolverStruct using Finite Differ Method. // 1 -- NSSolverStruct using Finite Differ Method.
@ -1273,10 +1303,29 @@ int allReduceStep = 1;
// codeOfOversetGrid: Overlapping(overset) grid or not. // codeOfOversetGrid: Overlapping(overset) grid or not.
// 0 -- NON-overlapping grid. // 0 -- NON-overlapping grid.
// 1 -- Overlapping grid. // 1 -- Overlapping grid.
// oversetInterpolationMethod: the method of overset interpolation while field simulation // oversetInterpolationMethod: the method of overset interpolation while field simulation.
// 0 -- set the acceptor cell value by donor cell value. // 0 -- set the acceptor cell value by donor cell value.
// 1 -- set the acceptor cell value by distance weight of donor cell value. // 1 -- set the acceptor cell value by distance weight of donor cell value.
// readOversetFileOrNo: Whether to read overset-file(.ovs) that has been generated.
// 0 -- no.
// 1 -- yes.
// symetryOrNot: If there exist symetryplanes(XY plane, the coordinate of Z direction is 0) in
// the current overset grid(only for three dimension).
// 0 -- no.
// 1 -- yes.
// readInAuxiliaryInnerGrid: Whether to read auxiliary inner grid.
// 0 -- no.
// 1 -- yes.
// walldistMainZone: The initial value of background grid which does not exist wall boundary condition.
// toleranceForOversetSearch: The tolerance of overset searching zone to judge whether the obtained node is in the current computing cell.
// toleranceForOversetBox: The tolerance of building the minimum box of computing cells in the overlapping region.
// twoOrderInterpolationOrNot: The number of interpolated cell layers in the overlapping boundary.
// 0 -- one layer.
// 1 -- two layers.
// keyEnlargeOfActiveNodes: The number of enlarged overset-boundary layers in the buffer region.
// outTecplotOverset: Whether to dump out the flowfield data after the progress of overset configure.
// 0 -- no.
// 1 -- yes.
int codeOfOversetGrid = 0; int codeOfOversetGrid = 0;
int oversetInterpolationMethod = 0; int oversetInterpolationMethod = 0;
int readOversetFileOrNot = 0; int readOversetFileOrNot = 0;
@ -1295,7 +1344,6 @@ int twoOrderInterpolationOrNot = 0;
int keyEnlargeOfActiveNodes = 0; int keyEnlargeOfActiveNodes = 0;
int outTecplotOverset = 0; int outTecplotOverset = 0;
int outPutOversetVisualization = 0; int outPutOversetVisualization = 0;
int numberOfMovingBodies = 2; int numberOfMovingBodies = 2;
// ----------------- ALE configuration ------------------------------ // ----------------- ALE configuration ------------------------------
@ -1306,34 +1354,40 @@ double referenceLength = 1.0;
double referenceVelocity = 1.0; double referenceVelocity = 1.0;
double referenceDensity = 1.0; double referenceDensity = 1.0;
int strategyForFaceNormalVelocity = 0; //0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd; int strategyForFaceNormalVelocity = 0; // 0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd.
int strategyForGCLSource = 0; //0-present; 1-Ahn; int strategyForGCLSource = 0; // 0-present; 1-Ahn.
//0:1st-Admas-Bashforth; 1:2nd-Admas-Bashforth; 2:1st-Implicit-Euler; 3:2nd-Implicit Euler; 4:2nd-Adams-Moulton; 5:3rd-Adams-Moulton // 0: 1st-Admas-Bashforth; 1: 2nd-Admas-Bashforth; 2: 1st-Implicit-Euler; 3: 2nd-Implicit Euler; 4: 2nd-Adams-Moulton; 5: 3rd-Adams-Moulton.
int methodForKineticEquation = 0; int methodForKineticEquation = 0;
double relaxParameterOfKinetic = 1.0; double relaxParameterOfKinetic = 1.0;
######################################################################### #************************************************************************
# motive information # # motive information *
######################################################################### #************************************************************************
int numberOfMovingBodies = 1; int numberOfMovingBodies = 1;
############################## body0 ############################## ############################## body0 ##############################
//mass of parts // mass of parts.
double mass_0 = 1.0; double mass_0 = 1.0;
//mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz // gravity of parts (along negative direction in Y-axis, eg. 9.8).
double gravity_0 = 0.0;
// mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz.
double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0; double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0;
//initial six DOF position information of parts. xc yc zc // initial six DOF position information of parts. xc yc zc.
double massCenter_0[] = 0.0, 0.0, 0.0; double massCenter_0[] = 0.0, 0.0, 0.0;
//initial six DOF position information of parts. angleX angleY angleZ // if reset mass center while restart.
int resetMassCenter_0 = 0;
// position offset of parts. dx dy dz.
double massCenterDxyz_0[] = 0.0, 0.0, 0.0;
// initial six DOF position information of parts. angleX angleY angleZ.
double attitudeAngle_0[] = 0.0, 0.0, 0.0; double attitudeAngle_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. vc vy vz // initial six DOF move information of parts. vc vy vz.
double massCenterVelocity_0[] = 0.0, 0.0, 0.0; double massCenterVelocity_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. omigX omigY omigZ // initial six DOF move information of parts. omigX omigY omigZ.
double angularVelocity_0[] = 0.0, 0.0, 0.0; double angularVelocity_0[] = 0.0, 0.0, 0.0;
// the object that the parts belong to. // the object that the parts belong to.
int fartherIndex_0 = -1; int fartherIndex_0 = -1;
//the assembly position of the parts. xc yc zc angleX angleY angleZ // the assembly position of the parts. xc yc zc angleX angleY angleZ.
double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0; double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
// the move pattern of the parts. // the move pattern of the parts.
// -1 given motion partten. // -1 given motion partten.
@ -1349,23 +1403,24 @@ double configPamameter_0[] = 0.0 ,0.0 ,0.0 ,0.0 ,0.0
int RBDMethod_0 = 0; int RBDMethod_0 = 0;
double amplitude_0 = 0.0; double amplitude_0 = 0.0;
double reduceFrequency_0 = 0.0; double reduceFrequency_0 = 0.0;
//direction of rotation // direction of rotation.
// 1 -- clockwise from the point of view along the positive x axis. // 1 -- clockwise from the point of view along the positive x axis.
// -1 -- anticlockwise from the point of view along the positive x axis. // -1 -- anticlockwise from the point of view along the positive x axis.
int direction_0 = -1; int direction_0 = -1;
double rotateFrequency_0 = 0.0; double rotateFrequency_0 = 0.0;
//string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter"; //string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter";
//additional force (system axis) fX fY fZ // dimensional physical time for additional force(s).
double addedForceTime_0[] = 0.0;
// additional force(inertia system) fX fY fZ.
double addedForce_0[] = 0.0, 0.0, 0.0; double addedForce_0[] = 0.0, 0.0, 0.0;
//additional moment of Force (system axis) mX mY mZ // additional moment(inertia system) mX mY mZ.
double addedMoment_0[] = 0.0, 0.0, 0.0; double addedMoment_0[] = 0.0, 0.0, 0.0;
// the deformation method of the parts. // the deformation method of the parts.
int morphing_0 = 0; int morphing_0 = 0;
// post indentify // post indentify.
int integralOrder = 4; int integralOrder = 4;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;
@ -1379,18 +1434,34 @@ int integralOrder = 4;
//@string outLetFileName = "./bin/subsonicOutlet.hypara"; //@string outLetFileName = "./bin/subsonicOutlet.hypara";
//@double refDimensionalVelocity = 0; //@double refDimensionalVelocity = 0;
//@double refDimensionalDensity = 0; //@double refDimensionalDensity = 0;
//@string weatherDataFilePath = "./WRFData/";
######################################################################### //@double longitude = 110.95
# Old Parameter # //@double latitude = 19.61;
######################################################################### #************************************************************************
# Old Parameter *
#************************************************************************
int isPlotVolumeField = 0; int isPlotVolumeField = 0;
#************************************************************************
# partial flow field setting Parameter *
#************************************************************************
//int nPartialParameter = 0; // 0/1/2
//int nNumberOfPartialField = 0; //
//int nStartGridIndex[] = [0];
//int nEndGridIndex[] = [0];
######################################################################### //double partialCFL[] = [0.0];
# Incompressible Parameter # //double partialSpeedCoef[] = [0.0];
######################################################################### //double partialSpeed[] = [0.0];
//double partialAttackd[] = [0.0];
//double partialSlide[] = [0.0];
//double partialPressure[] = [0.0];
//double partialTemperature[] = [0.0];
//double partialMassFractions[] = [0.0];
#************************************************************************
# Incompressible Parameter *
#************************************************************************
int isSolveEnergyEquation = 0; int isSolveEnergyEquation = 0;
int isSolveTurbEquation = 0; int isSolveTurbEquation = 0;
int isSolveSpeciesEquation = 0; int isSolveSpeciesEquation = 0;

View File

@ -4,9 +4,12 @@
// gridtype: Grid type for generation, conversion, reconstruction, merging. // gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid. // 0 -- Unstructured grid.
// 1 -- Structured grid. // 1 -- Structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion. // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// 1 -- Y upward. (default) // axisRotateOrder : axis rotating order.
// 2 -- Z upward. // 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
// from_gtype: Type of grid data type in grid conversion process. // from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE. // -1 -- MULTI_TYPE.
// 1 -- PHengLEI, *.fts. // 1 -- PHengLEI, *.fts.
@ -18,7 +21,9 @@
// 7 -- Hybrid, include both of unstructured and structured grid, *.fts. // 7 -- Hybrid, include both of unstructured and structured grid, *.fts.
// 8 -- GMSH, *.msh. // 8 -- GMSH, *.msh.
int gridtype = 0; int gridtype = 0;
int axisup = 1; int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
int from_gtype = 2; int from_gtype = 2;
######################################################################### #########################################################################

View File

@ -29,6 +29,7 @@ int codeOfOversetGrid = 1;
int readOversetFileOrNot = 0; int readOversetFileOrNot = 0;
int symetryOrNot = 0; int symetryOrNot = 0;
int readInAuxiliaryInnerGrid = 1; int readInAuxiliaryInnerGrid = 1;
double gridScaleFactor = 0.001;
string auxiliaryInnerGrid0 = "./grid/aux-upper.fts"; string auxiliaryInnerGrid0 = "./grid/aux-upper.fts";
string auxiliaryInnerGrid1 = "./grid/aux-lower.fts"; string auxiliaryInnerGrid1 = "./grid/aux-lower.fts";
string oversetGridFileName = "./grid/overlap.ovs"; string oversetGridFileName = "./grid/overlap.ovs";

View File

@ -8,6 +8,7 @@
// Platform for Hybrid Engineering Simulation of Flows + // Platform for Hybrid Engineering Simulation of Flows +
// China Aerodynamics Research and Development Center + // China Aerodynamics Research and Development Center +
// (C) Copyright, Since 2010 + // (C) Copyright, Since 2010 +
// PHengLEI 2212 +
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
########################################################################### ###########################################################################
# Default parameters for Grid conversion # # Default parameters for Grid conversion #
@ -46,19 +47,24 @@ int gridobj = 1;
int multiblock = 0; int multiblock = 0;
int iadapt = 0; int iadapt = 0;
int SymmetryFaceVector = 1; int SymmetryFaceVector = 1;
int gridReorder = 0; int gridReorder = 0;
int faceReorderMethod = 0; int faceReorderMethod = 0;
// axisup: Type of Cartisien coordinates system, used in grid conversion. // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// 1 -- Y upward. (default) // axisRotateOrder : axis rotating order.
// 2 -- Z upward. // 1 -- X-axis.
int axisup = 1; // 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
// omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition". // omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition".
// 0 -- Interface. (default) // 0 -- Interface. (default)
// 1 -- Physical boundary condition, used in Hybrid solver. // 1 -- Physical boundary condition, used in Hybrid solver.
int omit_no_bound_bc = 0; int omit_no_bound_bc = 0;
int omitRepeatInterface = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# Grid data type # # Grid data type #
@ -89,7 +95,6 @@ int dumpOldGrid = 0;
int numberOfGridFile = 1; int numberOfGridFile = 1;
string from_gfile = "./grid/rae2822_hybrid2d.cas"; string from_gfile = "./grid/rae2822_hybrid2d.cas";
string from_gfile1 = ""; string from_gfile1 = "";
string out_gfile = "./grid/flat_laminr_133_85_2d.fts"; string out_gfile = "./grid/flat_laminr_133_85_2d.fts";
// ----------------- some advanced choices ------------------------------ // ----------------- some advanced choices ------------------------------
@ -178,7 +183,6 @@ double influencePara = 25.0;
which only support one direction. which only support one direction.
// rotationAngle: The relative angle between two periodic face. // rotationAngle: The relative angle between two periodic face.
which is recorded in degrees. which is recorded in degrees.
int periodicType = 0; int periodicType = 0;
double translationLength[] = [0.0, 0.0, 0.0]; double translationLength[] = [0.0, 0.0, 0.0];
double rotationAngle = 0.0; double rotationAngle = 0.0;
@ -192,7 +196,6 @@ double rotationAngle = 0.0;
// 2 -- refine structured grid. // 2 -- refine structured grid.
// maxproc: The number of partition zones that want to be divided into. // maxproc: The number of partition zones that want to be divided into.
// numberOfMultifile: The number of partition grid files that want to be dumped out. // numberOfMultifile: The number of partition grid files that want to be dumped out.
int pgridtype = 0; int pgridtype = 0;
int maxproc = 4; int maxproc = 4;
int numberOfMultifile = 1; int numberOfMultifile = 1;
@ -207,8 +210,8 @@ int blockIndexOfMark = 0;
int cellIndexOfMark[] = [185, 30, 1]; int cellIndexOfMark[] = [185, 30, 1];
// parallelStrategy: // parallelStrategy:
//! -# 0 : each zone is assigned to the one that defined in grid partition procedure. // 0 -- each zone is assigned to the one that defined in grid partition procedure.
//! -# 1 : random assigned for each zone or by some else ways. // 1 -- random assigned for each zone or by some else ways.
int parallelStrategy = 1; int parallelStrategy = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
@ -232,7 +235,6 @@ string partition_grid_file = "./grid/sphere_mixed__4.fts";
// 1 -- perfect balance. // 1 -- perfect balance.
// maxproc -- perfect imbalance. // maxproc -- perfect imbalance.
// 1.05 -- recommended. // 1.05 -- recommended.
int omit_no_bound_bc = 0; int omit_no_bound_bc = 0;
int npartmethod = 1; int npartmethod = 1;
int parallelPartitionMethod = 2; int parallelPartitionMethod = 2;
@ -253,24 +255,30 @@ int numberOfMultigrid = 1;
// intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved. // intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved.
// intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved. // intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved.
// intervalStepRes: The step intervals for residual file 'res.dat' saved. // intervalStepRes: The step intervals for residual file 'res.dat' saved.
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
int maxSimuStep = 20000; int maxSimuStep = 20000;
int intervalStepFlow = 1000; int intervalStepFlow = 1000;
int intervalStepPlot = 1000; int intervalStepPlot = 1000;
int intervalStepSample = 1000; int intervalStepSample = 1000;
int intervalStepForce = 100; int intervalStepForce = 100;
int intervalStepRes = 10; int intervalStepRes = 10;
int ifLowSpeedPrecon = 0;
// compressible: // compressible:
// 0 -- incompressible flow. // 0 -- incompressible flow.
// 1 -- compressible flow. (default) // 1 -- compressible flow. (default)
int compressible = 1; int compressible = 1;
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
// Kprec: The coefficient K for the cut-off velocity.
// 1.0~3.0 is suggested. (default, 3.0)
// preconFarfieldBCMethod: The precondition method for farfield boundary condition.
// 0 -- precondition far-field boundary based on riemann invariants.
// 1 -- Turkel's simplified far-field boundary condition.
int ifLowSpeedPrecon = 0;
double Kprec = 3.0;
int preconFarfieldBCMethod = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# CFD Control Parameter # # CFD Control Parameter #
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
@ -281,9 +289,12 @@ int compressible = 1;
// 0 -- the nondimensional conditions. // 0 -- the nondimensional conditions.
// 1 -- the flight conditions. // 1 -- the flight conditions.
// 2 -- the experiment conditions. // 2 -- the experiment conditions.
// 3 -- the subsonic boundary conditions. // 3 -- the subsonic boundary conditions. (Useless!)
// 4 -- the condition that the velocity, temperature and density are given. // 4 -- the condition that the velocity, temperature and density are given.
// 5 -- the condition that the velocity, temperature and pressure are given. // 5 -- the condition that the velocity, temperature and pressure are given.
//flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -303,11 +314,11 @@ int compressible = 1;
// condition is radiation equilibrium temperature, and 0.8 is the default value. // condition is radiation equilibrium temperature, and 0.8 is the default value.
// refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol. // refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol.
// Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on. // Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on.
int directionMethod = 0; int directionMethod = 0;
double refMachNumber = 0.73; double refMachNumber = 0.73;
double attackd = 2.79; double attackd = 2.79;
double angleSlide = 0.00; double angleSlide = 0.00;
int flowInitMethod = 0;
int inflowParaType = 0; int inflowParaType = 0;
double refReNumber = 6.5e6; double refReNumber = 6.5e6;
@ -321,14 +332,6 @@ double freestream_vibration_temperature = 300.00;
//double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2). //double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2).
//double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)). //double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)).
//int inflowParaType = 3;
//int nsubsonicInlet = 1;
//int nsubsonicOutlet = 1;
//string inLetFileName = "./bin/subsonicInlet.hypara";
//string outLetFileName = "./bin/subsonicOutlet.hypara";
//double refDimensionalTemperature = 288.144;
//double refDimensionalPressure = 1.01313E05;
// The velocity, temperature and density are fixed. // The velocity, temperature and density are fixed.
//int inflowParaType = 4; //int inflowParaType = 4;
//double refDimensionalVelocity = 1000.0; //double refDimensionalVelocity = 1000.0;
@ -341,9 +344,15 @@ double freestream_vibration_temperature = 300.00;
// The MachNumber, temperature and pressure are fixed. // The MachNumber, temperature and pressure are fixed.
//int inflowParaType = 6; //int inflowParaType = 6;
//double refDimensionalTemperature = 293; //double refDimensionalTemperature = 293.0;
//double refDimensionalPressure = 8886.06; //double refDimensionalPressure = 8886.06;
// The velocity, temperature and pressure are read from file.
//int inflowParaType = 7;
//string weatherDataFilePath = "./WRFData/";
//double longitude = 110.95
//double latitude = 19.61;
double wallTemperature = -1.0; double wallTemperature = -1.0;
double radiationCoef = 0.8; double radiationCoef = 0.8;
@ -357,35 +366,35 @@ double forceReferenceArea = 1.0; // unit of meter^2.
double TorqueRefX = 0.0; // unit of meter. double TorqueRefX = 0.0; // unit of meter.
double TorqueRefY = 0.0; // unit of meter. double TorqueRefY = 0.0; // unit of meter.
double TorqueRefZ = 0.0; // unit of meter. double TorqueRefZ = 0.0; // unit of meter.
double knudsenLength = 1.0; // unit of meter.
double refMolecularWeight = 28.9644; // unit of g/mol. double refMolecularWeight = 28.9644; // unit of g/mol.
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# Spatial Discretisation # # Spatial Discretisation #
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
#******************************************************************* #************************************************************************
# Struct Solver * # Struct Solver *
#******************************************************************* #************************************************************************
// inviscidSchemeName: Spatial discretisation scheme of struct grid. // inviscidSchemeName: Spatial discretisation scheme of struct grid.
// Using this when solve structered grid or hybrid. // Using this when solve structered grid or hybrid.
// -- "vanleer", "steger", "hlle", "lax_f". // -- "vanleer", "steger", "hlle", "lax_f",
// -- "roe", "modified_roe". // -- "roe", "modified_roe",
// -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+". // -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+".
// isWennScheme: If using WENN Scheme of struct grid. // isWennScheme: If using WENN Scheme of struct grid.
// 0 -- NO. (default) // 0 -- NO. (default)
// 1 -- Yes. // 1 -- Yes.
// str_limiter_name: Limiter of struct grid. // str_limiter_name: Limiter of struct grid.
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth". // -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth",
// -- "nolim", no limiter. // -- "nolim", no limiter,
// -- "vanalbada_clz", clz supersonic version. // -- "vanalbada_clz", clz supersonic version,
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3" // -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3".
string inviscidSchemeName = "roe"; string inviscidSchemeName = "roe";
int isWennScheme = 0; int isWennScheme = 0;
string str_limiter_name = "vanalbada"; string str_limiter_name = "vanalbada";
#******************************************************************* #************************************************************************
# UnStruct Solver or Common * # UnStruct Solver or Common *
#******************************************************************* #************************************************************************
// viscousType: Viscous model. // viscousType: Viscous model.
// 0 -- Euler. // 0 -- Euler.
// 1 -- Lamilar. // 1 -- Lamilar.
@ -410,11 +419,11 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle". // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod". // -- "barth", "vencat", "vanleer", "minmod",
// -- "vanalbada", "smooth", "nnd", "lpz", "1st". // -- "vanalbada", "smooth", "nnd", "lpz", "1st",
// -- "nolim", no limiter. // -- "nolim", no limiter.
// uns_vis_name: Discretisation method of viscous term. // uns_vis_name: Discretisation method of viscous term.
// -- "std", "test", "aver", "new1", "new2". // -- "std", "test", "aver", "new1", "new2".
@ -442,7 +451,7 @@ string str_limiter_name = "vanalbada";
// 3 -- Harten type, which is default used. // 3 -- Harten type, which is default used.
// roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0. // roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0.
// It is used to scale the default Roe entropy fix coefficients. // It is used to scale the default Roe entropy fix coefficients.
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0 // AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0.
//int viscousType = 0; //int viscousType = 0;
//string viscousName = "Euler"; //string viscousName = "Euler";
@ -475,9 +484,9 @@ double roeEntropyScale = 1.0;
double AusmpwPlusLimiter = 1.0; double AusmpwPlusLimiter = 1.0;
//----------------------------------------------------------------------- #************************************************************************
# Temporal Discretisation # # Temporal Discretisation *
//----------------------------------------------------------------------- #************************************************************************
// iunsteady: Steady or unsteady. // iunsteady: Steady or unsteady.
// 0 -- steady. // 0 -- steady.
// 1 -- unsteay. // 1 -- unsteay.
@ -504,11 +513,18 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// useLUSGSprecond: Initialize flow field for GMRES.
// 0 --Initialize by first order Jacobian matrix.
// 1 --Initialize by LUSGS.
// GMRESInitStep : the number of iteration step of irst order Jacobian matrix or LUSGS for initialize flow field.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -533,7 +549,6 @@ double AusmpwPlusLimiter = 1.0;
// 2 -- Pab3D wall function. // 2 -- Pab3D wall function.
// RKStage: The number of Runge-Kutta step. // RKStage: The number of Runge-Kutta step.
// lamda: Cofficient of Runge-Kutta step. // lamda: Cofficient of Runge-Kutta step.
int iunsteady = 0; int iunsteady = 0;
double physicalTimeStep = 0.01; double physicalTimeStep = 0.01;
double physicalTimeStepDimensional = -0.001; double physicalTimeStepDimensional = -0.001;
@ -543,7 +558,7 @@ int ifStaticsReynoldsStress = 0;
int startStatisticStep = 800000; int startStatisticStep = 800000;
double statisticalTimePeriod = -1.0; double statisticalTimePeriod = -1.0;
int statisticMethod = 0; int statisticMethod = 0;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2; int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2.
int methodOfDualTime = 3; int methodOfDualTime = 3;
int min_sub_iter = 50; int min_sub_iter = 50;
@ -558,7 +573,10 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 9;
int useLUSGSprecond = 1;
int GMRESInitStep = 1000;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -575,7 +593,7 @@ int order = 2;
double visl_min = 0.01; double visl_min = 0.01;
double turbCFLScale = 1.0; double turbCFLScale = 1.0;
double csrv = 2.0; double csrv = 1.0;
double timemax = 1.0e10; double timemax = 1.0e10;
double dtsave = -1.0; double dtsave = -1.0;
int maxale = 10; int maxale = 10;
@ -591,10 +609,9 @@ double lamda[] = [0.5, 1.0];
//int RKStage = 4; //int RKStage = 4;
//double lamda[] = [0.25, 0.33333333333, 0.5, 1.0]; //double lamda[] = [0.25, 0.33333333333, 0.5, 1.0];
#************************************************************************
//----------------------------------------------------------------------- # File In or Out *
# File In or Out # #************************************************************************
//-----------------------------------------------------------------------
// numberOfGridGroups: The number of grid groups. // numberOfGridGroups: The number of grid groups.
// gridfile: The partitioned Grid file path, using relative path, // gridfile: The partitioned Grid file path, using relative path,
// which is relative to the working directory. // which is relative to the working directory.
@ -618,10 +635,8 @@ double lamda[] = [0.5, 1.0];
// nIsComputeWallDist: Whether to compute the wall distance. // nIsComputeWallDist: Whether to compute the wall distance.
// 0 -- Compute wall distance. // 0 -- Compute wall distance.
// 1 -- Not compute. // 1 -- Not compute.
//
// protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism. // protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism.
// wall_heatfluxfile: The file to output the MaxHeatFlux of wall. // wall_heatfluxfile: The file to output the MaxHeatFlux of wall.
int numberOfGridGroups = 1; int numberOfGridGroups = 1;
string gridfile = "./grid/rae2822_hybrid2d__4.fts"; string gridfile = "./grid/rae2822_hybrid2d__4.fts";
string wallTemperaturefile = ""; string wallTemperaturefile = "";
@ -632,10 +647,12 @@ int cellMethodOrNodeMethod = 0;
string resSaveFile = "results/res.dat"; string resSaveFile = "results/res.dat";
string turbresfile = "results/turbres.dat"; string turbresfile = "results/turbres.dat";
string transitionResFile = "results/transitionRes.dat";
string aircoeffile = "results/aircoef.dat"; string aircoeffile = "results/aircoef.dat";
string restartNSFile = "results/flow.dat"; string restartNSFile = "results/flow.dat";
string turbfile = "results/turb.dat"; string turbfile = "results/turb.dat";
string transitionFile = "results/transition.dat";
string visualfile = "results/tecflow.plt"; string visualfile = "results/tecflow.plt";
string wall_aircoefile = "results/wall_aircoef.dat"; string wall_aircoefile = "results/wall_aircoef.dat";
@ -645,11 +662,15 @@ string protectionFile0 = "results/flow0.dat";
string protectionFile1 = "results/flow1.dat"; string protectionFile1 = "results/flow1.dat";
string wall_heatfluxfile = "results/wall_heatflux.dat"; string wall_heatfluxfile = "results/wall_heatflux.dat";
string protectionTurbFile0 = "results/turb0.dat";
string protectionTurbFile1 = "results/turb1.dat";
string protectionTransitionFile0 = "results/transition0.dat";
string protectionTransitionFile1 = "results/transition1.dat";
int nDumpSurfaceInfo = 0; int nDumpSurfaceInfo = 0;
string wall_varfile = ""; string wall_varfile = "";
string jetDefineFile = "bin/jet.hypara";
string sixDofFileName = "results/sixDofInfo.dat"; string sixDofFileName = "results/sixDofInfo.dat";
string derivativeFileName = "results/identify.dat"; string derivativeFileName = "results/identify.dat";
string hysteresisFileName = "results/force_beta.plt"; string hysteresisFileName = "results/force_beta.plt";
@ -659,7 +680,8 @@ int plotFieldType = 0;
// visualfileType: The file type of visualfile. // visualfileType: The file type of visualfile.
// 0 -- Tecplot binary. // 0 -- Tecplot binary.
// 1 -- Tecplot ASCII. // 1 -- Tecplot ASCII.
// 2 -- Ensight binary.
// 3 -- Ensight ASCII.
int visualfileType = 1; int visualfileType = 1;
// samplefileMode: The dump mode of sample file. // samplefileMode: The dump mode of sample file.
@ -697,21 +719,21 @@ double upperPlotFieldBox[] = [1.0 1.0 1.0];
// -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36), // -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36),
// -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40), // -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40),
// -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47), // -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47),
// -- transition intermittency(intermittency, 51), -transition momentum thickness reynolds(MomentumThicknessReynolds, 52), // -- transition intermittency(intermittency, 51), transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- overlap iblank(iblank, 81) // -- local CFL Number(localCFL, 57), minimal CFL Number(minCFL, 58),
// -- overlap iblank(iblank, 81),
// -- specific heat ratio(gama, 56) // -- specific heat ratio(gama, 56), Knudsen number(kn, 60), Damkohler number(Da, 61), vibrational nonequilibrium number(Vi, 62).
// Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!! // Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!!
// Variables order must from small to big. // Variables order must from small to big.
//-----------the optional parameters list for the wall boundary condition---------------- //-----------the optional parameters list for the wall boundary condition----------------
// nVisualWallVariables: The number of visual variables on wall. // nVisualWallVariables: The number of visual variables on wall.
// visualWallVariables : dumped variable types, listed as following: // visualWallVariables : dumped variable types, listed as following:
// -coefficient of pressure(cp, 0), -coefficient of friction(cf, 1), yplus(2), -non-dimensional heat flux(Q_NonDim, 3), -dimensional heat flux(Q_Dim, 4), // -- coefficient of pressure(cp, 0), coefficient of friction(cf, 1), yplus(2), non-dimensional heat flux(Q_NonDim, 3), dimensional heat flux(Q_Dim, 4),
// -pressure on wall(pw, 5), -temperature on wall(Tw, 6), -density on wall(rhow, 7), -heat flux of translational-rotational temperature term(Qtr, 8), // -- pressure on wall(pw, 5), temperature on wall(Tw, 6), density on wall(rhow, 7), heat flux of translational-rotational temperature term(Qtr, 8),
// -heat flux of species diffusion term(Qs, 9), -heat flux of vibrational temperature term(Qv, 10), -heat flux of electron temperature term(Qe, 11), // -- heat flux of species diffusion term(Qs, 9), heat flux of vibrational temperature term(Qv, 10), heat flux of electron temperature term(Qe, 11),
// -species mass fractions(Ns, 12), -x component of wall velocity(Vx, 13), -y component of wall velocity(Vy, 14), -z component of wall velocity(Vz, 15) // -- species mass fractions(Ns, 12), x component of wall velocity(Vx, 13), y component of wall velocity(Vy, 14), z component of wall velocity(Vz, 15),
// -slip translational-rotational temperature(Tts, 16), -slip vibrational temperature(Tvs, 17), -slip electron temperature(Tes, 18), -absolute wall velocity(Vs, 19) // -- slip translational-rotational temperature(Tts, 16), slip vibrational temperature(Tvs, 17), slip electron temperature(Tes, 18), absolute wall velocity(Vs, 19),
// -Stanton number(St, 20), -coefficient of heat rate(Ch, 21), -temperature jump(deltaT, 22), -Grid Reynolds number on wall(Re_w, 23) // -- Stanton number(St, 20), coefficient of heat rate(Ch, 21), temperature jump(deltaT, 22), Grid Reynolds number on wall(Re_w, 23), Knudsen number(Kn_wall, 24).
int nVisualVariables = 8; int nVisualVariables = 8;
int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15]; int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15];
@ -739,7 +761,9 @@ int dumpStandardModel = 0;
// 1 -- Real cell where the probe is located. // 1 -- Real cell where the probe is located.
// nProbeVariables: Number of variables want to be dumped for probes monitered. // nProbeVariables: Number of variables want to be dumped for probes monitered.
// probeVariables : Variable types dumped, listed as following: // probeVariables : Variable types dumped, listed as following:
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6). // -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6),
// -- dimensioanl_density(7), dimensioanl_u(8), dimensioanl_v(9),
// -- dimensioanl_w(10), dimensioanl_pressure(11), dimensioanl_temperature(12).
// Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!! // Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!!
// probeVariables order must from small to big. // probeVariables order must from small to big.
// probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables. // probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables.
@ -761,12 +785,13 @@ string probesDefineFile = "bin/probes_XYZ.dat";
int searchCellsMethod = 0; int searchCellsMethod = 0;
int nProbeVariables = 7; int nProbeVariables = 14;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6]; int probeVariables[] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13];
int probeVariablesInterpolationMethod = 0; int probeVariablesInterpolationMethod = 0;
//-----------------------------------------------------------------------
# Turbulence Parameter # #************************************************************************
//----------------------------------------------------------------------- # Turbulence Parameter *
#************************************************************************
// turbInterval: Iteration number of turbulence. // turbInterval: Iteration number of turbulence.
// kindOfTurbSource: Kinds of turbulent source. // kindOfTurbSource: Kinds of turbulent source.
// 0 -- Original. // 0 -- Original.
@ -774,15 +799,12 @@ int probeVariablesInterpolationMethod = 0;
// transitionType: transition model type // transitionType: transition model type
// 0 -- none. // 0 -- none.
// 2 -- gama-re-theta. // 2 -- gama-re-theta.
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition // turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition.
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not // freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not.
int turbInterval = 1; int turbInterval = 1;
int turbOrderStruct = 2; int turbOrderStruct = 2;
int kindOfTurbSource = 0; int kindOfTurbSource = 0;
int mod_turb_res = 0; int mod_turb_res = 0;
double turb_relax = 1.0;
double freeStreamViscosity = 1.0e-3; double freeStreamViscosity = 1.0e-3;
double muoo = 3.0; double muoo = 3.0;
double kwoo = 5.0; double kwoo = 5.0;
@ -791,28 +813,27 @@ double turbIntensity = -1.0;
int freeturbIntensitySRModify = 0; int freeturbIntensitySRModify = 0;
double freeDecayXLocation = 0.0; double freeDecayXLocation = 0.0;
int compressibleCorrection = 0; int compressibleCorrection = 0;
int prandtlNumberCorrection = 0;
int transitionMaFix = 1; int transitionMaFix = 1;
# maximum eddy viscosity (myt/my) max. // maximum eddy viscosity (myt/my) max.
double eddyViscosityLimit = 1.0e10; double eddyViscosityLimit = 1.0e10;
int monitor_vistmax = 0; int monitor_vistmax = 0;
//----------------------------------------------------------------------- #************************************************************************
# LES Parameter # # LES Parameter *
//----------------------------------------------------------------------- #************************************************************************
// iLES: Create LESSolver or not. // iLES: Create LESSolver or not.
// = 1 - Create LESSolver; // = 1 -- Create LESSolver;
// != 1 - not. // != 1 -- not.
// amplitudeofDisturb: Amplitude of adding disturb. // amplitudeofDisturb: Amplitude of adding disturb.
// disturbstep: Unsteady time step or steady iteration of adding random disturb. // disturbstep: Unsteady time step or steady iteration of adding random disturb.
// iterdisturb: Add random disturb in every sub-iter or only first sub-iter. // iterdisturb: Add random disturb in every sub-iter or only first sub-iter.
// = 0 - in only first sub-iter; // = 0 -- in only first sub-iter;
// != 0 - in every sub-iter. // != 0 -- in every sub-iter.
// ipraddisturb: Add density and pressure disturb or not. // ipraddisturb: Add density and pressure disturb or not.
// ibodyforce: Add body force in source flux of NS equations or not. // ibodyforce: Add body force in source flux of NS equations or not.
// = 0 - not; // = 0 -- not;
// != 0 - Add body force. // != 0 -- Add body force.
// bodyforce: Body force in source flux of NS equations or not. // bodyforce: Body force in source flux of NS equations or not.
// utau: friction velocity, using in DNSDisturb. // utau: friction velocity, using in DNSDisturb.
// sgsmodel: subgrid scale model. // sgsmodel: subgrid scale model.
@ -820,23 +841,22 @@ int monitor_vistmax = 0;
// = "dsmCom"; // = "dsmCom";
// = "wale"; // = "wale";
// = "sigma". // = "sigma".
// deltaFunctionType: = 1 - MAX(deltai, deltaj, deltak); // deltaFunctionType: = 1 -- MAX(deltai, deltaj, deltak);
// = 2 - pow(deltai * deltaj *deltak, 1/3); // = 2 -- pow(deltai * deltaj *deltak, 1/3);
// = 3 - Devloped by Scotti. // = 3 -- Devloped by Scotti.
// wallDampingFunctionType: = 0 - no wall function; // wallDampingFunctionType: = 0 -- no wall function;
// = 1 - van Driest; // = 1 -- van Driest;
// = 2 - developed by Dr. Deng Xiaobing; // = 2 -- developed by Dr. Deng Xiaobing;
// = 3 - developed by Piomelli. // = 3 -- developed by Piomelli.
// turbViscousCutType: turbulent viscosity cut type. // turbViscousCutType: turbulent viscosity cut type.
// = 0 - mu_total = mut + mul; // = 0 -- mu_total = mut + mul;
// = 1 - mu_total = max(mut-mul,0)+ mul; // = 1 -- mu_total = max(mut-mul, 0) + mul;
// = 2 - mu_total = max(mut ,0)+ mul. // = 2 -- mu_total = max(mut , 0) + mul.
// smagConstant: constant of smagorinsky model. // smagConstant: constant of smagorinsky model.
// waleConstant: constant of wale model. // waleConstant: constant of wale model.
// filterDirection [3]: filter variables in i, j, k direction or not. // filterDirection [3]: filter variables in i, j, k direction or not.
// averageDirection[3]: average variables in i, j, k direction or not. // averageDirection[3]: average variables in i, j, k direction or not.
// isotropicConstant: constant of isotropic part of SGS stress. // isotropicConstant: constant of isotropic part of SGS stress.
int iLES = 0; int iLES = 0;
string sgsmodel = "smagorinsky"; string sgsmodel = "smagorinsky";
int deltaFunctionType = 2; int deltaFunctionType = 2;
@ -852,9 +872,9 @@ double testFilterScale = 2.0;
int averageWidth = 1; int averageWidth = 1;
int monitorNegativeConstant = 0; int monitorNegativeConstant = 0;
//----------------------------------------------------------------------- #************************************************************************
# Other Parameters for Hypersonic Non-equilibrium Gas # # Other Parameters for Hypersonic Non-equilibrium Gas *
//----------------------------------------------------------------------- #************************************************************************
// dg_high_order: // dg_high_order:
// 0 -- generic order accuracy. // 0 -- generic order accuracy.
// 1 -- high order accuracy. // 1 -- high order accuracy.
@ -862,9 +882,6 @@ int monitorNegativeConstant = 0;
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver,
// isAdaptiveSolver>0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -886,14 +903,13 @@ int monitorNegativeConstant = 0;
// nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied. // nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied.
// 0 -- perfect gas. // 0 -- perfect gas.
// 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component. // 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component.
// nPCWCycleStep: the maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition. // nPCWCycleStep: The maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: the maximum step number of iteration in the module of computing radiation equilibrium temperature on wall. // nRETCycleStep: The maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:the maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction. // nSLIPCycleStep:The maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nSlipBCModel: The computational model of slip boundary conditions. // nSlipBCModel: The computational model of slip boundary conditions.
// 0 -- no slip. // 0 -- no slip.
// 1 -- the conventional Maxwell slip conditions. // 1 -- the conventional Maxwell slip conditions.
// 2 -- the Gokcen slip conditions. // 2 -- the Gokcen slip conditions.
@ -913,10 +929,13 @@ int monitorNegativeConstant = 0;
// 1 -- One-temperature model. // 1 -- One-temperature model.
// 2 -- Two-temperature model. // 2 -- Two-temperature model.
// 3 -- Three-temperature model. // 3 -- Three-temperature model.
// isUseNoneqCond:
// 0 -- compute the source terms without any conditions.
// 1 -- compute the source terms using the non-equilibrium condition.
// frozenCondition: the threshold value of frozen chemical flow condition, 0.1 is the default value.
// nIdealState: whether take all gas species as ideal gas for gas-mixture process. // nIdealState: whether take all gas species as ideal gas for gas-mixture process.
// 0 -- No. // 0 -- No.
// 1 -- Yes. // 1 -- Yes. // nTEnergyModel: the method to computing temperature energy model.
// nTEnergyModel: the method to computing temperature energy model.
// 0 -- the energy term is computed using the conventional method. // 0 -- the energy term is computed using the conventional method.
// 1 -- the energy term is computed using the polynomial fitting method. // 1 -- the energy term is computed using the polynomial fitting method.
// 2 -- the energy term is computed using the piecewise polynomial fitting method. // 2 -- the energy term is computed using the piecewise polynomial fitting method.
@ -946,14 +965,13 @@ int monitorNegativeConstant = 0;
// 1.0 -- proposed by Maxwell. // 1.0 -- proposed by Maxwell.
// sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall. // sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall.
// 1.146 -- proposed for an additional "fictitious" velocity slip. // 1.146 -- proposed for an additional "fictitious" velocity slip.
// chemicalRelaxCorf: The value is in range of [0.001, 1.0]. // chemicalRelaxCorf: The value is in range of [0.001, 1.0].
// spectrumRadiusCoef: The value is in range of [0.0, 2.0]. // spectrumRadiusCoef: The value is in range of [0.0, 2.0].
// staticPressureRelaxCorf: The value is in range of [0.1, 1.0]. // staticPressureRelaxCorf: The value is in range of [0.1, 1.0].
// nIsChemicalFreeze: the flag to freeze the chemical reactions. // nIsChemicalFreeze: the flag to freeze the chemical reactions.
// 0 -- not freeze, the chemical reaction sources will be calculated. // 0 -- not freeze, the chemical reaction sources will be calculated.
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.// veTemperatureMin: The minimum of Tv and Te // 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.
// veTemperatureMin: The minimum of Tv and Te.
// maxViscous: the maximum of Viscous. // maxViscous: the maximum of Viscous.
// trTemperatureMin: the minimum value of trTemperature. // trTemperatureMin: the minimum value of trTemperature.
// veTemperatureMin: the minimum value of veTemperature. // veTemperatureMin: the minimum value of veTemperature.
@ -965,36 +983,34 @@ int monitorNegativeConstant = 0;
// nSpeciesLimit: limitter of gas species // nSpeciesLimit: limitter of gas species
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction // nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction.
// 0 -- method 0. // 0 -- method 0.
// 1 -- method 1. // 1 -- method 1.
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid // nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nViscosityPeModified: Pe Modified for ViscosityCoef // nViscosityPeModified: Pe Modified for ViscosityCoef.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nChemcalSourceModified: Modified on ChemcalSource // nChemcalSourceModified: Modified on ChemcalSource.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nChemcalSourceEsMethod: Modified on ChemcalSource // nChemcalSourceEsMethod: Modified on ChemcalSource.
// 0 -- approximation algorithm 1 (Ori.) // 0 -- approximation algorithm 1 (Ori).
// 1 -- approximation algorithm 2 (New) // 1 -- approximation algorithm 2 (New).
// nMaxStepTemperature: the iterative steps of temperature. // nMaxStepTemperature: the iterative steps of temperature.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs // 0 -- not used.
// 0 -- not used // 1 -- used.
// 1 -- used // nDiagonalModified: Modified on Diagonal.
// 0 -- not used.
// nDiagonalModified: Modified on Diagonal // 1 -- new.
// 0 -- not used // nDiagonalModifiedTurb: Modified on Diagonal for turbulence.
// 1 -- Ori. // 0 -- not used.
// 2 -- new // 1 -- new.
// nGradPrimtiveMethod: // nGradPrimtiveMethod:
// 0 -- Ori. // 0 -- Ori.
// 1 -- new // 1 -- new.
// nAblation: // nAblation:
// 0 -- The wall ablation is not computed. // 0 -- The wall ablation is not computed.
// 1 -- The wall ablation is computed. // 1 -- The wall ablation is computed.
@ -1017,8 +1033,8 @@ int monitorNegativeConstant = 0;
// "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas. // "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas.
// "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions. // "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions.
// "Gas-Mixture" -- indicates the process of mixing gas without reacting. // "Gas-Mixture" -- indicates the process of mixing gas without reacting.
// for struct solver mixing two species£¨SpeciesA, SpeciesB£©. // for struct solver mixing two species<65><73>SpeciesA, SpeciesB<73><42>.
// for unstruct solver mixing multi-species£¨O2 NO CO CO2 H2 N2 Air CH4£©. // for unstruct solver mixing multi-species<65><73>O2 NO CO CO2 H2 N2 Air CH4<48><34>.
// For self-definition model, the gasfile is used to indicate the file path of the new gas model. // For self-definition model, the gasfile is used to indicate the file path of the new gas model.
// speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma. // speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma.
// initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName. // initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName.
@ -1040,13 +1056,16 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting : Setting for HyFLOW GUI.
// 0 -- PHengLEI
// 1 -- HyFLOW
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no // 0 -- no.
// 1 -- yes // 1 -- yes.
// nTvChange: Judge whether the Tv equals Ttr.
// 0 -- yes.
// 1 -- no.
// isMoleFractionType: 1 indicates the mass fractions, or else the mole fractions.
// nFraction: the initial fractions type of species.
// 0 -- mass fraction.
// 1 -- mole fraction.
int dg_high_order = 0; int dg_high_order = 0;
int iapplication = 0; int iapplication = 0;
int isAdaptiveSolver = 0; int isAdaptiveSolver = 0;
@ -1114,6 +1133,7 @@ double densityMin = 1.0e-8;
double densityMinFactor = 0.1; double densityMinFactor = 0.1;
double tAdjustmentFactor = 10.0; double tAdjustmentFactor = 10.0;
double iniSpeedCoef = 1.0; double iniSpeedCoef = 1.0;
int iniSpeedMode = 0;
int nDebug = 0; int nDebug = 0;
int nSpeciesLimit = 1; int nSpeciesLimit = 1;
@ -1125,18 +1145,21 @@ int nChemcalSourceEsMethod = 1;
int nMaxStepTemperature = 5; int nMaxStepTemperature = 5;
int veTemperatureMinModified = 1; int veTemperatureMinModified = 1;
int nDiagonalModified = 0; int nDiagonalModified = 0;
int nDiagonalModifiedTurb = 0;
int nGradPrimtiveMethod = 1; int nGradPrimtiveMethod = 1;
int nInviscidFluxModify = 1; int nInviscidFluxModify = 1;
int nQlLimitMethod = 2; int nQlLimitMethod = 2;
int nSpeciesForWallMethod = 1; int nSpeciesForWallMethod = 1;
int nDensityForWallMethod = 0; int nDensityForWallMethod = 0;
int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
int nMarsModel = 0; int nMarsModel = 0;
int nTvChange = 0;
int isMoleFractionType = 0;
string gasfile = "DK5"; string gasfile = "DK5";
//string gasfile = "./chemical/Dunn-Kang_air5s11r.dat"; //string gasfile = "./chemical/Dunn-Kang_air5s11r.dat";
string speciesName = "O, O2, NO, N, N2"; string speciesName = "O, O2, NO, N, N2";
@ -1173,9 +1196,17 @@ double molecularWeightSpeciesB = 30.0;
//string speciesName = "O2, N2"; //string speciesName = "O2, N2";
//string initMassFraction = "1.0, 0.0"; //string initMassFraction = "1.0, 0.0";
int nFraction = 0;
int nContinueModel = 0; int nContinueModel = 0;
int nChemicalFlowStep = 0; int nChemicalFlowStep = 0;
int ifStartFromPerfectGasResults = 0; int ifStartFromPerfectGasResults = 0;
int isUseNoneqCond = 0;
double frozenCondition = 0.01;
int nLeakageMonitor = 0;
double totalLeakageVolume = 1000.0;
double monitorThresholdValue = 0.05;
double sprayFactor = 0.0;
######################################################################### #########################################################################
// Multi-Grid parameters. // Multi-Grid parameters.
@ -1196,7 +1227,6 @@ int ifStartFromPerfectGasResults = 0;
// 1 -- zero order. // 1 -- zero order.
// 2 -- first-order. (default) // 2 -- first-order. (default)
// mgCorrectionLimit: Multi-grid correction limit. // mgCorrectionLimit: Multi-grid correction limit.
int nMGLevel = 1; int nMGLevel = 1;
int MGCoarsestIteration = 1; int MGCoarsestIteration = 1;
int MGPreIteration = 1; int MGPreIteration = 1;
@ -1226,9 +1256,9 @@ string holeFullFileName = "./grid/holeFullFile.dat";
string linkFileName = "./grid/topology.dat"; string linkFileName = "./grid/topology.dat";
string zoneInverseFileName = "./grid/zoneInverseMapping.inp"; string zoneInverseFileName = "./grid/zoneInverseMapping.inp";
######################################################################### #************************************************************************
# High Order Struct Solver # # High Order Struct Solver *
######################################################################### #************************************************************************
// isFVMOrFDM: // isFVMOrFDM:
// 0 -- NSSolverStruct using Finite Volume Method. // 0 -- NSSolverStruct using Finite Volume Method.
// 1 -- NSSolverStruct using Finite Differ Method. // 1 -- NSSolverStruct using Finite Differ Method.
@ -1273,10 +1303,29 @@ int allReduceStep = 1;
// codeOfOversetGrid: Overlapping(overset) grid or not. // codeOfOversetGrid: Overlapping(overset) grid or not.
// 0 -- NON-overlapping grid. // 0 -- NON-overlapping grid.
// 1 -- Overlapping grid. // 1 -- Overlapping grid.
// oversetInterpolationMethod: the method of overset interpolation while field simulation // oversetInterpolationMethod: the method of overset interpolation while field simulation.
// 0 -- set the acceptor cell value by donor cell value. // 0 -- set the acceptor cell value by donor cell value.
// 1 -- set the acceptor cell value by distance weight of donor cell value. // 1 -- set the acceptor cell value by distance weight of donor cell value.
// readOversetFileOrNo: Whether to read overset-file(.ovs) that has been generated.
// 0 -- no.
// 1 -- yes.
// symetryOrNot: If there exist symetryplanes(XY plane, the coordinate of Z direction is 0) in
// the current overset grid(only for three dimension).
// 0 -- no.
// 1 -- yes.
// readInAuxiliaryInnerGrid: Whether to read auxiliary inner grid.
// 0 -- no.
// 1 -- yes.
// walldistMainZone: The initial value of background grid which does not exist wall boundary condition.
// toleranceForOversetSearch: The tolerance of overset searching zone to judge whether the obtained node is in the current computing cell.
// toleranceForOversetBox: The tolerance of building the minimum box of computing cells in the overlapping region.
// twoOrderInterpolationOrNot: The number of interpolated cell layers in the overlapping boundary.
// 0 -- one layer.
// 1 -- two layers.
// keyEnlargeOfActiveNodes: The number of enlarged overset-boundary layers in the buffer region.
// outTecplotOverset: Whether to dump out the flowfield data after the progress of overset configure.
// 0 -- no.
// 1 -- yes.
int codeOfOversetGrid = 0; int codeOfOversetGrid = 0;
int oversetInterpolationMethod = 0; int oversetInterpolationMethod = 0;
int readOversetFileOrNot = 0; int readOversetFileOrNot = 0;
@ -1295,7 +1344,6 @@ int twoOrderInterpolationOrNot = 0;
int keyEnlargeOfActiveNodes = 0; int keyEnlargeOfActiveNodes = 0;
int outTecplotOverset = 0; int outTecplotOverset = 0;
int outPutOversetVisualization = 0; int outPutOversetVisualization = 0;
int numberOfMovingBodies = 2; int numberOfMovingBodies = 2;
// ----------------- ALE configuration ------------------------------ // ----------------- ALE configuration ------------------------------
@ -1306,34 +1354,40 @@ double referenceLength = 1.0;
double referenceVelocity = 1.0; double referenceVelocity = 1.0;
double referenceDensity = 1.0; double referenceDensity = 1.0;
int strategyForFaceNormalVelocity = 0; //0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd; int strategyForFaceNormalVelocity = 0; // 0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd.
int strategyForGCLSource = 0; //0-present; 1-Ahn; int strategyForGCLSource = 0; // 0-present; 1-Ahn.
//0:1st-Admas-Bashforth; 1:2nd-Admas-Bashforth; 2:1st-Implicit-Euler; 3:2nd-Implicit Euler; 4:2nd-Adams-Moulton; 5:3rd-Adams-Moulton // 0: 1st-Admas-Bashforth; 1: 2nd-Admas-Bashforth; 2: 1st-Implicit-Euler; 3: 2nd-Implicit Euler; 4: 2nd-Adams-Moulton; 5: 3rd-Adams-Moulton.
int methodForKineticEquation = 0; int methodForKineticEquation = 0;
double relaxParameterOfKinetic = 1.0; double relaxParameterOfKinetic = 1.0;
######################################################################### #************************************************************************
# motive information # # motive information *
######################################################################### #************************************************************************
int numberOfMovingBodies = 1; int numberOfMovingBodies = 1;
############################## body0 ############################## ############################## body0 ##############################
//mass of parts // mass of parts.
double mass_0 = 1.0; double mass_0 = 1.0;
//mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz // gravity of parts (along negative direction in Y-axis, eg. 9.8).
double gravity_0 = 0.0;
// mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz.
double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0; double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0;
//initial six DOF position information of parts. xc yc zc // initial six DOF position information of parts. xc yc zc.
double massCenter_0[] = 0.0, 0.0, 0.0; double massCenter_0[] = 0.0, 0.0, 0.0;
//initial six DOF position information of parts. angleX angleY angleZ // if reset mass center while restart.
int resetMassCenter_0 = 0;
// position offset of parts. dx dy dz.
double massCenterDxyz_0[] = 0.0, 0.0, 0.0;
// initial six DOF position information of parts. angleX angleY angleZ.
double attitudeAngle_0[] = 0.0, 0.0, 0.0; double attitudeAngle_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. vc vy vz // initial six DOF move information of parts. vc vy vz.
double massCenterVelocity_0[] = 0.0, 0.0, 0.0; double massCenterVelocity_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. omigX omigY omigZ // initial six DOF move information of parts. omigX omigY omigZ.
double angularVelocity_0[] = 0.0, 0.0, 0.0; double angularVelocity_0[] = 0.0, 0.0, 0.0;
// the object that the parts belong to. // the object that the parts belong to.
int fartherIndex_0 = -1; int fartherIndex_0 = -1;
//the assembly position of the parts. xc yc zc angleX angleY angleZ // the assembly position of the parts. xc yc zc angleX angleY angleZ.
double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0; double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
// the move pattern of the parts. // the move pattern of the parts.
// -1 given motion partten. // -1 given motion partten.
@ -1349,23 +1403,24 @@ double configPamameter_0[] = 0.0 ,0.0 ,0.0 ,0.0 ,0.0
int RBDMethod_0 = 0; int RBDMethod_0 = 0;
double amplitude_0 = 0.0; double amplitude_0 = 0.0;
double reduceFrequency_0 = 0.0; double reduceFrequency_0 = 0.0;
//direction of rotation // direction of rotation.
// 1 -- clockwise from the point of view along the positive x axis. // 1 -- clockwise from the point of view along the positive x axis.
// -1 -- anticlockwise from the point of view along the positive x axis. // -1 -- anticlockwise from the point of view along the positive x axis.
int direction_0 = -1; int direction_0 = -1;
double rotateFrequency_0 = 0.0; double rotateFrequency_0 = 0.0;
//string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter"; //string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter";
//additional force (system axis) fX fY fZ // dimensional physical time for additional force(s).
double addedForceTime_0[] = 0.0;
// additional force(inertia system) fX fY fZ.
double addedForce_0[] = 0.0, 0.0, 0.0; double addedForce_0[] = 0.0, 0.0, 0.0;
//additional moment of Force (system axis) mX mY mZ // additional moment(inertia system) mX mY mZ.
double addedMoment_0[] = 0.0, 0.0, 0.0; double addedMoment_0[] = 0.0, 0.0, 0.0;
// the deformation method of the parts. // the deformation method of the parts.
int morphing_0 = 0; int morphing_0 = 0;
// post indentify // post indentify.
int integralOrder = 4; int integralOrder = 4;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;
@ -1379,18 +1434,34 @@ int integralOrder = 4;
//@string outLetFileName = "./bin/subsonicOutlet.hypara"; //@string outLetFileName = "./bin/subsonicOutlet.hypara";
//@double refDimensionalVelocity = 0; //@double refDimensionalVelocity = 0;
//@double refDimensionalDensity = 0; //@double refDimensionalDensity = 0;
//@string weatherDataFilePath = "./WRFData/";
######################################################################### //@double longitude = 110.95
# Old Parameter # //@double latitude = 19.61;
######################################################################### #************************************************************************
# Old Parameter *
#************************************************************************
int isPlotVolumeField = 0; int isPlotVolumeField = 0;
#************************************************************************
# partial flow field setting Parameter *
#************************************************************************
//int nPartialParameter = 0; // 0/1/2
//int nNumberOfPartialField = 0; //
//int nStartGridIndex[] = [0];
//int nEndGridIndex[] = [0];
######################################################################### //double partialCFL[] = [0.0];
# Incompressible Parameter # //double partialSpeedCoef[] = [0.0];
######################################################################### //double partialSpeed[] = [0.0];
//double partialAttackd[] = [0.0];
//double partialSlide[] = [0.0];
//double partialPressure[] = [0.0];
//double partialTemperature[] = [0.0];
//double partialMassFractions[] = [0.0];
#************************************************************************
# Incompressible Parameter *
#************************************************************************
int isSolveEnergyEquation = 0; int isSolveEnergyEquation = 0;
int isSolveTurbEquation = 0; int isSolveTurbEquation = 0;
int isSolveSpeciesEquation = 0; int isSolveSpeciesEquation = 0;

View File

@ -4,9 +4,12 @@
// gridtype: Grid type for generation, conversion, reconstruction, merging. // gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid. // 0 -- Unstructured grid.
// 1 -- Structured grid. // 1 -- Structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion. // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// 1 -- Y upward. (default) // axisRotateOrder : axis rotating order.
// 2 -- Z upward. // 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
// from_gtype: Type of grid data type in grid conversion process. // from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE. // -1 -- MULTI_TYPE.
// 1 -- PHengLEI, *.fts. // 1 -- PHengLEI, *.fts.
@ -18,7 +21,9 @@
// 7 -- Hybrid, include both of unstructured and structured grid, *.fts. // 7 -- Hybrid, include both of unstructured and structured grid, *.fts.
// 8 -- GMSH, *.msh. // 8 -- GMSH, *.msh.
int gridtype = 0; int gridtype = 0;
int axisup = 1; int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
int from_gtype = 2; int from_gtype = 2;
######################################################################### #########################################################################

View File

@ -4,9 +4,12 @@
// gridtype: Grid type for generation, conversion, reconstruction, merging. // gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid. // 0 -- Unstructured grid.
// 1 -- Structured grid. // 1 -- Structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion. // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// 1 -- Y upward. (default) // axisRotateOrder : axis rotating order.
// 2 -- Z upward. // 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
// from_gtype: Type of grid data type in grid conversion process. // from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE. // -1 -- MULTI_TYPE.
// 1 -- PHengLEI, *.fts. // 1 -- PHengLEI, *.fts.
@ -18,7 +21,9 @@
// 7 -- Hybrid, include both of unstructured and structured grid, *.fts. // 7 -- Hybrid, include both of unstructured and structured grid, *.fts.
// 8 -- GMSH, *.msh. // 8 -- GMSH, *.msh.
int gridtype = 0; int gridtype = 0;
int axisup = 2; int nAxisRotateTimes = 1;
int axisRotateOrder[] = [1];
double axisRotateAngles[] = [90.0];
int from_gtype = 2; int from_gtype = 2;
######################################################################### #########################################################################

View File

@ -24,8 +24,8 @@ string gridfile1 = "./grid/Missile__8.fts";
int codeOfOversetGrid = 1; int codeOfOversetGrid = 1;
int symetryOrNot = 1; int symetryOrNot = 1;
int readInAuxiliaryInnerGrid = 1; int readInAuxiliaryInnerGrid = 1;
string auxiliaryInnerGrid0 = ". string auxiliaryInnerGrid0 = "./grid/WingIn.fts";
string auxiliaryInnerGrid1 = ". string auxiliaryInnerGrid1 = "./grid/MissileIn.fts";
int twoOrderInterpolationOrNot = 1; int twoOrderInterpolationOrNot = 1;
int keyEnlargeOfActiveNodes = 3; int keyEnlargeOfActiveNodes = 3;

View File

@ -8,6 +8,7 @@
// Platform for Hybrid Engineering Simulation of Flows + // Platform for Hybrid Engineering Simulation of Flows +
// China Aerodynamics Research and Development Center + // China Aerodynamics Research and Development Center +
// (C) Copyright, Since 2010 + // (C) Copyright, Since 2010 +
// PHengLEI 2212 +
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
########################################################################### ###########################################################################
# Default parameters for Grid conversion # # Default parameters for Grid conversion #
@ -46,19 +47,24 @@ int gridobj = 1;
int multiblock = 0; int multiblock = 0;
int iadapt = 0; int iadapt = 0;
int SymmetryFaceVector = 1; int SymmetryFaceVector = 1;
int gridReorder = 0; int gridReorder = 0;
int faceReorderMethod = 0; int faceReorderMethod = 0;
// axisup: Type of Cartisien coordinates system, used in grid conversion. // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// 1 -- Y upward. (default) // axisRotateOrder : axis rotating order.
// 2 -- Z upward. // 1 -- X-axis.
int axisup = 1; // 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
// omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition". // omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition".
// 0 -- Interface. (default) // 0 -- Interface. (default)
// 1 -- Physical boundary condition, used in Hybrid solver. // 1 -- Physical boundary condition, used in Hybrid solver.
int omit_no_bound_bc = 0; int omit_no_bound_bc = 0;
int omitRepeatInterface = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# Grid data type # # Grid data type #
@ -89,7 +95,6 @@ int dumpOldGrid = 0;
int numberOfGridFile = 1; int numberOfGridFile = 1;
string from_gfile = "./grid/rae2822_hybrid2d.cas"; string from_gfile = "./grid/rae2822_hybrid2d.cas";
string from_gfile1 = ""; string from_gfile1 = "";
string out_gfile = "./grid/flat_laminr_133_85_2d.fts"; string out_gfile = "./grid/flat_laminr_133_85_2d.fts";
// ----------------- some advanced choices ------------------------------ // ----------------- some advanced choices ------------------------------
@ -178,7 +183,6 @@ double influencePara = 25.0;
which only support one direction. which only support one direction.
// rotationAngle: The relative angle between two periodic face. // rotationAngle: The relative angle between two periodic face.
which is recorded in degrees. which is recorded in degrees.
int periodicType = 0; int periodicType = 0;
double translationLength[] = [0.0, 0.0, 0.0]; double translationLength[] = [0.0, 0.0, 0.0];
double rotationAngle = 0.0; double rotationAngle = 0.0;
@ -192,7 +196,6 @@ double rotationAngle = 0.0;
// 2 -- refine structured grid. // 2 -- refine structured grid.
// maxproc: The number of partition zones that want to be divided into. // maxproc: The number of partition zones that want to be divided into.
// numberOfMultifile: The number of partition grid files that want to be dumped out. // numberOfMultifile: The number of partition grid files that want to be dumped out.
int pgridtype = 0; int pgridtype = 0;
int maxproc = 4; int maxproc = 4;
int numberOfMultifile = 1; int numberOfMultifile = 1;
@ -207,8 +210,8 @@ int blockIndexOfMark = 0;
int cellIndexOfMark[] = [185, 30, 1]; int cellIndexOfMark[] = [185, 30, 1];
// parallelStrategy: // parallelStrategy:
//! -# 0 : each zone is assigned to the one that defined in grid partition procedure. // 0 -- each zone is assigned to the one that defined in grid partition procedure.
//! -# 1 : random assigned for each zone or by some else ways. // 1 -- random assigned for each zone or by some else ways.
int parallelStrategy = 1; int parallelStrategy = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
@ -232,7 +235,6 @@ string partition_grid_file = "./grid/sphere_mixed__4.fts";
// 1 -- perfect balance. // 1 -- perfect balance.
// maxproc -- perfect imbalance. // maxproc -- perfect imbalance.
// 1.05 -- recommended. // 1.05 -- recommended.
int omit_no_bound_bc = 0; int omit_no_bound_bc = 0;
int npartmethod = 1; int npartmethod = 1;
int parallelPartitionMethod = 2; int parallelPartitionMethod = 2;
@ -253,24 +255,30 @@ int numberOfMultigrid = 1;
// intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved. // intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved.
// intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved. // intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved.
// intervalStepRes: The step intervals for residual file 'res.dat' saved. // intervalStepRes: The step intervals for residual file 'res.dat' saved.
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
int maxSimuStep = 20000; int maxSimuStep = 20000;
int intervalStepFlow = 1000; int intervalStepFlow = 1000;
int intervalStepPlot = 1000; int intervalStepPlot = 1000;
int intervalStepSample = 1000; int intervalStepSample = 1000;
int intervalStepForce = 100; int intervalStepForce = 100;
int intervalStepRes = 10; int intervalStepRes = 10;
int ifLowSpeedPrecon = 0;
// compressible: // compressible:
// 0 -- incompressible flow. // 0 -- incompressible flow.
// 1 -- compressible flow. (default) // 1 -- compressible flow. (default)
int compressible = 1; int compressible = 1;
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
// Kprec: The coefficient K for the cut-off velocity.
// 1.0~3.0 is suggested. (default, 3.0)
// preconFarfieldBCMethod: The precondition method for farfield boundary condition.
// 0 -- precondition far-field boundary based on riemann invariants.
// 1 -- Turkel's simplified far-field boundary condition.
int ifLowSpeedPrecon = 0;
double Kprec = 3.0;
int preconFarfieldBCMethod = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# CFD Control Parameter # # CFD Control Parameter #
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
@ -281,9 +289,12 @@ int compressible = 1;
// 0 -- the nondimensional conditions. // 0 -- the nondimensional conditions.
// 1 -- the flight conditions. // 1 -- the flight conditions.
// 2 -- the experiment conditions. // 2 -- the experiment conditions.
// 3 -- the subsonic boundary conditions. // 3 -- the subsonic boundary conditions. (Useless!)
// 4 -- the condition that the velocity, temperature and density are given. // 4 -- the condition that the velocity, temperature and density are given.
// 5 -- the condition that the velocity, temperature and pressure are given. // 5 -- the condition that the velocity, temperature and pressure are given.
//flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -303,11 +314,11 @@ int compressible = 1;
// condition is radiation equilibrium temperature, and 0.8 is the default value. // condition is radiation equilibrium temperature, and 0.8 is the default value.
// refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol. // refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol.
// Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on. // Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on.
int directionMethod = 0; int directionMethod = 0;
double refMachNumber = 0.73; double refMachNumber = 0.73;
double attackd = 2.79; double attackd = 2.79;
double angleSlide = 0.00; double angleSlide = 0.00;
int flowInitMethod = 0;
int inflowParaType = 0; int inflowParaType = 0;
double refReNumber = 6.5e6; double refReNumber = 6.5e6;
@ -321,14 +332,6 @@ double freestream_vibration_temperature = 300.00;
//double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2). //double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2).
//double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)). //double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)).
//int inflowParaType = 3;
//int nsubsonicInlet = 1;
//int nsubsonicOutlet = 1;
//string inLetFileName = "./bin/subsonicInlet.hypara";
//string outLetFileName = "./bin/subsonicOutlet.hypara";
//double refDimensionalTemperature = 288.144;
//double refDimensionalPressure = 1.01313E05;
// The velocity, temperature and density are fixed. // The velocity, temperature and density are fixed.
//int inflowParaType = 4; //int inflowParaType = 4;
//double refDimensionalVelocity = 1000.0; //double refDimensionalVelocity = 1000.0;
@ -341,9 +344,15 @@ double freestream_vibration_temperature = 300.00;
// The MachNumber, temperature and pressure are fixed. // The MachNumber, temperature and pressure are fixed.
//int inflowParaType = 6; //int inflowParaType = 6;
//double refDimensionalTemperature = 293; //double refDimensionalTemperature = 293.0;
//double refDimensionalPressure = 8886.06; //double refDimensionalPressure = 8886.06;
// The velocity, temperature and pressure are read from file.
//int inflowParaType = 7;
//string weatherDataFilePath = "./WRFData/";
//double longitude = 110.95
//double latitude = 19.61;
double wallTemperature = -1.0; double wallTemperature = -1.0;
double radiationCoef = 0.8; double radiationCoef = 0.8;
@ -357,35 +366,35 @@ double forceReferenceArea = 1.0; // unit of meter^2.
double TorqueRefX = 0.0; // unit of meter. double TorqueRefX = 0.0; // unit of meter.
double TorqueRefY = 0.0; // unit of meter. double TorqueRefY = 0.0; // unit of meter.
double TorqueRefZ = 0.0; // unit of meter. double TorqueRefZ = 0.0; // unit of meter.
double knudsenLength = 1.0; // unit of meter.
double refMolecularWeight = 28.9644; // unit of g/mol. double refMolecularWeight = 28.9644; // unit of g/mol.
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# Spatial Discretisation # # Spatial Discretisation #
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
#******************************************************************* #************************************************************************
# Struct Solver * # Struct Solver *
#******************************************************************* #************************************************************************
// inviscidSchemeName: Spatial discretisation scheme of struct grid. // inviscidSchemeName: Spatial discretisation scheme of struct grid.
// Using this when solve structered grid or hybrid. // Using this when solve structered grid or hybrid.
// -- "vanleer", "steger", "hlle", "lax_f". // -- "vanleer", "steger", "hlle", "lax_f",
// -- "roe", "modified_roe". // -- "roe", "modified_roe",
// -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+". // -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+".
// isWennScheme: If using WENN Scheme of struct grid. // isWennScheme: If using WENN Scheme of struct grid.
// 0 -- NO. (default) // 0 -- NO. (default)
// 1 -- Yes. // 1 -- Yes.
// str_limiter_name: Limiter of struct grid. // str_limiter_name: Limiter of struct grid.
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth". // -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth",
// -- "nolim", no limiter. // -- "nolim", no limiter,
// -- "vanalbada_clz", clz supersonic version. // -- "vanalbada_clz", clz supersonic version,
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3" // -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3".
string inviscidSchemeName = "roe"; string inviscidSchemeName = "roe";
int isWennScheme = 0; int isWennScheme = 0;
string str_limiter_name = "vanalbada"; string str_limiter_name = "vanalbada";
#******************************************************************* #************************************************************************
# UnStruct Solver or Common * # UnStruct Solver or Common *
#******************************************************************* #************************************************************************
// viscousType: Viscous model. // viscousType: Viscous model.
// 0 -- Euler. // 0 -- Euler.
// 1 -- Lamilar. // 1 -- Lamilar.
@ -410,11 +419,11 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle". // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod". // -- "barth", "vencat", "vanleer", "minmod",
// -- "vanalbada", "smooth", "nnd", "lpz", "1st". // -- "vanalbada", "smooth", "nnd", "lpz", "1st",
// -- "nolim", no limiter. // -- "nolim", no limiter.
// uns_vis_name: Discretisation method of viscous term. // uns_vis_name: Discretisation method of viscous term.
// -- "std", "test", "aver", "new1", "new2". // -- "std", "test", "aver", "new1", "new2".
@ -442,7 +451,7 @@ string str_limiter_name = "vanalbada";
// 3 -- Harten type, which is default used. // 3 -- Harten type, which is default used.
// roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0. // roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0.
// It is used to scale the default Roe entropy fix coefficients. // It is used to scale the default Roe entropy fix coefficients.
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0 // AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0.
//int viscousType = 0; //int viscousType = 0;
//string viscousName = "Euler"; //string viscousName = "Euler";
@ -475,9 +484,9 @@ double roeEntropyScale = 1.0;
double AusmpwPlusLimiter = 1.0; double AusmpwPlusLimiter = 1.0;
//----------------------------------------------------------------------- #************************************************************************
# Temporal Discretisation # # Temporal Discretisation *
//----------------------------------------------------------------------- #************************************************************************
// iunsteady: Steady or unsteady. // iunsteady: Steady or unsteady.
// 0 -- steady. // 0 -- steady.
// 1 -- unsteay. // 1 -- unsteay.
@ -504,11 +513,18 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// useLUSGSprecond: Initialize flow field for GMRES.
// 0 --Initialize by first order Jacobian matrix.
// 1 --Initialize by LUSGS.
// GMRESInitStep : the number of iteration step of irst order Jacobian matrix or LUSGS for initialize flow field.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -533,7 +549,6 @@ double AusmpwPlusLimiter = 1.0;
// 2 -- Pab3D wall function. // 2 -- Pab3D wall function.
// RKStage: The number of Runge-Kutta step. // RKStage: The number of Runge-Kutta step.
// lamda: Cofficient of Runge-Kutta step. // lamda: Cofficient of Runge-Kutta step.
int iunsteady = 0; int iunsteady = 0;
double physicalTimeStep = 0.01; double physicalTimeStep = 0.01;
double physicalTimeStepDimensional = -0.001; double physicalTimeStepDimensional = -0.001;
@ -543,7 +558,7 @@ int ifStaticsReynoldsStress = 0;
int startStatisticStep = 800000; int startStatisticStep = 800000;
double statisticalTimePeriod = -1.0; double statisticalTimePeriod = -1.0;
int statisticMethod = 0; int statisticMethod = 0;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2; int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2.
int methodOfDualTime = 3; int methodOfDualTime = 3;
int min_sub_iter = 50; int min_sub_iter = 50;
@ -558,7 +573,10 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 9;
int useLUSGSprecond = 1;
int GMRESInitStep = 1000;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -575,7 +593,7 @@ int order = 2;
double visl_min = 0.01; double visl_min = 0.01;
double turbCFLScale = 1.0; double turbCFLScale = 1.0;
double csrv = 2.0; double csrv = 1.0;
double timemax = 1.0e10; double timemax = 1.0e10;
double dtsave = -1.0; double dtsave = -1.0;
int maxale = 10; int maxale = 10;
@ -591,10 +609,9 @@ double lamda[] = [0.5, 1.0];
//int RKStage = 4; //int RKStage = 4;
//double lamda[] = [0.25, 0.33333333333, 0.5, 1.0]; //double lamda[] = [0.25, 0.33333333333, 0.5, 1.0];
#************************************************************************
//----------------------------------------------------------------------- # File In or Out *
# File In or Out # #************************************************************************
//-----------------------------------------------------------------------
// numberOfGridGroups: The number of grid groups. // numberOfGridGroups: The number of grid groups.
// gridfile: The partitioned Grid file path, using relative path, // gridfile: The partitioned Grid file path, using relative path,
// which is relative to the working directory. // which is relative to the working directory.
@ -618,10 +635,8 @@ double lamda[] = [0.5, 1.0];
// nIsComputeWallDist: Whether to compute the wall distance. // nIsComputeWallDist: Whether to compute the wall distance.
// 0 -- Compute wall distance. // 0 -- Compute wall distance.
// 1 -- Not compute. // 1 -- Not compute.
//
// protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism. // protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism.
// wall_heatfluxfile: The file to output the MaxHeatFlux of wall. // wall_heatfluxfile: The file to output the MaxHeatFlux of wall.
int numberOfGridGroups = 1; int numberOfGridGroups = 1;
string gridfile = "./grid/rae2822_hybrid2d__4.fts"; string gridfile = "./grid/rae2822_hybrid2d__4.fts";
string wallTemperaturefile = ""; string wallTemperaturefile = "";
@ -632,10 +647,12 @@ int cellMethodOrNodeMethod = 0;
string resSaveFile = "results/res.dat"; string resSaveFile = "results/res.dat";
string turbresfile = "results/turbres.dat"; string turbresfile = "results/turbres.dat";
string transitionResFile = "results/transitionRes.dat";
string aircoeffile = "results/aircoef.dat"; string aircoeffile = "results/aircoef.dat";
string restartNSFile = "results/flow.dat"; string restartNSFile = "results/flow.dat";
string turbfile = "results/turb.dat"; string turbfile = "results/turb.dat";
string transitionFile = "results/transition.dat";
string visualfile = "results/tecflow.plt"; string visualfile = "results/tecflow.plt";
string wall_aircoefile = "results/wall_aircoef.dat"; string wall_aircoefile = "results/wall_aircoef.dat";
@ -645,11 +662,15 @@ string protectionFile0 = "results/flow0.dat";
string protectionFile1 = "results/flow1.dat"; string protectionFile1 = "results/flow1.dat";
string wall_heatfluxfile = "results/wall_heatflux.dat"; string wall_heatfluxfile = "results/wall_heatflux.dat";
string protectionTurbFile0 = "results/turb0.dat";
string protectionTurbFile1 = "results/turb1.dat";
string protectionTransitionFile0 = "results/transition0.dat";
string protectionTransitionFile1 = "results/transition1.dat";
int nDumpSurfaceInfo = 0; int nDumpSurfaceInfo = 0;
string wall_varfile = ""; string wall_varfile = "";
string jetDefineFile = "bin/jet.hypara";
string sixDofFileName = "results/sixDofInfo.dat"; string sixDofFileName = "results/sixDofInfo.dat";
string derivativeFileName = "results/identify.dat"; string derivativeFileName = "results/identify.dat";
string hysteresisFileName = "results/force_beta.plt"; string hysteresisFileName = "results/force_beta.plt";
@ -659,7 +680,8 @@ int plotFieldType = 0;
// visualfileType: The file type of visualfile. // visualfileType: The file type of visualfile.
// 0 -- Tecplot binary. // 0 -- Tecplot binary.
// 1 -- Tecplot ASCII. // 1 -- Tecplot ASCII.
// 2 -- Ensight binary.
// 3 -- Ensight ASCII.
int visualfileType = 1; int visualfileType = 1;
// samplefileMode: The dump mode of sample file. // samplefileMode: The dump mode of sample file.
@ -697,21 +719,21 @@ double upperPlotFieldBox[] = [1.0 1.0 1.0];
// -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36), // -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36),
// -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40), // -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40),
// -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47), // -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47),
// -- transition intermittency(intermittency, 51), -transition momentum thickness reynolds(MomentumThicknessReynolds, 52), // -- transition intermittency(intermittency, 51), transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- overlap iblank(iblank, 81) // -- local CFL Number(localCFL, 57), minimal CFL Number(minCFL, 58),
// -- overlap iblank(iblank, 81),
// -- specific heat ratio(gama, 56) // -- specific heat ratio(gama, 56), Knudsen number(kn, 60), Damkohler number(Da, 61), vibrational nonequilibrium number(Vi, 62).
// Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!! // Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!!
// Variables order must from small to big. // Variables order must from small to big.
//-----------the optional parameters list for the wall boundary condition---------------- //-----------the optional parameters list for the wall boundary condition----------------
// nVisualWallVariables: The number of visual variables on wall. // nVisualWallVariables: The number of visual variables on wall.
// visualWallVariables : dumped variable types, listed as following: // visualWallVariables : dumped variable types, listed as following:
// -coefficient of pressure(cp, 0), -coefficient of friction(cf, 1), yplus(2), -non-dimensional heat flux(Q_NonDim, 3), -dimensional heat flux(Q_Dim, 4), // -- coefficient of pressure(cp, 0), coefficient of friction(cf, 1), yplus(2), non-dimensional heat flux(Q_NonDim, 3), dimensional heat flux(Q_Dim, 4),
// -pressure on wall(pw, 5), -temperature on wall(Tw, 6), -density on wall(rhow, 7), -heat flux of translational-rotational temperature term(Qtr, 8), // -- pressure on wall(pw, 5), temperature on wall(Tw, 6), density on wall(rhow, 7), heat flux of translational-rotational temperature term(Qtr, 8),
// -heat flux of species diffusion term(Qs, 9), -heat flux of vibrational temperature term(Qv, 10), -heat flux of electron temperature term(Qe, 11), // -- heat flux of species diffusion term(Qs, 9), heat flux of vibrational temperature term(Qv, 10), heat flux of electron temperature term(Qe, 11),
// -species mass fractions(Ns, 12), -x component of wall velocity(Vx, 13), -y component of wall velocity(Vy, 14), -z component of wall velocity(Vz, 15) // -- species mass fractions(Ns, 12), x component of wall velocity(Vx, 13), y component of wall velocity(Vy, 14), z component of wall velocity(Vz, 15),
// -slip translational-rotational temperature(Tts, 16), -slip vibrational temperature(Tvs, 17), -slip electron temperature(Tes, 18), -absolute wall velocity(Vs, 19) // -- slip translational-rotational temperature(Tts, 16), slip vibrational temperature(Tvs, 17), slip electron temperature(Tes, 18), absolute wall velocity(Vs, 19),
// -Stanton number(St, 20), -coefficient of heat rate(Ch, 21), -temperature jump(deltaT, 22), -Grid Reynolds number on wall(Re_w, 23) // -- Stanton number(St, 20), coefficient of heat rate(Ch, 21), temperature jump(deltaT, 22), Grid Reynolds number on wall(Re_w, 23), Knudsen number(Kn_wall, 24).
int nVisualVariables = 8; int nVisualVariables = 8;
int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15]; int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15];
@ -739,7 +761,9 @@ int dumpStandardModel = 0;
// 1 -- Real cell where the probe is located. // 1 -- Real cell where the probe is located.
// nProbeVariables: Number of variables want to be dumped for probes monitered. // nProbeVariables: Number of variables want to be dumped for probes monitered.
// probeVariables : Variable types dumped, listed as following: // probeVariables : Variable types dumped, listed as following:
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6). // -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6),
// -- dimensioanl_density(7), dimensioanl_u(8), dimensioanl_v(9),
// -- dimensioanl_w(10), dimensioanl_pressure(11), dimensioanl_temperature(12).
// Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!! // Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!!
// probeVariables order must from small to big. // probeVariables order must from small to big.
// probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables. // probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables.
@ -761,12 +785,13 @@ string probesDefineFile = "bin/probes_XYZ.dat";
int searchCellsMethod = 0; int searchCellsMethod = 0;
int nProbeVariables = 7; int nProbeVariables = 14;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6]; int probeVariables[] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13];
int probeVariablesInterpolationMethod = 0; int probeVariablesInterpolationMethod = 0;
//-----------------------------------------------------------------------
# Turbulence Parameter # #************************************************************************
//----------------------------------------------------------------------- # Turbulence Parameter *
#************************************************************************
// turbInterval: Iteration number of turbulence. // turbInterval: Iteration number of turbulence.
// kindOfTurbSource: Kinds of turbulent source. // kindOfTurbSource: Kinds of turbulent source.
// 0 -- Original. // 0 -- Original.
@ -774,15 +799,12 @@ int probeVariablesInterpolationMethod = 0;
// transitionType: transition model type // transitionType: transition model type
// 0 -- none. // 0 -- none.
// 2 -- gama-re-theta. // 2 -- gama-re-theta.
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition // turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition.
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not // freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not.
int turbInterval = 1; int turbInterval = 1;
int turbOrderStruct = 2; int turbOrderStruct = 2;
int kindOfTurbSource = 0; int kindOfTurbSource = 0;
int mod_turb_res = 0; int mod_turb_res = 0;
double turb_relax = 1.0;
double freeStreamViscosity = 1.0e-3; double freeStreamViscosity = 1.0e-3;
double muoo = 3.0; double muoo = 3.0;
double kwoo = 5.0; double kwoo = 5.0;
@ -791,28 +813,27 @@ double turbIntensity = -1.0;
int freeturbIntensitySRModify = 0; int freeturbIntensitySRModify = 0;
double freeDecayXLocation = 0.0; double freeDecayXLocation = 0.0;
int compressibleCorrection = 0; int compressibleCorrection = 0;
int prandtlNumberCorrection = 0;
int transitionMaFix = 1; int transitionMaFix = 1;
# maximum eddy viscosity (myt/my) max. // maximum eddy viscosity (myt/my) max.
double eddyViscosityLimit = 1.0e10; double eddyViscosityLimit = 1.0e10;
int monitor_vistmax = 0; int monitor_vistmax = 0;
//----------------------------------------------------------------------- #************************************************************************
# LES Parameter # # LES Parameter *
//----------------------------------------------------------------------- #************************************************************************
// iLES: Create LESSolver or not. // iLES: Create LESSolver or not.
// = 1 - Create LESSolver; // = 1 -- Create LESSolver;
// != 1 - not. // != 1 -- not.
// amplitudeofDisturb: Amplitude of adding disturb. // amplitudeofDisturb: Amplitude of adding disturb.
// disturbstep: Unsteady time step or steady iteration of adding random disturb. // disturbstep: Unsteady time step or steady iteration of adding random disturb.
// iterdisturb: Add random disturb in every sub-iter or only first sub-iter. // iterdisturb: Add random disturb in every sub-iter or only first sub-iter.
// = 0 - in only first sub-iter; // = 0 -- in only first sub-iter;
// != 0 - in every sub-iter. // != 0 -- in every sub-iter.
// ipraddisturb: Add density and pressure disturb or not. // ipraddisturb: Add density and pressure disturb or not.
// ibodyforce: Add body force in source flux of NS equations or not. // ibodyforce: Add body force in source flux of NS equations or not.
// = 0 - not; // = 0 -- not;
// != 0 - Add body force. // != 0 -- Add body force.
// bodyforce: Body force in source flux of NS equations or not. // bodyforce: Body force in source flux of NS equations or not.
// utau: friction velocity, using in DNSDisturb. // utau: friction velocity, using in DNSDisturb.
// sgsmodel: subgrid scale model. // sgsmodel: subgrid scale model.
@ -820,23 +841,22 @@ int monitor_vistmax = 0;
// = "dsmCom"; // = "dsmCom";
// = "wale"; // = "wale";
// = "sigma". // = "sigma".
// deltaFunctionType: = 1 - MAX(deltai, deltaj, deltak); // deltaFunctionType: = 1 -- MAX(deltai, deltaj, deltak);
// = 2 - pow(deltai * deltaj *deltak, 1/3); // = 2 -- pow(deltai * deltaj *deltak, 1/3);
// = 3 - Devloped by Scotti. // = 3 -- Devloped by Scotti.
// wallDampingFunctionType: = 0 - no wall function; // wallDampingFunctionType: = 0 -- no wall function;
// = 1 - van Driest; // = 1 -- van Driest;
// = 2 - developed by Dr. Deng Xiaobing; // = 2 -- developed by Dr. Deng Xiaobing;
// = 3 - developed by Piomelli. // = 3 -- developed by Piomelli.
// turbViscousCutType: turbulent viscosity cut type. // turbViscousCutType: turbulent viscosity cut type.
// = 0 - mu_total = mut + mul; // = 0 -- mu_total = mut + mul;
// = 1 - mu_total = max(mut-mul,0)+ mul; // = 1 -- mu_total = max(mut-mul, 0) + mul;
// = 2 - mu_total = max(mut ,0)+ mul. // = 2 -- mu_total = max(mut , 0) + mul.
// smagConstant: constant of smagorinsky model. // smagConstant: constant of smagorinsky model.
// waleConstant: constant of wale model. // waleConstant: constant of wale model.
// filterDirection [3]: filter variables in i, j, k direction or not. // filterDirection [3]: filter variables in i, j, k direction or not.
// averageDirection[3]: average variables in i, j, k direction or not. // averageDirection[3]: average variables in i, j, k direction or not.
// isotropicConstant: constant of isotropic part of SGS stress. // isotropicConstant: constant of isotropic part of SGS stress.
int iLES = 0; int iLES = 0;
string sgsmodel = "smagorinsky"; string sgsmodel = "smagorinsky";
int deltaFunctionType = 2; int deltaFunctionType = 2;
@ -852,9 +872,9 @@ double testFilterScale = 2.0;
int averageWidth = 1; int averageWidth = 1;
int monitorNegativeConstant = 0; int monitorNegativeConstant = 0;
//----------------------------------------------------------------------- #************************************************************************
# Other Parameters for Hypersonic Non-equilibrium Gas # # Other Parameters for Hypersonic Non-equilibrium Gas *
//----------------------------------------------------------------------- #************************************************************************
// dg_high_order: // dg_high_order:
// 0 -- generic order accuracy. // 0 -- generic order accuracy.
// 1 -- high order accuracy. // 1 -- high order accuracy.
@ -862,9 +882,6 @@ int monitorNegativeConstant = 0;
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver,
// isAdaptiveSolver>0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -886,14 +903,13 @@ int monitorNegativeConstant = 0;
// nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied. // nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied.
// 0 -- perfect gas. // 0 -- perfect gas.
// 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component. // 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component.
// nPCWCycleStep: the maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition. // nPCWCycleStep: The maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: the maximum step number of iteration in the module of computing radiation equilibrium temperature on wall. // nRETCycleStep: The maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:the maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction. // nSLIPCycleStep:The maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nSlipBCModel: The computational model of slip boundary conditions. // nSlipBCModel: The computational model of slip boundary conditions.
// 0 -- no slip. // 0 -- no slip.
// 1 -- the conventional Maxwell slip conditions. // 1 -- the conventional Maxwell slip conditions.
// 2 -- the Gokcen slip conditions. // 2 -- the Gokcen slip conditions.
@ -913,10 +929,13 @@ int monitorNegativeConstant = 0;
// 1 -- One-temperature model. // 1 -- One-temperature model.
// 2 -- Two-temperature model. // 2 -- Two-temperature model.
// 3 -- Three-temperature model. // 3 -- Three-temperature model.
// isUseNoneqCond:
// 0 -- compute the source terms without any conditions.
// 1 -- compute the source terms using the non-equilibrium condition.
// frozenCondition: the threshold value of frozen chemical flow condition, 0.1 is the default value.
// nIdealState: whether take all gas species as ideal gas for gas-mixture process. // nIdealState: whether take all gas species as ideal gas for gas-mixture process.
// 0 -- No. // 0 -- No.
// 1 -- Yes. // 1 -- Yes. // nTEnergyModel: the method to computing temperature energy model.
// nTEnergyModel: the method to computing temperature energy model.
// 0 -- the energy term is computed using the conventional method. // 0 -- the energy term is computed using the conventional method.
// 1 -- the energy term is computed using the polynomial fitting method. // 1 -- the energy term is computed using the polynomial fitting method.
// 2 -- the energy term is computed using the piecewise polynomial fitting method. // 2 -- the energy term is computed using the piecewise polynomial fitting method.
@ -946,14 +965,13 @@ int monitorNegativeConstant = 0;
// 1.0 -- proposed by Maxwell. // 1.0 -- proposed by Maxwell.
// sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall. // sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall.
// 1.146 -- proposed for an additional "fictitious" velocity slip. // 1.146 -- proposed for an additional "fictitious" velocity slip.
// chemicalRelaxCorf: The value is in range of [0.001, 1.0]. // chemicalRelaxCorf: The value is in range of [0.001, 1.0].
// spectrumRadiusCoef: The value is in range of [0.0, 2.0]. // spectrumRadiusCoef: The value is in range of [0.0, 2.0].
// staticPressureRelaxCorf: The value is in range of [0.1, 1.0]. // staticPressureRelaxCorf: The value is in range of [0.1, 1.0].
// nIsChemicalFreeze: the flag to freeze the chemical reactions. // nIsChemicalFreeze: the flag to freeze the chemical reactions.
// 0 -- not freeze, the chemical reaction sources will be calculated. // 0 -- not freeze, the chemical reaction sources will be calculated.
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.// veTemperatureMin: The minimum of Tv and Te // 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.
// veTemperatureMin: The minimum of Tv and Te.
// maxViscous: the maximum of Viscous. // maxViscous: the maximum of Viscous.
// trTemperatureMin: the minimum value of trTemperature. // trTemperatureMin: the minimum value of trTemperature.
// veTemperatureMin: the minimum value of veTemperature. // veTemperatureMin: the minimum value of veTemperature.
@ -965,36 +983,34 @@ int monitorNegativeConstant = 0;
// nSpeciesLimit: limitter of gas species // nSpeciesLimit: limitter of gas species
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction // nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction.
// 0 -- method 0. // 0 -- method 0.
// 1 -- method 1. // 1 -- method 1.
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid // nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nViscosityPeModified: Pe Modified for ViscosityCoef // nViscosityPeModified: Pe Modified for ViscosityCoef.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nChemcalSourceModified: Modified on ChemcalSource // nChemcalSourceModified: Modified on ChemcalSource.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nChemcalSourceEsMethod: Modified on ChemcalSource // nChemcalSourceEsMethod: Modified on ChemcalSource.
// 0 -- approximation algorithm 1 (Ori.) // 0 -- approximation algorithm 1 (Ori).
// 1 -- approximation algorithm 2 (New) // 1 -- approximation algorithm 2 (New).
// nMaxStepTemperature: the iterative steps of temperature. // nMaxStepTemperature: the iterative steps of temperature.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs // 0 -- not used.
// 0 -- not used // 1 -- used.
// 1 -- used // nDiagonalModified: Modified on Diagonal.
// 0 -- not used.
// nDiagonalModified: Modified on Diagonal // 1 -- new.
// 0 -- not used // nDiagonalModifiedTurb: Modified on Diagonal for turbulence.
// 1 -- Ori. // 0 -- not used.
// 2 -- new // 1 -- new.
// nGradPrimtiveMethod: // nGradPrimtiveMethod:
// 0 -- Ori. // 0 -- Ori.
// 1 -- new // 1 -- new.
// nAblation: // nAblation:
// 0 -- The wall ablation is not computed. // 0 -- The wall ablation is not computed.
// 1 -- The wall ablation is computed. // 1 -- The wall ablation is computed.
@ -1017,8 +1033,8 @@ int monitorNegativeConstant = 0;
// "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas. // "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas.
// "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions. // "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions.
// "Gas-Mixture" -- indicates the process of mixing gas without reacting. // "Gas-Mixture" -- indicates the process of mixing gas without reacting.
// for struct solver mixing two species£¨SpeciesA, SpeciesB£©. // for struct solver mixing two species<65><73>SpeciesA, SpeciesB<73><42>.
// for unstruct solver mixing multi-species£¨O2 NO CO CO2 H2 N2 Air CH4£©. // for unstruct solver mixing multi-species<65><73>O2 NO CO CO2 H2 N2 Air CH4<48><34>.
// For self-definition model, the gasfile is used to indicate the file path of the new gas model. // For self-definition model, the gasfile is used to indicate the file path of the new gas model.
// speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma. // speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma.
// initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName. // initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName.
@ -1040,13 +1056,16 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting : Setting for HyFLOW GUI.
// 0 -- PHengLEI
// 1 -- HyFLOW
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no // 0 -- no.
// 1 -- yes // 1 -- yes.
// nTvChange: Judge whether the Tv equals Ttr.
// 0 -- yes.
// 1 -- no.
// isMoleFractionType: 1 indicates the mass fractions, or else the mole fractions.
// nFraction: the initial fractions type of species.
// 0 -- mass fraction.
// 1 -- mole fraction.
int dg_high_order = 0; int dg_high_order = 0;
int iapplication = 0; int iapplication = 0;
int isAdaptiveSolver = 0; int isAdaptiveSolver = 0;
@ -1114,6 +1133,7 @@ double densityMin = 1.0e-8;
double densityMinFactor = 0.1; double densityMinFactor = 0.1;
double tAdjustmentFactor = 10.0; double tAdjustmentFactor = 10.0;
double iniSpeedCoef = 1.0; double iniSpeedCoef = 1.0;
int iniSpeedMode = 0;
int nDebug = 0; int nDebug = 0;
int nSpeciesLimit = 1; int nSpeciesLimit = 1;
@ -1125,18 +1145,21 @@ int nChemcalSourceEsMethod = 1;
int nMaxStepTemperature = 5; int nMaxStepTemperature = 5;
int veTemperatureMinModified = 1; int veTemperatureMinModified = 1;
int nDiagonalModified = 0; int nDiagonalModified = 0;
int nDiagonalModifiedTurb = 0;
int nGradPrimtiveMethod = 1; int nGradPrimtiveMethod = 1;
int nInviscidFluxModify = 1; int nInviscidFluxModify = 1;
int nQlLimitMethod = 2; int nQlLimitMethod = 2;
int nSpeciesForWallMethod = 1; int nSpeciesForWallMethod = 1;
int nDensityForWallMethod = 0; int nDensityForWallMethod = 0;
int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
int nMarsModel = 0; int nMarsModel = 0;
int nTvChange = 0;
int isMoleFractionType = 0;
string gasfile = "DK5"; string gasfile = "DK5";
//string gasfile = "./chemical/Dunn-Kang_air5s11r.dat"; //string gasfile = "./chemical/Dunn-Kang_air5s11r.dat";
string speciesName = "O, O2, NO, N, N2"; string speciesName = "O, O2, NO, N, N2";
@ -1173,9 +1196,17 @@ double molecularWeightSpeciesB = 30.0;
//string speciesName = "O2, N2"; //string speciesName = "O2, N2";
//string initMassFraction = "1.0, 0.0"; //string initMassFraction = "1.0, 0.0";
int nFraction = 0;
int nContinueModel = 0; int nContinueModel = 0;
int nChemicalFlowStep = 0; int nChemicalFlowStep = 0;
int ifStartFromPerfectGasResults = 0; int ifStartFromPerfectGasResults = 0;
int isUseNoneqCond = 0;
double frozenCondition = 0.01;
int nLeakageMonitor = 0;
double totalLeakageVolume = 1000.0;
double monitorThresholdValue = 0.05;
double sprayFactor = 0.0;
######################################################################### #########################################################################
// Multi-Grid parameters. // Multi-Grid parameters.
@ -1196,7 +1227,6 @@ int ifStartFromPerfectGasResults = 0;
// 1 -- zero order. // 1 -- zero order.
// 2 -- first-order. (default) // 2 -- first-order. (default)
// mgCorrectionLimit: Multi-grid correction limit. // mgCorrectionLimit: Multi-grid correction limit.
int nMGLevel = 1; int nMGLevel = 1;
int MGCoarsestIteration = 1; int MGCoarsestIteration = 1;
int MGPreIteration = 1; int MGPreIteration = 1;
@ -1226,9 +1256,9 @@ string holeFullFileName = "./grid/holeFullFile.dat";
string linkFileName = "./grid/topology.dat"; string linkFileName = "./grid/topology.dat";
string zoneInverseFileName = "./grid/zoneInverseMapping.inp"; string zoneInverseFileName = "./grid/zoneInverseMapping.inp";
######################################################################### #************************************************************************
# High Order Struct Solver # # High Order Struct Solver *
######################################################################### #************************************************************************
// isFVMOrFDM: // isFVMOrFDM:
// 0 -- NSSolverStruct using Finite Volume Method. // 0 -- NSSolverStruct using Finite Volume Method.
// 1 -- NSSolverStruct using Finite Differ Method. // 1 -- NSSolverStruct using Finite Differ Method.
@ -1273,10 +1303,29 @@ int allReduceStep = 1;
// codeOfOversetGrid: Overlapping(overset) grid or not. // codeOfOversetGrid: Overlapping(overset) grid or not.
// 0 -- NON-overlapping grid. // 0 -- NON-overlapping grid.
// 1 -- Overlapping grid. // 1 -- Overlapping grid.
// oversetInterpolationMethod: the method of overset interpolation while field simulation // oversetInterpolationMethod: the method of overset interpolation while field simulation.
// 0 -- set the acceptor cell value by donor cell value. // 0 -- set the acceptor cell value by donor cell value.
// 1 -- set the acceptor cell value by distance weight of donor cell value. // 1 -- set the acceptor cell value by distance weight of donor cell value.
// readOversetFileOrNo: Whether to read overset-file(.ovs) that has been generated.
// 0 -- no.
// 1 -- yes.
// symetryOrNot: If there exist symetryplanes(XY plane, the coordinate of Z direction is 0) in
// the current overset grid(only for three dimension).
// 0 -- no.
// 1 -- yes.
// readInAuxiliaryInnerGrid: Whether to read auxiliary inner grid.
// 0 -- no.
// 1 -- yes.
// walldistMainZone: The initial value of background grid which does not exist wall boundary condition.
// toleranceForOversetSearch: The tolerance of overset searching zone to judge whether the obtained node is in the current computing cell.
// toleranceForOversetBox: The tolerance of building the minimum box of computing cells in the overlapping region.
// twoOrderInterpolationOrNot: The number of interpolated cell layers in the overlapping boundary.
// 0 -- one layer.
// 1 -- two layers.
// keyEnlargeOfActiveNodes: The number of enlarged overset-boundary layers in the buffer region.
// outTecplotOverset: Whether to dump out the flowfield data after the progress of overset configure.
// 0 -- no.
// 1 -- yes.
int codeOfOversetGrid = 0; int codeOfOversetGrid = 0;
int oversetInterpolationMethod = 0; int oversetInterpolationMethod = 0;
int readOversetFileOrNot = 0; int readOversetFileOrNot = 0;
@ -1295,7 +1344,6 @@ int twoOrderInterpolationOrNot = 0;
int keyEnlargeOfActiveNodes = 0; int keyEnlargeOfActiveNodes = 0;
int outTecplotOverset = 0; int outTecplotOverset = 0;
int outPutOversetVisualization = 0; int outPutOversetVisualization = 0;
int numberOfMovingBodies = 2; int numberOfMovingBodies = 2;
// ----------------- ALE configuration ------------------------------ // ----------------- ALE configuration ------------------------------
@ -1306,34 +1354,40 @@ double referenceLength = 1.0;
double referenceVelocity = 1.0; double referenceVelocity = 1.0;
double referenceDensity = 1.0; double referenceDensity = 1.0;
int strategyForFaceNormalVelocity = 0; //0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd; int strategyForFaceNormalVelocity = 0; // 0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd.
int strategyForGCLSource = 0; //0-present; 1-Ahn; int strategyForGCLSource = 0; // 0-present; 1-Ahn.
//0:1st-Admas-Bashforth; 1:2nd-Admas-Bashforth; 2:1st-Implicit-Euler; 3:2nd-Implicit Euler; 4:2nd-Adams-Moulton; 5:3rd-Adams-Moulton // 0: 1st-Admas-Bashforth; 1: 2nd-Admas-Bashforth; 2: 1st-Implicit-Euler; 3: 2nd-Implicit Euler; 4: 2nd-Adams-Moulton; 5: 3rd-Adams-Moulton.
int methodForKineticEquation = 0; int methodForKineticEquation = 0;
double relaxParameterOfKinetic = 1.0; double relaxParameterOfKinetic = 1.0;
######################################################################### #************************************************************************
# motive information # # motive information *
######################################################################### #************************************************************************
int numberOfMovingBodies = 1; int numberOfMovingBodies = 1;
############################## body0 ############################## ############################## body0 ##############################
//mass of parts // mass of parts.
double mass_0 = 1.0; double mass_0 = 1.0;
//mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz // gravity of parts (along negative direction in Y-axis, eg. 9.8).
double gravity_0 = 0.0;
// mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz.
double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0; double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0;
//initial six DOF position information of parts. xc yc zc // initial six DOF position information of parts. xc yc zc.
double massCenter_0[] = 0.0, 0.0, 0.0; double massCenter_0[] = 0.0, 0.0, 0.0;
//initial six DOF position information of parts. angleX angleY angleZ // if reset mass center while restart.
int resetMassCenter_0 = 0;
// position offset of parts. dx dy dz.
double massCenterDxyz_0[] = 0.0, 0.0, 0.0;
// initial six DOF position information of parts. angleX angleY angleZ.
double attitudeAngle_0[] = 0.0, 0.0, 0.0; double attitudeAngle_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. vc vy vz // initial six DOF move information of parts. vc vy vz.
double massCenterVelocity_0[] = 0.0, 0.0, 0.0; double massCenterVelocity_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. omigX omigY omigZ // initial six DOF move information of parts. omigX omigY omigZ.
double angularVelocity_0[] = 0.0, 0.0, 0.0; double angularVelocity_0[] = 0.0, 0.0, 0.0;
// the object that the parts belong to. // the object that the parts belong to.
int fartherIndex_0 = -1; int fartherIndex_0 = -1;
//the assembly position of the parts. xc yc zc angleX angleY angleZ // the assembly position of the parts. xc yc zc angleX angleY angleZ.
double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0; double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
// the move pattern of the parts. // the move pattern of the parts.
// -1 given motion partten. // -1 given motion partten.
@ -1349,23 +1403,24 @@ double configPamameter_0[] = 0.0 ,0.0 ,0.0 ,0.0 ,0.0
int RBDMethod_0 = 0; int RBDMethod_0 = 0;
double amplitude_0 = 0.0; double amplitude_0 = 0.0;
double reduceFrequency_0 = 0.0; double reduceFrequency_0 = 0.0;
//direction of rotation // direction of rotation.
// 1 -- clockwise from the point of view along the positive x axis. // 1 -- clockwise from the point of view along the positive x axis.
// -1 -- anticlockwise from the point of view along the positive x axis. // -1 -- anticlockwise from the point of view along the positive x axis.
int direction_0 = -1; int direction_0 = -1;
double rotateFrequency_0 = 0.0; double rotateFrequency_0 = 0.0;
//string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter"; //string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter";
//additional force (system axis) fX fY fZ // dimensional physical time for additional force(s).
double addedForceTime_0[] = 0.0;
// additional force(inertia system) fX fY fZ.
double addedForce_0[] = 0.0, 0.0, 0.0; double addedForce_0[] = 0.0, 0.0, 0.0;
//additional moment of Force (system axis) mX mY mZ // additional moment(inertia system) mX mY mZ.
double addedMoment_0[] = 0.0, 0.0, 0.0; double addedMoment_0[] = 0.0, 0.0, 0.0;
// the deformation method of the parts. // the deformation method of the parts.
int morphing_0 = 0; int morphing_0 = 0;
// post indentify // post indentify.
int integralOrder = 4; int integralOrder = 4;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;
@ -1379,18 +1434,34 @@ int integralOrder = 4;
//@string outLetFileName = "./bin/subsonicOutlet.hypara"; //@string outLetFileName = "./bin/subsonicOutlet.hypara";
//@double refDimensionalVelocity = 0; //@double refDimensionalVelocity = 0;
//@double refDimensionalDensity = 0; //@double refDimensionalDensity = 0;
//@string weatherDataFilePath = "./WRFData/";
######################################################################### //@double longitude = 110.95
# Old Parameter # //@double latitude = 19.61;
######################################################################### #************************************************************************
# Old Parameter *
#************************************************************************
int isPlotVolumeField = 0; int isPlotVolumeField = 0;
#************************************************************************
# partial flow field setting Parameter *
#************************************************************************
//int nPartialParameter = 0; // 0/1/2
//int nNumberOfPartialField = 0; //
//int nStartGridIndex[] = [0];
//int nEndGridIndex[] = [0];
######################################################################### //double partialCFL[] = [0.0];
# Incompressible Parameter # //double partialSpeedCoef[] = [0.0];
######################################################################### //double partialSpeed[] = [0.0];
//double partialAttackd[] = [0.0];
//double partialSlide[] = [0.0];
//double partialPressure[] = [0.0];
//double partialTemperature[] = [0.0];
//double partialMassFractions[] = [0.0];
#************************************************************************
# Incompressible Parameter *
#************************************************************************
int isSolveEnergyEquation = 0; int isSolveEnergyEquation = 0;
int isSolveTurbEquation = 0; int isSolveTurbEquation = 0;
int isSolveSpeciesEquation = 0; int isSolveSpeciesEquation = 0;

View File

@ -179,7 +179,6 @@ int flowInitStep = 0;
// isPlotVolumeField: If dump out the whole field results to tecplot or not, 0 / 1. // isPlotVolumeField: If dump out the whole field results to tecplot or not, 0 / 1.
int plotFieldType = 1; int plotFieldType = 1;
int visualfileType = 0;
// ----------------- Advanced Parameters, DO NOT care it ---------------- // ----------------- Advanced Parameters, DO NOT care it ----------------
// nVisualVariables: Number of variables want to be dumped for tecplot visualization. // nVisualVariables: Number of variables want to be dumped for tecplot visualization.

View File

@ -4,9 +4,12 @@
// gridtype: Grid type for generation, conversion, reconstruction, merging. // gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid. // 0 -- Unstructured grid.
// 1 -- Structured grid. // 1 -- Structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion. // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// 1 -- Y upward. (default) // axisRotateOrder : axis rotating order.
// 2 -- Z upward. // 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
// from_gtype: Type of grid data type in grid conversion process. // from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE. // -1 -- MULTI_TYPE.
// 1 -- PHengLEI, *.fts. // 1 -- PHengLEI, *.fts.
@ -18,7 +21,9 @@
// 7 -- Hybrid, include both of unstructured and structured grid, *.fts. // 7 -- Hybrid, include both of unstructured and structured grid, *.fts.
// 8 -- GMSH, *.msh. // 8 -- GMSH, *.msh.
int gridtype = 0; int gridtype = 0;
int axisup = 2; int nAxisRotateTimes = 1;
int axisRotateOrder[] = [1];
double axisRotateAngles[] = [90.0];
int from_gtype = 2; int from_gtype = 2;
######################################################################### #########################################################################

View File

@ -4,9 +4,12 @@
// gridtype: Grid type for generation, conversion, reconstruction, merging. // gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid. // 0 -- Unstructured grid.
// 1 -- Structured grid. // 1 -- Structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion. // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// 1 -- Y upward. (default) // axisRotateOrder : axis rotating order.
// 2 -- Z upward. // 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
// from_gtype: Type of grid data type in grid conversion process. // from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE // -1 -- MULTI_TYPE
// 1 -- HyperFLOW( PHengLEI ), *.fts. // 1 -- HyperFLOW( PHengLEI ), *.fts.
@ -18,7 +21,9 @@
// 7 -- Hybrid, include both of unstructured and structured grid, *.fts. // 7 -- Hybrid, include both of unstructured and structured grid, *.fts.
// 8 -- GMSH, *.msh. // 8 -- GMSH, *.msh.
int gridtype = 1; int gridtype = 1;
int axisup = 1; int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
int from_gtype = 2; int from_gtype = 2;
######################################################################### #########################################################################

View File

@ -1,69 +0,0 @@
# nBoundaryConditions : Number of global boundary conditions.
# bcName : Boundary condition name.
# bcType(in PHengLEI): Boundary condition type.
# How to set boundary condition, for example:
# string bcName = "Wall";
# {
# int bcType = 2;
# int viscousType = 1;
# double wallTemperature = -1.0;
# double uWall = 0.0;
# double vWall = 0.0;
# double wWall = 0.0;
# }
# string bcName = "Inflow";
# {
# int bcType = 5;
# int inflowParaType = 0;
# double refMachNumber = 0.73;
# double attackd = 2.79;
# double angleSlide = 0.0;
# double refReNumber = 6.5e6;
# double refDimensionalTemperature = 288.15;
# }
# For more information, see examples/bin/boundary_condition.hypara file!!!
int nBoundaryConditions = 6;
string bcName = "BCWall";
{
string bodyName = "body";
int bcType = 2;
}
string bcName = "BCFarfield";
{
int bcType = 4;
}
string bcName = "BCInflow";
{
int bcType = 5;
}
string bcName = "BCOutflow";
{
int bcType = 6;
}
string bcName = "BCDegenerateLine";
{
int bcType = 71;
}
string bcName = "BCDegenerateLine";
{
int bcType = 73;
}
# 'bcType' is defined as following:
# 99: PERIODIC
# -2: WAKE
# -1: INTERFACE
# 0 : NO_BOUNDARY_CONDITION
# 1 : EXTRAPOLATION
# 2 : SOLID_SURFACE
# 3 : SYMMETRY
# 4 : FARFIELD
# 5 : INFLOW
# 6 : OUTFLOW
# 52: PRESSURE_INLET
# 62: PRESSURE_OUTLET
# 61: OUTFLOW_CONFINED
# 7 : POLE

View File

@ -8,6 +8,7 @@
// Platform for Hybrid Engineering Simulation of Flows + // Platform for Hybrid Engineering Simulation of Flows +
// China Aerodynamics Research and Development Center + // China Aerodynamics Research and Development Center +
// (C) Copyright, Since 2010 + // (C) Copyright, Since 2010 +
// PHengLEI 2212 +
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
########################################################################### ###########################################################################
# Default parameters for Grid conversion # # Default parameters for Grid conversion #
@ -46,19 +47,24 @@ int gridobj = 1;
int multiblock = 0; int multiblock = 0;
int iadapt = 0; int iadapt = 0;
int SymmetryFaceVector = 1; int SymmetryFaceVector = 1;
int gridReorder = 0; int gridReorder = 0;
int faceReorderMethod = 0; int faceReorderMethod = 0;
// axisup: Type of Cartisien coordinates system, used in grid conversion. // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// 1 -- Y upward. (default) // axisRotateOrder : axis rotating order.
// 2 -- Z upward. // 1 -- X-axis.
int axisup = 1; // 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
// omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition". // omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition".
// 0 -- Interface. (default) // 0 -- Interface. (default)
// 1 -- Physical boundary condition, used in Hybrid solver. // 1 -- Physical boundary condition, used in Hybrid solver.
int omit_no_bound_bc = 0; int omit_no_bound_bc = 0;
int omitRepeatInterface = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# Grid data type # # Grid data type #
@ -89,7 +95,6 @@ int dumpOldGrid = 0;
int numberOfGridFile = 1; int numberOfGridFile = 1;
string from_gfile = "./grid/rae2822_hybrid2d.cas"; string from_gfile = "./grid/rae2822_hybrid2d.cas";
string from_gfile1 = ""; string from_gfile1 = "";
string out_gfile = "./grid/flat_laminr_133_85_2d.fts"; string out_gfile = "./grid/flat_laminr_133_85_2d.fts";
// ----------------- some advanced choices ------------------------------ // ----------------- some advanced choices ------------------------------
@ -178,7 +183,6 @@ double influencePara = 25.0;
which only support one direction. which only support one direction.
// rotationAngle: The relative angle between two periodic face. // rotationAngle: The relative angle between two periodic face.
which is recorded in degrees. which is recorded in degrees.
int periodicType = 0; int periodicType = 0;
double translationLength[] = [0.0, 0.0, 0.0]; double translationLength[] = [0.0, 0.0, 0.0];
double rotationAngle = 0.0; double rotationAngle = 0.0;
@ -192,7 +196,6 @@ double rotationAngle = 0.0;
// 2 -- refine structured grid. // 2 -- refine structured grid.
// maxproc: The number of partition zones that want to be divided into. // maxproc: The number of partition zones that want to be divided into.
// numberOfMultifile: The number of partition grid files that want to be dumped out. // numberOfMultifile: The number of partition grid files that want to be dumped out.
int pgridtype = 0; int pgridtype = 0;
int maxproc = 4; int maxproc = 4;
int numberOfMultifile = 1; int numberOfMultifile = 1;
@ -207,8 +210,8 @@ int blockIndexOfMark = 0;
int cellIndexOfMark[] = [185, 30, 1]; int cellIndexOfMark[] = [185, 30, 1];
// parallelStrategy: // parallelStrategy:
//! -# 0 : each zone is assigned to the one that defined in grid partition procedure. // 0 -- each zone is assigned to the one that defined in grid partition procedure.
//! -# 1 : random assigned for each zone or by some else ways. // 1 -- random assigned for each zone or by some else ways.
int parallelStrategy = 1; int parallelStrategy = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
@ -232,7 +235,6 @@ string partition_grid_file = "./grid/sphere_mixed__4.fts";
// 1 -- perfect balance. // 1 -- perfect balance.
// maxproc -- perfect imbalance. // maxproc -- perfect imbalance.
// 1.05 -- recommended. // 1.05 -- recommended.
int omit_no_bound_bc = 0; int omit_no_bound_bc = 0;
int npartmethod = 1; int npartmethod = 1;
int parallelPartitionMethod = 2; int parallelPartitionMethod = 2;
@ -253,24 +255,30 @@ int numberOfMultigrid = 1;
// intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved. // intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved.
// intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved. // intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved.
// intervalStepRes: The step intervals for residual file 'res.dat' saved. // intervalStepRes: The step intervals for residual file 'res.dat' saved.
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
int maxSimuStep = 20000; int maxSimuStep = 20000;
int intervalStepFlow = 1000; int intervalStepFlow = 1000;
int intervalStepPlot = 1000; int intervalStepPlot = 1000;
int intervalStepSample = 1000; int intervalStepSample = 1000;
int intervalStepForce = 100; int intervalStepForce = 100;
int intervalStepRes = 10; int intervalStepRes = 10;
int ifLowSpeedPrecon = 0;
// compressible: // compressible:
// 0 -- incompressible flow. // 0 -- incompressible flow.
// 1 -- compressible flow. (default) // 1 -- compressible flow. (default)
int compressible = 1; int compressible = 1;
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
// Kprec: The coefficient K for the cut-off velocity.
// 1.0~3.0 is suggested. (default, 3.0)
// preconFarfieldBCMethod: The precondition method for farfield boundary condition.
// 0 -- precondition far-field boundary based on riemann invariants.
// 1 -- Turkel's simplified far-field boundary condition.
int ifLowSpeedPrecon = 0;
double Kprec = 3.0;
int preconFarfieldBCMethod = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# CFD Control Parameter # # CFD Control Parameter #
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
@ -281,9 +289,12 @@ int compressible = 1;
// 0 -- the nondimensional conditions. // 0 -- the nondimensional conditions.
// 1 -- the flight conditions. // 1 -- the flight conditions.
// 2 -- the experiment conditions. // 2 -- the experiment conditions.
// 3 -- the subsonic boundary conditions. // 3 -- the subsonic boundary conditions. (Useless!)
// 4 -- the condition that the velocity, temperature and density are given. // 4 -- the condition that the velocity, temperature and density are given.
// 5 -- the condition that the velocity, temperature and pressure are given. // 5 -- the condition that the velocity, temperature and pressure are given.
//flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -303,11 +314,11 @@ int compressible = 1;
// condition is radiation equilibrium temperature, and 0.8 is the default value. // condition is radiation equilibrium temperature, and 0.8 is the default value.
// refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol. // refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol.
// Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on. // Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on.
int directionMethod = 0; int directionMethod = 0;
double refMachNumber = 0.73; double refMachNumber = 0.73;
double attackd = 2.79; double attackd = 2.79;
double angleSlide = 0.00; double angleSlide = 0.00;
int flowInitMethod = 0;
int inflowParaType = 0; int inflowParaType = 0;
double refReNumber = 6.5e6; double refReNumber = 6.5e6;
@ -321,14 +332,6 @@ double freestream_vibration_temperature = 300.00;
//double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2). //double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2).
//double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)). //double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)).
//int inflowParaType = 3;
//int nsubsonicInlet = 1;
//int nsubsonicOutlet = 1;
//string inLetFileName = "./bin/subsonicInlet.hypara";
//string outLetFileName = "./bin/subsonicOutlet.hypara";
//double refDimensionalTemperature = 288.144;
//double refDimensionalPressure = 1.01313E05;
// The velocity, temperature and density are fixed. // The velocity, temperature and density are fixed.
//int inflowParaType = 4; //int inflowParaType = 4;
//double refDimensionalVelocity = 1000.0; //double refDimensionalVelocity = 1000.0;
@ -341,9 +344,15 @@ double freestream_vibration_temperature = 300.00;
// The MachNumber, temperature and pressure are fixed. // The MachNumber, temperature and pressure are fixed.
//int inflowParaType = 6; //int inflowParaType = 6;
//double refDimensionalTemperature = 293; //double refDimensionalTemperature = 293.0;
//double refDimensionalPressure = 8886.06; //double refDimensionalPressure = 8886.06;
// The velocity, temperature and pressure are read from file.
//int inflowParaType = 7;
//string weatherDataFilePath = "./WRFData/";
//double longitude = 110.95
//double latitude = 19.61;
double wallTemperature = -1.0; double wallTemperature = -1.0;
double radiationCoef = 0.8; double radiationCoef = 0.8;
@ -357,35 +366,35 @@ double forceReferenceArea = 1.0; // unit of meter^2.
double TorqueRefX = 0.0; // unit of meter. double TorqueRefX = 0.0; // unit of meter.
double TorqueRefY = 0.0; // unit of meter. double TorqueRefY = 0.0; // unit of meter.
double TorqueRefZ = 0.0; // unit of meter. double TorqueRefZ = 0.0; // unit of meter.
double knudsenLength = 1.0; // unit of meter.
double refMolecularWeight = 28.9644; // unit of g/mol. double refMolecularWeight = 28.9644; // unit of g/mol.
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# Spatial Discretisation # # Spatial Discretisation #
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
#******************************************************************* #************************************************************************
# Struct Solver * # Struct Solver *
#******************************************************************* #************************************************************************
// inviscidSchemeName: Spatial discretisation scheme of struct grid. // inviscidSchemeName: Spatial discretisation scheme of struct grid.
// Using this when solve structered grid or hybrid. // Using this when solve structered grid or hybrid.
// -- "vanleer", "steger", "hlle", "lax_f". // -- "vanleer", "steger", "hlle", "lax_f",
// -- "roe", "modified_roe". // -- "roe", "modified_roe",
// -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+". // -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+".
// isWennScheme: If using WENN Scheme of struct grid. // isWennScheme: If using WENN Scheme of struct grid.
// 0 -- NO. (default) // 0 -- NO. (default)
// 1 -- Yes. // 1 -- Yes.
// str_limiter_name: Limiter of struct grid. // str_limiter_name: Limiter of struct grid.
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth". // -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth",
// -- "nolim", no limiter. // -- "nolim", no limiter,
// -- "vanalbada_clz", clz supersonic version. // -- "vanalbada_clz", clz supersonic version,
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3" // -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3".
string inviscidSchemeName = "roe"; string inviscidSchemeName = "roe";
int isWennScheme = 0; int isWennScheme = 0;
string str_limiter_name = "vanalbada"; string str_limiter_name = "vanalbada";
#******************************************************************* #************************************************************************
# UnStruct Solver or Common * # UnStruct Solver or Common *
#******************************************************************* #************************************************************************
// viscousType: Viscous model. // viscousType: Viscous model.
// 0 -- Euler. // 0 -- Euler.
// 1 -- Lamilar. // 1 -- Lamilar.
@ -410,11 +419,11 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle". // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod". // -- "barth", "vencat", "vanleer", "minmod",
// -- "vanalbada", "smooth", "nnd", "lpz", "1st". // -- "vanalbada", "smooth", "nnd", "lpz", "1st",
// -- "nolim", no limiter. // -- "nolim", no limiter.
// uns_vis_name: Discretisation method of viscous term. // uns_vis_name: Discretisation method of viscous term.
// -- "std", "test", "aver", "new1", "new2". // -- "std", "test", "aver", "new1", "new2".
@ -442,7 +451,7 @@ string str_limiter_name = "vanalbada";
// 3 -- Harten type, which is default used. // 3 -- Harten type, which is default used.
// roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0. // roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0.
// It is used to scale the default Roe entropy fix coefficients. // It is used to scale the default Roe entropy fix coefficients.
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0 // AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0.
//int viscousType = 0; //int viscousType = 0;
//string viscousName = "Euler"; //string viscousName = "Euler";
@ -475,9 +484,9 @@ double roeEntropyScale = 1.0;
double AusmpwPlusLimiter = 1.0; double AusmpwPlusLimiter = 1.0;
//----------------------------------------------------------------------- #************************************************************************
# Temporal Discretisation # # Temporal Discretisation *
//----------------------------------------------------------------------- #************************************************************************
// iunsteady: Steady or unsteady. // iunsteady: Steady or unsteady.
// 0 -- steady. // 0 -- steady.
// 1 -- unsteay. // 1 -- unsteay.
@ -504,11 +513,18 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// useLUSGSprecond: Initialize flow field for GMRES.
// 0 --Initialize by first order Jacobian matrix.
// 1 --Initialize by LUSGS.
// GMRESInitStep : the number of iteration step of irst order Jacobian matrix or LUSGS for initialize flow field.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -533,7 +549,6 @@ double AusmpwPlusLimiter = 1.0;
// 2 -- Pab3D wall function. // 2 -- Pab3D wall function.
// RKStage: The number of Runge-Kutta step. // RKStage: The number of Runge-Kutta step.
// lamda: Cofficient of Runge-Kutta step. // lamda: Cofficient of Runge-Kutta step.
int iunsteady = 0; int iunsteady = 0;
double physicalTimeStep = 0.01; double physicalTimeStep = 0.01;
double physicalTimeStepDimensional = -0.001; double physicalTimeStepDimensional = -0.001;
@ -543,7 +558,7 @@ int ifStaticsReynoldsStress = 0;
int startStatisticStep = 800000; int startStatisticStep = 800000;
double statisticalTimePeriod = -1.0; double statisticalTimePeriod = -1.0;
int statisticMethod = 0; int statisticMethod = 0;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2; int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2.
int methodOfDualTime = 3; int methodOfDualTime = 3;
int min_sub_iter = 50; int min_sub_iter = 50;
@ -558,7 +573,10 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 9;
int useLUSGSprecond = 1;
int GMRESInitStep = 1000;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -575,7 +593,7 @@ int order = 2;
double visl_min = 0.01; double visl_min = 0.01;
double turbCFLScale = 1.0; double turbCFLScale = 1.0;
double csrv = 2.0; double csrv = 1.0;
double timemax = 1.0e10; double timemax = 1.0e10;
double dtsave = -1.0; double dtsave = -1.0;
int maxale = 10; int maxale = 10;
@ -591,10 +609,9 @@ double lamda[] = [0.5, 1.0];
//int RKStage = 4; //int RKStage = 4;
//double lamda[] = [0.25, 0.33333333333, 0.5, 1.0]; //double lamda[] = [0.25, 0.33333333333, 0.5, 1.0];
#************************************************************************
//----------------------------------------------------------------------- # File In or Out *
# File In or Out # #************************************************************************
//-----------------------------------------------------------------------
// numberOfGridGroups: The number of grid groups. // numberOfGridGroups: The number of grid groups.
// gridfile: The partitioned Grid file path, using relative path, // gridfile: The partitioned Grid file path, using relative path,
// which is relative to the working directory. // which is relative to the working directory.
@ -618,10 +635,8 @@ double lamda[] = [0.5, 1.0];
// nIsComputeWallDist: Whether to compute the wall distance. // nIsComputeWallDist: Whether to compute the wall distance.
// 0 -- Compute wall distance. // 0 -- Compute wall distance.
// 1 -- Not compute. // 1 -- Not compute.
//
// protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism. // protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism.
// wall_heatfluxfile: The file to output the MaxHeatFlux of wall. // wall_heatfluxfile: The file to output the MaxHeatFlux of wall.
int numberOfGridGroups = 1; int numberOfGridGroups = 1;
string gridfile = "./grid/rae2822_hybrid2d__4.fts"; string gridfile = "./grid/rae2822_hybrid2d__4.fts";
string wallTemperaturefile = ""; string wallTemperaturefile = "";
@ -632,10 +647,12 @@ int cellMethodOrNodeMethod = 0;
string resSaveFile = "results/res.dat"; string resSaveFile = "results/res.dat";
string turbresfile = "results/turbres.dat"; string turbresfile = "results/turbres.dat";
string transitionResFile = "results/transitionRes.dat";
string aircoeffile = "results/aircoef.dat"; string aircoeffile = "results/aircoef.dat";
string restartNSFile = "results/flow.dat"; string restartNSFile = "results/flow.dat";
string turbfile = "results/turb.dat"; string turbfile = "results/turb.dat";
string transitionFile = "results/transition.dat";
string visualfile = "results/tecflow.plt"; string visualfile = "results/tecflow.plt";
string wall_aircoefile = "results/wall_aircoef.dat"; string wall_aircoefile = "results/wall_aircoef.dat";
@ -645,11 +662,15 @@ string protectionFile0 = "results/flow0.dat";
string protectionFile1 = "results/flow1.dat"; string protectionFile1 = "results/flow1.dat";
string wall_heatfluxfile = "results/wall_heatflux.dat"; string wall_heatfluxfile = "results/wall_heatflux.dat";
string protectionTurbFile0 = "results/turb0.dat";
string protectionTurbFile1 = "results/turb1.dat";
string protectionTransitionFile0 = "results/transition0.dat";
string protectionTransitionFile1 = "results/transition1.dat";
int nDumpSurfaceInfo = 0; int nDumpSurfaceInfo = 0;
string wall_varfile = ""; string wall_varfile = "";
string jetDefineFile = "bin/jet.hypara";
string sixDofFileName = "results/sixDofInfo.dat"; string sixDofFileName = "results/sixDofInfo.dat";
string derivativeFileName = "results/identify.dat"; string derivativeFileName = "results/identify.dat";
string hysteresisFileName = "results/force_beta.plt"; string hysteresisFileName = "results/force_beta.plt";
@ -659,7 +680,8 @@ int plotFieldType = 0;
// visualfileType: The file type of visualfile. // visualfileType: The file type of visualfile.
// 0 -- Tecplot binary. // 0 -- Tecplot binary.
// 1 -- Tecplot ASCII. // 1 -- Tecplot ASCII.
// 2 -- Ensight binary.
// 3 -- Ensight ASCII.
int visualfileType = 1; int visualfileType = 1;
// samplefileMode: The dump mode of sample file. // samplefileMode: The dump mode of sample file.
@ -697,21 +719,21 @@ double upperPlotFieldBox[] = [1.0 1.0 1.0];
// -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36), // -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36),
// -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40), // -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40),
// -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47), // -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47),
// -- transition intermittency(intermittency, 51), -transition momentum thickness reynolds(MomentumThicknessReynolds, 52), // -- transition intermittency(intermittency, 51), transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- overlap iblank(iblank, 81) // -- local CFL Number(localCFL, 57), minimal CFL Number(minCFL, 58),
// -- overlap iblank(iblank, 81),
// -- specific heat ratio(gama, 56) // -- specific heat ratio(gama, 56), Knudsen number(kn, 60), Damkohler number(Da, 61), vibrational nonequilibrium number(Vi, 62).
// Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!! // Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!!
// Variables order must from small to big. // Variables order must from small to big.
//-----------the optional parameters list for the wall boundary condition---------------- //-----------the optional parameters list for the wall boundary condition----------------
// nVisualWallVariables: The number of visual variables on wall. // nVisualWallVariables: The number of visual variables on wall.
// visualWallVariables : dumped variable types, listed as following: // visualWallVariables : dumped variable types, listed as following:
// -coefficient of pressure(cp, 0), -coefficient of friction(cf, 1), yplus(2), -non-dimensional heat flux(Q_NonDim, 3), -dimensional heat flux(Q_Dim, 4), // -- coefficient of pressure(cp, 0), coefficient of friction(cf, 1), yplus(2), non-dimensional heat flux(Q_NonDim, 3), dimensional heat flux(Q_Dim, 4),
// -pressure on wall(pw, 5), -temperature on wall(Tw, 6), -density on wall(rhow, 7), -heat flux of translational-rotational temperature term(Qtr, 8), // -- pressure on wall(pw, 5), temperature on wall(Tw, 6), density on wall(rhow, 7), heat flux of translational-rotational temperature term(Qtr, 8),
// -heat flux of species diffusion term(Qs, 9), -heat flux of vibrational temperature term(Qv, 10), -heat flux of electron temperature term(Qe, 11), // -- heat flux of species diffusion term(Qs, 9), heat flux of vibrational temperature term(Qv, 10), heat flux of electron temperature term(Qe, 11),
// -species mass fractions(Ns, 12), -x component of wall velocity(Vx, 13), -y component of wall velocity(Vy, 14), -z component of wall velocity(Vz, 15) // -- species mass fractions(Ns, 12), x component of wall velocity(Vx, 13), y component of wall velocity(Vy, 14), z component of wall velocity(Vz, 15),
// -slip translational-rotational temperature(Tts, 16), -slip vibrational temperature(Tvs, 17), -slip electron temperature(Tes, 18), -absolute wall velocity(Vs, 19) // -- slip translational-rotational temperature(Tts, 16), slip vibrational temperature(Tvs, 17), slip electron temperature(Tes, 18), absolute wall velocity(Vs, 19),
// -Stanton number(St, 20), -coefficient of heat rate(Ch, 21), -temperature jump(deltaT, 22), -Grid Reynolds number on wall(Re_w, 23) // -- Stanton number(St, 20), coefficient of heat rate(Ch, 21), temperature jump(deltaT, 22), Grid Reynolds number on wall(Re_w, 23), Knudsen number(Kn_wall, 24).
int nVisualVariables = 8; int nVisualVariables = 8;
int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15]; int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15];
@ -739,7 +761,9 @@ int dumpStandardModel = 0;
// 1 -- Real cell where the probe is located. // 1 -- Real cell where the probe is located.
// nProbeVariables: Number of variables want to be dumped for probes monitered. // nProbeVariables: Number of variables want to be dumped for probes monitered.
// probeVariables : Variable types dumped, listed as following: // probeVariables : Variable types dumped, listed as following:
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6). // -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6),
// -- dimensioanl_density(7), dimensioanl_u(8), dimensioanl_v(9),
// -- dimensioanl_w(10), dimensioanl_pressure(11), dimensioanl_temperature(12).
// Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!! // Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!!
// probeVariables order must from small to big. // probeVariables order must from small to big.
// probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables. // probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables.
@ -761,12 +785,13 @@ string probesDefineFile = "bin/probes_XYZ.dat";
int searchCellsMethod = 0; int searchCellsMethod = 0;
int nProbeVariables = 7; int nProbeVariables = 14;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6]; int probeVariables[] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13];
int probeVariablesInterpolationMethod = 0; int probeVariablesInterpolationMethod = 0;
//-----------------------------------------------------------------------
# Turbulence Parameter # #************************************************************************
//----------------------------------------------------------------------- # Turbulence Parameter *
#************************************************************************
// turbInterval: Iteration number of turbulence. // turbInterval: Iteration number of turbulence.
// kindOfTurbSource: Kinds of turbulent source. // kindOfTurbSource: Kinds of turbulent source.
// 0 -- Original. // 0 -- Original.
@ -774,15 +799,12 @@ int probeVariablesInterpolationMethod = 0;
// transitionType: transition model type // transitionType: transition model type
// 0 -- none. // 0 -- none.
// 2 -- gama-re-theta. // 2 -- gama-re-theta.
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition // turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition.
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not // freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not.
int turbInterval = 1; int turbInterval = 1;
int turbOrderStruct = 2; int turbOrderStruct = 2;
int kindOfTurbSource = 0; int kindOfTurbSource = 0;
int mod_turb_res = 0; int mod_turb_res = 0;
double turb_relax = 1.0;
double freeStreamViscosity = 1.0e-3; double freeStreamViscosity = 1.0e-3;
double muoo = 3.0; double muoo = 3.0;
double kwoo = 5.0; double kwoo = 5.0;
@ -791,28 +813,27 @@ double turbIntensity = -1.0;
int freeturbIntensitySRModify = 0; int freeturbIntensitySRModify = 0;
double freeDecayXLocation = 0.0; double freeDecayXLocation = 0.0;
int compressibleCorrection = 0; int compressibleCorrection = 0;
int prandtlNumberCorrection = 0;
int transitionMaFix = 1; int transitionMaFix = 1;
# maximum eddy viscosity (myt/my) max. // maximum eddy viscosity (myt/my) max.
double eddyViscosityLimit = 1.0e10; double eddyViscosityLimit = 1.0e10;
int monitor_vistmax = 0; int monitor_vistmax = 0;
//----------------------------------------------------------------------- #************************************************************************
# LES Parameter # # LES Parameter *
//----------------------------------------------------------------------- #************************************************************************
// iLES: Create LESSolver or not. // iLES: Create LESSolver or not.
// = 1 - Create LESSolver; // = 1 -- Create LESSolver;
// != 1 - not. // != 1 -- not.
// amplitudeofDisturb: Amplitude of adding disturb. // amplitudeofDisturb: Amplitude of adding disturb.
// disturbstep: Unsteady time step or steady iteration of adding random disturb. // disturbstep: Unsteady time step or steady iteration of adding random disturb.
// iterdisturb: Add random disturb in every sub-iter or only first sub-iter. // iterdisturb: Add random disturb in every sub-iter or only first sub-iter.
// = 0 - in only first sub-iter; // = 0 -- in only first sub-iter;
// != 0 - in every sub-iter. // != 0 -- in every sub-iter.
// ipraddisturb: Add density and pressure disturb or not. // ipraddisturb: Add density and pressure disturb or not.
// ibodyforce: Add body force in source flux of NS equations or not. // ibodyforce: Add body force in source flux of NS equations or not.
// = 0 - not; // = 0 -- not;
// != 0 - Add body force. // != 0 -- Add body force.
// bodyforce: Body force in source flux of NS equations or not. // bodyforce: Body force in source flux of NS equations or not.
// utau: friction velocity, using in DNSDisturb. // utau: friction velocity, using in DNSDisturb.
// sgsmodel: subgrid scale model. // sgsmodel: subgrid scale model.
@ -820,23 +841,22 @@ int monitor_vistmax = 0;
// = "dsmCom"; // = "dsmCom";
// = "wale"; // = "wale";
// = "sigma". // = "sigma".
// deltaFunctionType: = 1 - MAX(deltai, deltaj, deltak); // deltaFunctionType: = 1 -- MAX(deltai, deltaj, deltak);
// = 2 - pow(deltai * deltaj *deltak, 1/3); // = 2 -- pow(deltai * deltaj *deltak, 1/3);
// = 3 - Devloped by Scotti. // = 3 -- Devloped by Scotti.
// wallDampingFunctionType: = 0 - no wall function; // wallDampingFunctionType: = 0 -- no wall function;
// = 1 - van Driest; // = 1 -- van Driest;
// = 2 - developed by Dr. Deng Xiaobing; // = 2 -- developed by Dr. Deng Xiaobing;
// = 3 - developed by Piomelli. // = 3 -- developed by Piomelli.
// turbViscousCutType: turbulent viscosity cut type. // turbViscousCutType: turbulent viscosity cut type.
// = 0 - mu_total = mut + mul; // = 0 -- mu_total = mut + mul;
// = 1 - mu_total = max(mut-mul,0)+ mul; // = 1 -- mu_total = max(mut-mul, 0) + mul;
// = 2 - mu_total = max(mut ,0)+ mul. // = 2 -- mu_total = max(mut , 0) + mul.
// smagConstant: constant of smagorinsky model. // smagConstant: constant of smagorinsky model.
// waleConstant: constant of wale model. // waleConstant: constant of wale model.
// filterDirection [3]: filter variables in i, j, k direction or not. // filterDirection [3]: filter variables in i, j, k direction or not.
// averageDirection[3]: average variables in i, j, k direction or not. // averageDirection[3]: average variables in i, j, k direction or not.
// isotropicConstant: constant of isotropic part of SGS stress. // isotropicConstant: constant of isotropic part of SGS stress.
int iLES = 0; int iLES = 0;
string sgsmodel = "smagorinsky"; string sgsmodel = "smagorinsky";
int deltaFunctionType = 2; int deltaFunctionType = 2;
@ -852,9 +872,9 @@ double testFilterScale = 2.0;
int averageWidth = 1; int averageWidth = 1;
int monitorNegativeConstant = 0; int monitorNegativeConstant = 0;
//----------------------------------------------------------------------- #************************************************************************
# Other Parameters for Hypersonic Non-equilibrium Gas # # Other Parameters for Hypersonic Non-equilibrium Gas *
//----------------------------------------------------------------------- #************************************************************************
// dg_high_order: // dg_high_order:
// 0 -- generic order accuracy. // 0 -- generic order accuracy.
// 1 -- high order accuracy. // 1 -- high order accuracy.
@ -862,9 +882,6 @@ int monitorNegativeConstant = 0;
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver,
// isAdaptiveSolver>0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -886,14 +903,13 @@ int monitorNegativeConstant = 0;
// nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied. // nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied.
// 0 -- perfect gas. // 0 -- perfect gas.
// 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component. // 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component.
// nPCWCycleStep: the maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition. // nPCWCycleStep: The maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: the maximum step number of iteration in the module of computing radiation equilibrium temperature on wall. // nRETCycleStep: The maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:the maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction. // nSLIPCycleStep:The maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nSlipBCModel: The computational model of slip boundary conditions. // nSlipBCModel: The computational model of slip boundary conditions.
// 0 -- no slip. // 0 -- no slip.
// 1 -- the conventional Maxwell slip conditions. // 1 -- the conventional Maxwell slip conditions.
// 2 -- the Gokcen slip conditions. // 2 -- the Gokcen slip conditions.
@ -913,10 +929,13 @@ int monitorNegativeConstant = 0;
// 1 -- One-temperature model. // 1 -- One-temperature model.
// 2 -- Two-temperature model. // 2 -- Two-temperature model.
// 3 -- Three-temperature model. // 3 -- Three-temperature model.
// isUseNoneqCond:
// 0 -- compute the source terms without any conditions.
// 1 -- compute the source terms using the non-equilibrium condition.
// frozenCondition: the threshold value of frozen chemical flow condition, 0.1 is the default value.
// nIdealState: whether take all gas species as ideal gas for gas-mixture process. // nIdealState: whether take all gas species as ideal gas for gas-mixture process.
// 0 -- No. // 0 -- No.
// 1 -- Yes. // 1 -- Yes. // nTEnergyModel: the method to computing temperature energy model.
// nTEnergyModel: the method to computing temperature energy model.
// 0 -- the energy term is computed using the conventional method. // 0 -- the energy term is computed using the conventional method.
// 1 -- the energy term is computed using the polynomial fitting method. // 1 -- the energy term is computed using the polynomial fitting method.
// 2 -- the energy term is computed using the piecewise polynomial fitting method. // 2 -- the energy term is computed using the piecewise polynomial fitting method.
@ -946,14 +965,13 @@ int monitorNegativeConstant = 0;
// 1.0 -- proposed by Maxwell. // 1.0 -- proposed by Maxwell.
// sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall. // sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall.
// 1.146 -- proposed for an additional "fictitious" velocity slip. // 1.146 -- proposed for an additional "fictitious" velocity slip.
// chemicalRelaxCorf: The value is in range of [0.001, 1.0]. // chemicalRelaxCorf: The value is in range of [0.001, 1.0].
// spectrumRadiusCoef: The value is in range of [0.0, 2.0]. // spectrumRadiusCoef: The value is in range of [0.0, 2.0].
// staticPressureRelaxCorf: The value is in range of [0.1, 1.0]. // staticPressureRelaxCorf: The value is in range of [0.1, 1.0].
// nIsChemicalFreeze: the flag to freeze the chemical reactions. // nIsChemicalFreeze: the flag to freeze the chemical reactions.
// 0 -- not freeze, the chemical reaction sources will be calculated. // 0 -- not freeze, the chemical reaction sources will be calculated.
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.// veTemperatureMin: The minimum of Tv and Te // 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.
// veTemperatureMin: The minimum of Tv and Te.
// maxViscous: the maximum of Viscous. // maxViscous: the maximum of Viscous.
// trTemperatureMin: the minimum value of trTemperature. // trTemperatureMin: the minimum value of trTemperature.
// veTemperatureMin: the minimum value of veTemperature. // veTemperatureMin: the minimum value of veTemperature.
@ -965,36 +983,34 @@ int monitorNegativeConstant = 0;
// nSpeciesLimit: limitter of gas species // nSpeciesLimit: limitter of gas species
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction // nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction.
// 0 -- method 0. // 0 -- method 0.
// 1 -- method 1. // 1 -- method 1.
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid // nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nViscosityPeModified: Pe Modified for ViscosityCoef // nViscosityPeModified: Pe Modified for ViscosityCoef.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nChemcalSourceModified: Modified on ChemcalSource // nChemcalSourceModified: Modified on ChemcalSource.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nChemcalSourceEsMethod: Modified on ChemcalSource // nChemcalSourceEsMethod: Modified on ChemcalSource.
// 0 -- approximation algorithm 1 (Ori.) // 0 -- approximation algorithm 1 (Ori).
// 1 -- approximation algorithm 2 (New) // 1 -- approximation algorithm 2 (New).
// nMaxStepTemperature: the iterative steps of temperature. // nMaxStepTemperature: the iterative steps of temperature.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs // 0 -- not used.
// 0 -- not used // 1 -- used.
// 1 -- used // nDiagonalModified: Modified on Diagonal.
// 0 -- not used.
// nDiagonalModified: Modified on Diagonal // 1 -- new.
// 0 -- not used // nDiagonalModifiedTurb: Modified on Diagonal for turbulence.
// 1 -- Ori. // 0 -- not used.
// 2 -- new // 1 -- new.
// nGradPrimtiveMethod: // nGradPrimtiveMethod:
// 0 -- Ori. // 0 -- Ori.
// 1 -- new // 1 -- new.
// nAblation: // nAblation:
// 0 -- The wall ablation is not computed. // 0 -- The wall ablation is not computed.
// 1 -- The wall ablation is computed. // 1 -- The wall ablation is computed.
@ -1017,8 +1033,8 @@ int monitorNegativeConstant = 0;
// "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas. // "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas.
// "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions. // "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions.
// "Gas-Mixture" -- indicates the process of mixing gas without reacting. // "Gas-Mixture" -- indicates the process of mixing gas without reacting.
// for struct solver mixing two species£¨SpeciesA, SpeciesB£©. // for struct solver mixing two species<65><73>SpeciesA, SpeciesB<73><42>.
// for unstruct solver mixing multi-species£¨O2 NO CO CO2 H2 N2 Air CH4£©. // for unstruct solver mixing multi-species<65><73>O2 NO CO CO2 H2 N2 Air CH4<48><34>.
// For self-definition model, the gasfile is used to indicate the file path of the new gas model. // For self-definition model, the gasfile is used to indicate the file path of the new gas model.
// speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma. // speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma.
// initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName. // initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName.
@ -1040,13 +1056,16 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting : Setting for HyFLOW GUI.
// 0 -- PHengLEI
// 1 -- HyFLOW
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no // 0 -- no.
// 1 -- yes // 1 -- yes.
// nTvChange: Judge whether the Tv equals Ttr.
// 0 -- yes.
// 1 -- no.
// isMoleFractionType: 1 indicates the mass fractions, or else the mole fractions.
// nFraction: the initial fractions type of species.
// 0 -- mass fraction.
// 1 -- mole fraction.
int dg_high_order = 0; int dg_high_order = 0;
int iapplication = 0; int iapplication = 0;
int isAdaptiveSolver = 0; int isAdaptiveSolver = 0;
@ -1114,6 +1133,7 @@ double densityMin = 1.0e-8;
double densityMinFactor = 0.1; double densityMinFactor = 0.1;
double tAdjustmentFactor = 10.0; double tAdjustmentFactor = 10.0;
double iniSpeedCoef = 1.0; double iniSpeedCoef = 1.0;
int iniSpeedMode = 0;
int nDebug = 0; int nDebug = 0;
int nSpeciesLimit = 1; int nSpeciesLimit = 1;
@ -1125,18 +1145,21 @@ int nChemcalSourceEsMethod = 1;
int nMaxStepTemperature = 5; int nMaxStepTemperature = 5;
int veTemperatureMinModified = 1; int veTemperatureMinModified = 1;
int nDiagonalModified = 0; int nDiagonalModified = 0;
int nDiagonalModifiedTurb = 0;
int nGradPrimtiveMethod = 1; int nGradPrimtiveMethod = 1;
int nInviscidFluxModify = 1; int nInviscidFluxModify = 1;
int nQlLimitMethod = 2; int nQlLimitMethod = 2;
int nSpeciesForWallMethod = 1; int nSpeciesForWallMethod = 1;
int nDensityForWallMethod = 0; int nDensityForWallMethod = 0;
int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
int nMarsModel = 0; int nMarsModel = 0;
int nTvChange = 0;
int isMoleFractionType = 0;
string gasfile = "DK5"; string gasfile = "DK5";
//string gasfile = "./chemical/Dunn-Kang_air5s11r.dat"; //string gasfile = "./chemical/Dunn-Kang_air5s11r.dat";
string speciesName = "O, O2, NO, N, N2"; string speciesName = "O, O2, NO, N, N2";
@ -1173,9 +1196,17 @@ double molecularWeightSpeciesB = 30.0;
//string speciesName = "O2, N2"; //string speciesName = "O2, N2";
//string initMassFraction = "1.0, 0.0"; //string initMassFraction = "1.0, 0.0";
int nFraction = 0;
int nContinueModel = 0; int nContinueModel = 0;
int nChemicalFlowStep = 0; int nChemicalFlowStep = 0;
int ifStartFromPerfectGasResults = 0; int ifStartFromPerfectGasResults = 0;
int isUseNoneqCond = 0;
double frozenCondition = 0.01;
int nLeakageMonitor = 0;
double totalLeakageVolume = 1000.0;
double monitorThresholdValue = 0.05;
double sprayFactor = 0.0;
######################################################################### #########################################################################
// Multi-Grid parameters. // Multi-Grid parameters.
@ -1196,7 +1227,6 @@ int ifStartFromPerfectGasResults = 0;
// 1 -- zero order. // 1 -- zero order.
// 2 -- first-order. (default) // 2 -- first-order. (default)
// mgCorrectionLimit: Multi-grid correction limit. // mgCorrectionLimit: Multi-grid correction limit.
int nMGLevel = 1; int nMGLevel = 1;
int MGCoarsestIteration = 1; int MGCoarsestIteration = 1;
int MGPreIteration = 1; int MGPreIteration = 1;
@ -1226,9 +1256,9 @@ string holeFullFileName = "./grid/holeFullFile.dat";
string linkFileName = "./grid/topology.dat"; string linkFileName = "./grid/topology.dat";
string zoneInverseFileName = "./grid/zoneInverseMapping.inp"; string zoneInverseFileName = "./grid/zoneInverseMapping.inp";
######################################################################### #************************************************************************
# High Order Struct Solver # # High Order Struct Solver *
######################################################################### #************************************************************************
// isFVMOrFDM: // isFVMOrFDM:
// 0 -- NSSolverStruct using Finite Volume Method. // 0 -- NSSolverStruct using Finite Volume Method.
// 1 -- NSSolverStruct using Finite Differ Method. // 1 -- NSSolverStruct using Finite Differ Method.
@ -1273,10 +1303,29 @@ int allReduceStep = 1;
// codeOfOversetGrid: Overlapping(overset) grid or not. // codeOfOversetGrid: Overlapping(overset) grid or not.
// 0 -- NON-overlapping grid. // 0 -- NON-overlapping grid.
// 1 -- Overlapping grid. // 1 -- Overlapping grid.
// oversetInterpolationMethod: the method of overset interpolation while field simulation // oversetInterpolationMethod: the method of overset interpolation while field simulation.
// 0 -- set the acceptor cell value by donor cell value. // 0 -- set the acceptor cell value by donor cell value.
// 1 -- set the acceptor cell value by distance weight of donor cell value. // 1 -- set the acceptor cell value by distance weight of donor cell value.
// readOversetFileOrNo: Whether to read overset-file(.ovs) that has been generated.
// 0 -- no.
// 1 -- yes.
// symetryOrNot: If there exist symetryplanes(XY plane, the coordinate of Z direction is 0) in
// the current overset grid(only for three dimension).
// 0 -- no.
// 1 -- yes.
// readInAuxiliaryInnerGrid: Whether to read auxiliary inner grid.
// 0 -- no.
// 1 -- yes.
// walldistMainZone: The initial value of background grid which does not exist wall boundary condition.
// toleranceForOversetSearch: The tolerance of overset searching zone to judge whether the obtained node is in the current computing cell.
// toleranceForOversetBox: The tolerance of building the minimum box of computing cells in the overlapping region.
// twoOrderInterpolationOrNot: The number of interpolated cell layers in the overlapping boundary.
// 0 -- one layer.
// 1 -- two layers.
// keyEnlargeOfActiveNodes: The number of enlarged overset-boundary layers in the buffer region.
// outTecplotOverset: Whether to dump out the flowfield data after the progress of overset configure.
// 0 -- no.
// 1 -- yes.
int codeOfOversetGrid = 0; int codeOfOversetGrid = 0;
int oversetInterpolationMethod = 0; int oversetInterpolationMethod = 0;
int readOversetFileOrNot = 0; int readOversetFileOrNot = 0;
@ -1295,7 +1344,6 @@ int twoOrderInterpolationOrNot = 0;
int keyEnlargeOfActiveNodes = 0; int keyEnlargeOfActiveNodes = 0;
int outTecplotOverset = 0; int outTecplotOverset = 0;
int outPutOversetVisualization = 0; int outPutOversetVisualization = 0;
int numberOfMovingBodies = 2; int numberOfMovingBodies = 2;
// ----------------- ALE configuration ------------------------------ // ----------------- ALE configuration ------------------------------
@ -1306,34 +1354,40 @@ double referenceLength = 1.0;
double referenceVelocity = 1.0; double referenceVelocity = 1.0;
double referenceDensity = 1.0; double referenceDensity = 1.0;
int strategyForFaceNormalVelocity = 0; //0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd; int strategyForFaceNormalVelocity = 0; // 0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd.
int strategyForGCLSource = 0; //0-present; 1-Ahn; int strategyForGCLSource = 0; // 0-present; 1-Ahn.
//0:1st-Admas-Bashforth; 1:2nd-Admas-Bashforth; 2:1st-Implicit-Euler; 3:2nd-Implicit Euler; 4:2nd-Adams-Moulton; 5:3rd-Adams-Moulton // 0: 1st-Admas-Bashforth; 1: 2nd-Admas-Bashforth; 2: 1st-Implicit-Euler; 3: 2nd-Implicit Euler; 4: 2nd-Adams-Moulton; 5: 3rd-Adams-Moulton.
int methodForKineticEquation = 0; int methodForKineticEquation = 0;
double relaxParameterOfKinetic = 1.0; double relaxParameterOfKinetic = 1.0;
######################################################################### #************************************************************************
# motive information # # motive information *
######################################################################### #************************************************************************
int numberOfMovingBodies = 1; int numberOfMovingBodies = 1;
############################## body0 ############################## ############################## body0 ##############################
//mass of parts // mass of parts.
double mass_0 = 1.0; double mass_0 = 1.0;
//mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz // gravity of parts (along negative direction in Y-axis, eg. 9.8).
double gravity_0 = 0.0;
// mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz.
double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0; double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0;
//initial six DOF position information of parts. xc yc zc // initial six DOF position information of parts. xc yc zc.
double massCenter_0[] = 0.0, 0.0, 0.0; double massCenter_0[] = 0.0, 0.0, 0.0;
//initial six DOF position information of parts. angleX angleY angleZ // if reset mass center while restart.
int resetMassCenter_0 = 0;
// position offset of parts. dx dy dz.
double massCenterDxyz_0[] = 0.0, 0.0, 0.0;
// initial six DOF position information of parts. angleX angleY angleZ.
double attitudeAngle_0[] = 0.0, 0.0, 0.0; double attitudeAngle_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. vc vy vz // initial six DOF move information of parts. vc vy vz.
double massCenterVelocity_0[] = 0.0, 0.0, 0.0; double massCenterVelocity_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. omigX omigY omigZ // initial six DOF move information of parts. omigX omigY omigZ.
double angularVelocity_0[] = 0.0, 0.0, 0.0; double angularVelocity_0[] = 0.0, 0.0, 0.0;
// the object that the parts belong to. // the object that the parts belong to.
int fartherIndex_0 = -1; int fartherIndex_0 = -1;
//the assembly position of the parts. xc yc zc angleX angleY angleZ // the assembly position of the parts. xc yc zc angleX angleY angleZ.
double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0; double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
// the move pattern of the parts. // the move pattern of the parts.
// -1 given motion partten. // -1 given motion partten.
@ -1349,23 +1403,24 @@ double configPamameter_0[] = 0.0 ,0.0 ,0.0 ,0.0 ,0.0
int RBDMethod_0 = 0; int RBDMethod_0 = 0;
double amplitude_0 = 0.0; double amplitude_0 = 0.0;
double reduceFrequency_0 = 0.0; double reduceFrequency_0 = 0.0;
//direction of rotation // direction of rotation.
// 1 -- clockwise from the point of view along the positive x axis. // 1 -- clockwise from the point of view along the positive x axis.
// -1 -- anticlockwise from the point of view along the positive x axis. // -1 -- anticlockwise from the point of view along the positive x axis.
int direction_0 = -1; int direction_0 = -1;
double rotateFrequency_0 = 0.0; double rotateFrequency_0 = 0.0;
//string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter"; //string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter";
//additional force (system axis) fX fY fZ // dimensional physical time for additional force(s).
double addedForceTime_0[] = 0.0;
// additional force(inertia system) fX fY fZ.
double addedForce_0[] = 0.0, 0.0, 0.0; double addedForce_0[] = 0.0, 0.0, 0.0;
//additional moment of Force (system axis) mX mY mZ // additional moment(inertia system) mX mY mZ.
double addedMoment_0[] = 0.0, 0.0, 0.0; double addedMoment_0[] = 0.0, 0.0, 0.0;
// the deformation method of the parts. // the deformation method of the parts.
int morphing_0 = 0; int morphing_0 = 0;
// post indentify // post indentify.
int integralOrder = 4; int integralOrder = 4;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;
@ -1379,18 +1434,34 @@ int integralOrder = 4;
//@string outLetFileName = "./bin/subsonicOutlet.hypara"; //@string outLetFileName = "./bin/subsonicOutlet.hypara";
//@double refDimensionalVelocity = 0; //@double refDimensionalVelocity = 0;
//@double refDimensionalDensity = 0; //@double refDimensionalDensity = 0;
//@string weatherDataFilePath = "./WRFData/";
######################################################################### //@double longitude = 110.95
# Old Parameter # //@double latitude = 19.61;
######################################################################### #************************************************************************
# Old Parameter *
#************************************************************************
int isPlotVolumeField = 0; int isPlotVolumeField = 0;
#************************************************************************
# partial flow field setting Parameter *
#************************************************************************
//int nPartialParameter = 0; // 0/1/2
//int nNumberOfPartialField = 0; //
//int nStartGridIndex[] = [0];
//int nEndGridIndex[] = [0];
######################################################################### //double partialCFL[] = [0.0];
# Incompressible Parameter # //double partialSpeedCoef[] = [0.0];
######################################################################### //double partialSpeed[] = [0.0];
//double partialAttackd[] = [0.0];
//double partialSlide[] = [0.0];
//double partialPressure[] = [0.0];
//double partialTemperature[] = [0.0];
//double partialMassFractions[] = [0.0];
#************************************************************************
# Incompressible Parameter *
#************************************************************************
int isSolveEnergyEquation = 0; int isSolveEnergyEquation = 0;
int isSolveTurbEquation = 0; int isSolveTurbEquation = 0;
int isSolveSpeciesEquation = 0; int isSolveSpeciesEquation = 0;

View File

@ -4,9 +4,12 @@
// gridtype: Grid type for generation, conversion, reconstruction, merging. // gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid. // 0 -- Unstructured grid.
// 1 -- Structured grid. // 1 -- Structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion. // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// 1 -- Y upward. (default) // axisRotateOrder : axis rotating order.
// 2 -- Z upward. // 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
// from_gtype: Type of grid data type in grid conversion process. // from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE // -1 -- MULTI_TYPE
// 1 -- HyperFLOW( PHengLEI ), *.fts. // 1 -- HyperFLOW( PHengLEI ), *.fts.
@ -18,7 +21,9 @@
// 7 -- Hybrid, include both of unstructured and structured grid, *.fts. // 7 -- Hybrid, include both of unstructured and structured grid, *.fts.
// 8 -- GMSH, *.msh. // 8 -- GMSH, *.msh.
int gridtype = 1; int gridtype = 1;
int axisup = 1; int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
int from_gtype = 2; int from_gtype = 2;
######################################################################### #########################################################################

View File

@ -8,6 +8,7 @@
// Platform for Hybrid Engineering Simulation of Flows + // Platform for Hybrid Engineering Simulation of Flows +
// China Aerodynamics Research and Development Center + // China Aerodynamics Research and Development Center +
// (C) Copyright, Since 2010 + // (C) Copyright, Since 2010 +
// PHengLEI 2212 +
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
########################################################################### ###########################################################################
# Default parameters for Grid conversion # # Default parameters for Grid conversion #
@ -46,19 +47,24 @@ int gridobj = 1;
int multiblock = 0; int multiblock = 0;
int iadapt = 0; int iadapt = 0;
int SymmetryFaceVector = 1; int SymmetryFaceVector = 1;
int gridReorder = 0; int gridReorder = 0;
int faceReorderMethod = 0; int faceReorderMethod = 0;
// axisup: Type of Cartisien coordinates system, used in grid conversion. // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// 1 -- Y upward. (default) // axisRotateOrder : axis rotating order.
// 2 -- Z upward. // 1 -- X-axis.
int axisup = 1; // 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
// omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition". // omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition".
// 0 -- Interface. (default) // 0 -- Interface. (default)
// 1 -- Physical boundary condition, used in Hybrid solver. // 1 -- Physical boundary condition, used in Hybrid solver.
int omit_no_bound_bc = 0; int omit_no_bound_bc = 0;
int omitRepeatInterface = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# Grid data type # # Grid data type #
@ -89,7 +95,6 @@ int dumpOldGrid = 0;
int numberOfGridFile = 1; int numberOfGridFile = 1;
string from_gfile = "./grid/rae2822_hybrid2d.cas"; string from_gfile = "./grid/rae2822_hybrid2d.cas";
string from_gfile1 = ""; string from_gfile1 = "";
string out_gfile = "./grid/flat_laminr_133_85_2d.fts"; string out_gfile = "./grid/flat_laminr_133_85_2d.fts";
// ----------------- some advanced choices ------------------------------ // ----------------- some advanced choices ------------------------------
@ -178,7 +183,6 @@ double influencePara = 25.0;
which only support one direction. which only support one direction.
// rotationAngle: The relative angle between two periodic face. // rotationAngle: The relative angle between two periodic face.
which is recorded in degrees. which is recorded in degrees.
int periodicType = 0; int periodicType = 0;
double translationLength[] = [0.0, 0.0, 0.0]; double translationLength[] = [0.0, 0.0, 0.0];
double rotationAngle = 0.0; double rotationAngle = 0.0;
@ -192,7 +196,6 @@ double rotationAngle = 0.0;
// 2 -- refine structured grid. // 2 -- refine structured grid.
// maxproc: The number of partition zones that want to be divided into. // maxproc: The number of partition zones that want to be divided into.
// numberOfMultifile: The number of partition grid files that want to be dumped out. // numberOfMultifile: The number of partition grid files that want to be dumped out.
int pgridtype = 0; int pgridtype = 0;
int maxproc = 4; int maxproc = 4;
int numberOfMultifile = 1; int numberOfMultifile = 1;
@ -207,8 +210,8 @@ int blockIndexOfMark = 0;
int cellIndexOfMark[] = [185, 30, 1]; int cellIndexOfMark[] = [185, 30, 1];
// parallelStrategy: // parallelStrategy:
//! -# 0 : each zone is assigned to the one that defined in grid partition procedure. // 0 -- each zone is assigned to the one that defined in grid partition procedure.
//! -# 1 : random assigned for each zone or by some else ways. // 1 -- random assigned for each zone or by some else ways.
int parallelStrategy = 1; int parallelStrategy = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
@ -232,7 +235,6 @@ string partition_grid_file = "./grid/sphere_mixed__4.fts";
// 1 -- perfect balance. // 1 -- perfect balance.
// maxproc -- perfect imbalance. // maxproc -- perfect imbalance.
// 1.05 -- recommended. // 1.05 -- recommended.
int omit_no_bound_bc = 0; int omit_no_bound_bc = 0;
int npartmethod = 1; int npartmethod = 1;
int parallelPartitionMethod = 2; int parallelPartitionMethod = 2;
@ -253,24 +255,30 @@ int numberOfMultigrid = 1;
// intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved. // intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved.
// intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved. // intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved.
// intervalStepRes: The step intervals for residual file 'res.dat' saved. // intervalStepRes: The step intervals for residual file 'res.dat' saved.
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
int maxSimuStep = 20000; int maxSimuStep = 20000;
int intervalStepFlow = 1000; int intervalStepFlow = 1000;
int intervalStepPlot = 1000; int intervalStepPlot = 1000;
int intervalStepSample = 1000; int intervalStepSample = 1000;
int intervalStepForce = 100; int intervalStepForce = 100;
int intervalStepRes = 10; int intervalStepRes = 10;
int ifLowSpeedPrecon = 0;
// compressible: // compressible:
// 0 -- incompressible flow. // 0 -- incompressible flow.
// 1 -- compressible flow. (default) // 1 -- compressible flow. (default)
int compressible = 1; int compressible = 1;
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
// Kprec: The coefficient K for the cut-off velocity.
// 1.0~3.0 is suggested. (default, 3.0)
// preconFarfieldBCMethod: The precondition method for farfield boundary condition.
// 0 -- precondition far-field boundary based on riemann invariants.
// 1 -- Turkel's simplified far-field boundary condition.
int ifLowSpeedPrecon = 0;
double Kprec = 3.0;
int preconFarfieldBCMethod = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# CFD Control Parameter # # CFD Control Parameter #
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
@ -281,9 +289,12 @@ int compressible = 1;
// 0 -- the nondimensional conditions. // 0 -- the nondimensional conditions.
// 1 -- the flight conditions. // 1 -- the flight conditions.
// 2 -- the experiment conditions. // 2 -- the experiment conditions.
// 3 -- the subsonic boundary conditions. // 3 -- the subsonic boundary conditions. (Useless!)
// 4 -- the condition that the velocity, temperature and density are given. // 4 -- the condition that the velocity, temperature and density are given.
// 5 -- the condition that the velocity, temperature and pressure are given. // 5 -- the condition that the velocity, temperature and pressure are given.
//flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -303,11 +314,11 @@ int compressible = 1;
// condition is radiation equilibrium temperature, and 0.8 is the default value. // condition is radiation equilibrium temperature, and 0.8 is the default value.
// refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol. // refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol.
// Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on. // Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on.
int directionMethod = 0; int directionMethod = 0;
double refMachNumber = 0.73; double refMachNumber = 0.73;
double attackd = 2.79; double attackd = 2.79;
double angleSlide = 0.00; double angleSlide = 0.00;
int flowInitMethod = 0;
int inflowParaType = 0; int inflowParaType = 0;
double refReNumber = 6.5e6; double refReNumber = 6.5e6;
@ -321,14 +332,6 @@ double freestream_vibration_temperature = 300.00;
//double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2). //double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2).
//double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)). //double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)).
//int inflowParaType = 3;
//int nsubsonicInlet = 1;
//int nsubsonicOutlet = 1;
//string inLetFileName = "./bin/subsonicInlet.hypara";
//string outLetFileName = "./bin/subsonicOutlet.hypara";
//double refDimensionalTemperature = 288.144;
//double refDimensionalPressure = 1.01313E05;
// The velocity, temperature and density are fixed. // The velocity, temperature and density are fixed.
//int inflowParaType = 4; //int inflowParaType = 4;
//double refDimensionalVelocity = 1000.0; //double refDimensionalVelocity = 1000.0;
@ -341,9 +344,15 @@ double freestream_vibration_temperature = 300.00;
// The MachNumber, temperature and pressure are fixed. // The MachNumber, temperature and pressure are fixed.
//int inflowParaType = 6; //int inflowParaType = 6;
//double refDimensionalTemperature = 293; //double refDimensionalTemperature = 293.0;
//double refDimensionalPressure = 8886.06; //double refDimensionalPressure = 8886.06;
// The velocity, temperature and pressure are read from file.
//int inflowParaType = 7;
//string weatherDataFilePath = "./WRFData/";
//double longitude = 110.95
//double latitude = 19.61;
double wallTemperature = -1.0; double wallTemperature = -1.0;
double radiationCoef = 0.8; double radiationCoef = 0.8;
@ -357,35 +366,35 @@ double forceReferenceArea = 1.0; // unit of meter^2.
double TorqueRefX = 0.0; // unit of meter. double TorqueRefX = 0.0; // unit of meter.
double TorqueRefY = 0.0; // unit of meter. double TorqueRefY = 0.0; // unit of meter.
double TorqueRefZ = 0.0; // unit of meter. double TorqueRefZ = 0.0; // unit of meter.
double knudsenLength = 1.0; // unit of meter.
double refMolecularWeight = 28.9644; // unit of g/mol. double refMolecularWeight = 28.9644; // unit of g/mol.
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# Spatial Discretisation # # Spatial Discretisation #
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
#******************************************************************* #************************************************************************
# Struct Solver * # Struct Solver *
#******************************************************************* #************************************************************************
// inviscidSchemeName: Spatial discretisation scheme of struct grid. // inviscidSchemeName: Spatial discretisation scheme of struct grid.
// Using this when solve structered grid or hybrid. // Using this when solve structered grid or hybrid.
// -- "vanleer", "steger", "hlle", "lax_f". // -- "vanleer", "steger", "hlle", "lax_f",
// -- "roe", "modified_roe". // -- "roe", "modified_roe",
// -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+". // -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+".
// isWennScheme: If using WENN Scheme of struct grid. // isWennScheme: If using WENN Scheme of struct grid.
// 0 -- NO. (default) // 0 -- NO. (default)
// 1 -- Yes. // 1 -- Yes.
// str_limiter_name: Limiter of struct grid. // str_limiter_name: Limiter of struct grid.
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth". // -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth",
// -- "nolim", no limiter. // -- "nolim", no limiter,
// -- "vanalbada_clz", clz supersonic version. // -- "vanalbada_clz", clz supersonic version,
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3" // -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3".
string inviscidSchemeName = "roe"; string inviscidSchemeName = "roe";
int isWennScheme = 0; int isWennScheme = 0;
string str_limiter_name = "vanalbada"; string str_limiter_name = "vanalbada";
#******************************************************************* #************************************************************************
# UnStruct Solver or Common * # UnStruct Solver or Common *
#******************************************************************* #************************************************************************
// viscousType: Viscous model. // viscousType: Viscous model.
// 0 -- Euler. // 0 -- Euler.
// 1 -- Lamilar. // 1 -- Lamilar.
@ -410,11 +419,11 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle". // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod". // -- "barth", "vencat", "vanleer", "minmod",
// -- "vanalbada", "smooth", "nnd", "lpz", "1st". // -- "vanalbada", "smooth", "nnd", "lpz", "1st",
// -- "nolim", no limiter. // -- "nolim", no limiter.
// uns_vis_name: Discretisation method of viscous term. // uns_vis_name: Discretisation method of viscous term.
// -- "std", "test", "aver", "new1", "new2". // -- "std", "test", "aver", "new1", "new2".
@ -442,7 +451,7 @@ string str_limiter_name = "vanalbada";
// 3 -- Harten type, which is default used. // 3 -- Harten type, which is default used.
// roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0. // roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0.
// It is used to scale the default Roe entropy fix coefficients. // It is used to scale the default Roe entropy fix coefficients.
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0 // AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0.
//int viscousType = 0; //int viscousType = 0;
//string viscousName = "Euler"; //string viscousName = "Euler";
@ -475,9 +484,9 @@ double roeEntropyScale = 1.0;
double AusmpwPlusLimiter = 1.0; double AusmpwPlusLimiter = 1.0;
//----------------------------------------------------------------------- #************************************************************************
# Temporal Discretisation # # Temporal Discretisation *
//----------------------------------------------------------------------- #************************************************************************
// iunsteady: Steady or unsteady. // iunsteady: Steady or unsteady.
// 0 -- steady. // 0 -- steady.
// 1 -- unsteay. // 1 -- unsteay.
@ -504,11 +513,18 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// useLUSGSprecond: Initialize flow field for GMRES.
// 0 --Initialize by first order Jacobian matrix.
// 1 --Initialize by LUSGS.
// GMRESInitStep : the number of iteration step of irst order Jacobian matrix or LUSGS for initialize flow field.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -533,7 +549,6 @@ double AusmpwPlusLimiter = 1.0;
// 2 -- Pab3D wall function. // 2 -- Pab3D wall function.
// RKStage: The number of Runge-Kutta step. // RKStage: The number of Runge-Kutta step.
// lamda: Cofficient of Runge-Kutta step. // lamda: Cofficient of Runge-Kutta step.
int iunsteady = 0; int iunsteady = 0;
double physicalTimeStep = 0.01; double physicalTimeStep = 0.01;
double physicalTimeStepDimensional = -0.001; double physicalTimeStepDimensional = -0.001;
@ -543,7 +558,7 @@ int ifStaticsReynoldsStress = 0;
int startStatisticStep = 800000; int startStatisticStep = 800000;
double statisticalTimePeriod = -1.0; double statisticalTimePeriod = -1.0;
int statisticMethod = 0; int statisticMethod = 0;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2; int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2.
int methodOfDualTime = 3; int methodOfDualTime = 3;
int min_sub_iter = 50; int min_sub_iter = 50;
@ -558,7 +573,10 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 9;
int useLUSGSprecond = 1;
int GMRESInitStep = 1000;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -575,7 +593,7 @@ int order = 2;
double visl_min = 0.01; double visl_min = 0.01;
double turbCFLScale = 1.0; double turbCFLScale = 1.0;
double csrv = 2.0; double csrv = 1.0;
double timemax = 1.0e10; double timemax = 1.0e10;
double dtsave = -1.0; double dtsave = -1.0;
int maxale = 10; int maxale = 10;
@ -591,10 +609,9 @@ double lamda[] = [0.5, 1.0];
//int RKStage = 4; //int RKStage = 4;
//double lamda[] = [0.25, 0.33333333333, 0.5, 1.0]; //double lamda[] = [0.25, 0.33333333333, 0.5, 1.0];
#************************************************************************
//----------------------------------------------------------------------- # File In or Out *
# File In or Out # #************************************************************************
//-----------------------------------------------------------------------
// numberOfGridGroups: The number of grid groups. // numberOfGridGroups: The number of grid groups.
// gridfile: The partitioned Grid file path, using relative path, // gridfile: The partitioned Grid file path, using relative path,
// which is relative to the working directory. // which is relative to the working directory.
@ -618,10 +635,8 @@ double lamda[] = [0.5, 1.0];
// nIsComputeWallDist: Whether to compute the wall distance. // nIsComputeWallDist: Whether to compute the wall distance.
// 0 -- Compute wall distance. // 0 -- Compute wall distance.
// 1 -- Not compute. // 1 -- Not compute.
//
// protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism. // protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism.
// wall_heatfluxfile: The file to output the MaxHeatFlux of wall. // wall_heatfluxfile: The file to output the MaxHeatFlux of wall.
int numberOfGridGroups = 1; int numberOfGridGroups = 1;
string gridfile = "./grid/rae2822_hybrid2d__4.fts"; string gridfile = "./grid/rae2822_hybrid2d__4.fts";
string wallTemperaturefile = ""; string wallTemperaturefile = "";
@ -632,10 +647,12 @@ int cellMethodOrNodeMethod = 0;
string resSaveFile = "results/res.dat"; string resSaveFile = "results/res.dat";
string turbresfile = "results/turbres.dat"; string turbresfile = "results/turbres.dat";
string transitionResFile = "results/transitionRes.dat";
string aircoeffile = "results/aircoef.dat"; string aircoeffile = "results/aircoef.dat";
string restartNSFile = "results/flow.dat"; string restartNSFile = "results/flow.dat";
string turbfile = "results/turb.dat"; string turbfile = "results/turb.dat";
string transitionFile = "results/transition.dat";
string visualfile = "results/tecflow.plt"; string visualfile = "results/tecflow.plt";
string wall_aircoefile = "results/wall_aircoef.dat"; string wall_aircoefile = "results/wall_aircoef.dat";
@ -645,11 +662,15 @@ string protectionFile0 = "results/flow0.dat";
string protectionFile1 = "results/flow1.dat"; string protectionFile1 = "results/flow1.dat";
string wall_heatfluxfile = "results/wall_heatflux.dat"; string wall_heatfluxfile = "results/wall_heatflux.dat";
string protectionTurbFile0 = "results/turb0.dat";
string protectionTurbFile1 = "results/turb1.dat";
string protectionTransitionFile0 = "results/transition0.dat";
string protectionTransitionFile1 = "results/transition1.dat";
int nDumpSurfaceInfo = 0; int nDumpSurfaceInfo = 0;
string wall_varfile = ""; string wall_varfile = "";
string jetDefineFile = "bin/jet.hypara";
string sixDofFileName = "results/sixDofInfo.dat"; string sixDofFileName = "results/sixDofInfo.dat";
string derivativeFileName = "results/identify.dat"; string derivativeFileName = "results/identify.dat";
string hysteresisFileName = "results/force_beta.plt"; string hysteresisFileName = "results/force_beta.plt";
@ -659,7 +680,8 @@ int plotFieldType = 0;
// visualfileType: The file type of visualfile. // visualfileType: The file type of visualfile.
// 0 -- Tecplot binary. // 0 -- Tecplot binary.
// 1 -- Tecplot ASCII. // 1 -- Tecplot ASCII.
// 2 -- Ensight binary.
// 3 -- Ensight ASCII.
int visualfileType = 1; int visualfileType = 1;
// samplefileMode: The dump mode of sample file. // samplefileMode: The dump mode of sample file.
@ -697,21 +719,21 @@ double upperPlotFieldBox[] = [1.0 1.0 1.0];
// -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36), // -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36),
// -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40), // -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40),
// -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47), // -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47),
// -- transition intermittency(intermittency, 51), -transition momentum thickness reynolds(MomentumThicknessReynolds, 52), // -- transition intermittency(intermittency, 51), transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- overlap iblank(iblank, 81) // -- local CFL Number(localCFL, 57), minimal CFL Number(minCFL, 58),
// -- overlap iblank(iblank, 81),
// -- specific heat ratio(gama, 56) // -- specific heat ratio(gama, 56), Knudsen number(kn, 60), Damkohler number(Da, 61), vibrational nonequilibrium number(Vi, 62).
// Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!! // Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!!
// Variables order must from small to big. // Variables order must from small to big.
//-----------the optional parameters list for the wall boundary condition---------------- //-----------the optional parameters list for the wall boundary condition----------------
// nVisualWallVariables: The number of visual variables on wall. // nVisualWallVariables: The number of visual variables on wall.
// visualWallVariables : dumped variable types, listed as following: // visualWallVariables : dumped variable types, listed as following:
// -coefficient of pressure(cp, 0), -coefficient of friction(cf, 1), yplus(2), -non-dimensional heat flux(Q_NonDim, 3), -dimensional heat flux(Q_Dim, 4), // -- coefficient of pressure(cp, 0), coefficient of friction(cf, 1), yplus(2), non-dimensional heat flux(Q_NonDim, 3), dimensional heat flux(Q_Dim, 4),
// -pressure on wall(pw, 5), -temperature on wall(Tw, 6), -density on wall(rhow, 7), -heat flux of translational-rotational temperature term(Qtr, 8), // -- pressure on wall(pw, 5), temperature on wall(Tw, 6), density on wall(rhow, 7), heat flux of translational-rotational temperature term(Qtr, 8),
// -heat flux of species diffusion term(Qs, 9), -heat flux of vibrational temperature term(Qv, 10), -heat flux of electron temperature term(Qe, 11), // -- heat flux of species diffusion term(Qs, 9), heat flux of vibrational temperature term(Qv, 10), heat flux of electron temperature term(Qe, 11),
// -species mass fractions(Ns, 12), -x component of wall velocity(Vx, 13), -y component of wall velocity(Vy, 14), -z component of wall velocity(Vz, 15) // -- species mass fractions(Ns, 12), x component of wall velocity(Vx, 13), y component of wall velocity(Vy, 14), z component of wall velocity(Vz, 15),
// -slip translational-rotational temperature(Tts, 16), -slip vibrational temperature(Tvs, 17), -slip electron temperature(Tes, 18), -absolute wall velocity(Vs, 19) // -- slip translational-rotational temperature(Tts, 16), slip vibrational temperature(Tvs, 17), slip electron temperature(Tes, 18), absolute wall velocity(Vs, 19),
// -Stanton number(St, 20), -coefficient of heat rate(Ch, 21), -temperature jump(deltaT, 22), -Grid Reynolds number on wall(Re_w, 23) // -- Stanton number(St, 20), coefficient of heat rate(Ch, 21), temperature jump(deltaT, 22), Grid Reynolds number on wall(Re_w, 23), Knudsen number(Kn_wall, 24).
int nVisualVariables = 8; int nVisualVariables = 8;
int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15]; int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15];
@ -739,7 +761,9 @@ int dumpStandardModel = 0;
// 1 -- Real cell where the probe is located. // 1 -- Real cell where the probe is located.
// nProbeVariables: Number of variables want to be dumped for probes monitered. // nProbeVariables: Number of variables want to be dumped for probes monitered.
// probeVariables : Variable types dumped, listed as following: // probeVariables : Variable types dumped, listed as following:
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6). // -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6),
// -- dimensioanl_density(7), dimensioanl_u(8), dimensioanl_v(9),
// -- dimensioanl_w(10), dimensioanl_pressure(11), dimensioanl_temperature(12).
// Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!! // Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!!
// probeVariables order must from small to big. // probeVariables order must from small to big.
// probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables. // probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables.
@ -761,12 +785,13 @@ string probesDefineFile = "bin/probes_XYZ.dat";
int searchCellsMethod = 0; int searchCellsMethod = 0;
int nProbeVariables = 7; int nProbeVariables = 14;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6]; int probeVariables[] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13];
int probeVariablesInterpolationMethod = 0; int probeVariablesInterpolationMethod = 0;
//-----------------------------------------------------------------------
# Turbulence Parameter # #************************************************************************
//----------------------------------------------------------------------- # Turbulence Parameter *
#************************************************************************
// turbInterval: Iteration number of turbulence. // turbInterval: Iteration number of turbulence.
// kindOfTurbSource: Kinds of turbulent source. // kindOfTurbSource: Kinds of turbulent source.
// 0 -- Original. // 0 -- Original.
@ -774,15 +799,12 @@ int probeVariablesInterpolationMethod = 0;
// transitionType: transition model type // transitionType: transition model type
// 0 -- none. // 0 -- none.
// 2 -- gama-re-theta. // 2 -- gama-re-theta.
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition // turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition.
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not // freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not.
int turbInterval = 1; int turbInterval = 1;
int turbOrderStruct = 2; int turbOrderStruct = 2;
int kindOfTurbSource = 0; int kindOfTurbSource = 0;
int mod_turb_res = 0; int mod_turb_res = 0;
double turb_relax = 1.0;
double freeStreamViscosity = 1.0e-3; double freeStreamViscosity = 1.0e-3;
double muoo = 3.0; double muoo = 3.0;
double kwoo = 5.0; double kwoo = 5.0;
@ -791,28 +813,27 @@ double turbIntensity = -1.0;
int freeturbIntensitySRModify = 0; int freeturbIntensitySRModify = 0;
double freeDecayXLocation = 0.0; double freeDecayXLocation = 0.0;
int compressibleCorrection = 0; int compressibleCorrection = 0;
int prandtlNumberCorrection = 0;
int transitionMaFix = 1; int transitionMaFix = 1;
# maximum eddy viscosity (myt/my) max. // maximum eddy viscosity (myt/my) max.
double eddyViscosityLimit = 1.0e10; double eddyViscosityLimit = 1.0e10;
int monitor_vistmax = 0; int monitor_vistmax = 0;
//----------------------------------------------------------------------- #************************************************************************
# LES Parameter # # LES Parameter *
//----------------------------------------------------------------------- #************************************************************************
// iLES: Create LESSolver or not. // iLES: Create LESSolver or not.
// = 1 - Create LESSolver; // = 1 -- Create LESSolver;
// != 1 - not. // != 1 -- not.
// amplitudeofDisturb: Amplitude of adding disturb. // amplitudeofDisturb: Amplitude of adding disturb.
// disturbstep: Unsteady time step or steady iteration of adding random disturb. // disturbstep: Unsteady time step or steady iteration of adding random disturb.
// iterdisturb: Add random disturb in every sub-iter or only first sub-iter. // iterdisturb: Add random disturb in every sub-iter or only first sub-iter.
// = 0 - in only first sub-iter; // = 0 -- in only first sub-iter;
// != 0 - in every sub-iter. // != 0 -- in every sub-iter.
// ipraddisturb: Add density and pressure disturb or not. // ipraddisturb: Add density and pressure disturb or not.
// ibodyforce: Add body force in source flux of NS equations or not. // ibodyforce: Add body force in source flux of NS equations or not.
// = 0 - not; // = 0 -- not;
// != 0 - Add body force. // != 0 -- Add body force.
// bodyforce: Body force in source flux of NS equations or not. // bodyforce: Body force in source flux of NS equations or not.
// utau: friction velocity, using in DNSDisturb. // utau: friction velocity, using in DNSDisturb.
// sgsmodel: subgrid scale model. // sgsmodel: subgrid scale model.
@ -820,23 +841,22 @@ int monitor_vistmax = 0;
// = "dsmCom"; // = "dsmCom";
// = "wale"; // = "wale";
// = "sigma". // = "sigma".
// deltaFunctionType: = 1 - MAX(deltai, deltaj, deltak); // deltaFunctionType: = 1 -- MAX(deltai, deltaj, deltak);
// = 2 - pow(deltai * deltaj *deltak, 1/3); // = 2 -- pow(deltai * deltaj *deltak, 1/3);
// = 3 - Devloped by Scotti. // = 3 -- Devloped by Scotti.
// wallDampingFunctionType: = 0 - no wall function; // wallDampingFunctionType: = 0 -- no wall function;
// = 1 - van Driest; // = 1 -- van Driest;
// = 2 - developed by Dr. Deng Xiaobing; // = 2 -- developed by Dr. Deng Xiaobing;
// = 3 - developed by Piomelli. // = 3 -- developed by Piomelli.
// turbViscousCutType: turbulent viscosity cut type. // turbViscousCutType: turbulent viscosity cut type.
// = 0 - mu_total = mut + mul; // = 0 -- mu_total = mut + mul;
// = 1 - mu_total = max(mut-mul,0)+ mul; // = 1 -- mu_total = max(mut-mul, 0) + mul;
// = 2 - mu_total = max(mut ,0)+ mul. // = 2 -- mu_total = max(mut , 0) + mul.
// smagConstant: constant of smagorinsky model. // smagConstant: constant of smagorinsky model.
// waleConstant: constant of wale model. // waleConstant: constant of wale model.
// filterDirection [3]: filter variables in i, j, k direction or not. // filterDirection [3]: filter variables in i, j, k direction or not.
// averageDirection[3]: average variables in i, j, k direction or not. // averageDirection[3]: average variables in i, j, k direction or not.
// isotropicConstant: constant of isotropic part of SGS stress. // isotropicConstant: constant of isotropic part of SGS stress.
int iLES = 0; int iLES = 0;
string sgsmodel = "smagorinsky"; string sgsmodel = "smagorinsky";
int deltaFunctionType = 2; int deltaFunctionType = 2;
@ -852,9 +872,9 @@ double testFilterScale = 2.0;
int averageWidth = 1; int averageWidth = 1;
int monitorNegativeConstant = 0; int monitorNegativeConstant = 0;
//----------------------------------------------------------------------- #************************************************************************
# Other Parameters for Hypersonic Non-equilibrium Gas # # Other Parameters for Hypersonic Non-equilibrium Gas *
//----------------------------------------------------------------------- #************************************************************************
// dg_high_order: // dg_high_order:
// 0 -- generic order accuracy. // 0 -- generic order accuracy.
// 1 -- high order accuracy. // 1 -- high order accuracy.
@ -862,9 +882,6 @@ int monitorNegativeConstant = 0;
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver,
// isAdaptiveSolver>0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -886,14 +903,13 @@ int monitorNegativeConstant = 0;
// nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied. // nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied.
// 0 -- perfect gas. // 0 -- perfect gas.
// 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component. // 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component.
// nPCWCycleStep: the maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition. // nPCWCycleStep: The maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: the maximum step number of iteration in the module of computing radiation equilibrium temperature on wall. // nRETCycleStep: The maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:the maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction. // nSLIPCycleStep:The maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nSlipBCModel: The computational model of slip boundary conditions. // nSlipBCModel: The computational model of slip boundary conditions.
// 0 -- no slip. // 0 -- no slip.
// 1 -- the conventional Maxwell slip conditions. // 1 -- the conventional Maxwell slip conditions.
// 2 -- the Gokcen slip conditions. // 2 -- the Gokcen slip conditions.
@ -913,10 +929,13 @@ int monitorNegativeConstant = 0;
// 1 -- One-temperature model. // 1 -- One-temperature model.
// 2 -- Two-temperature model. // 2 -- Two-temperature model.
// 3 -- Three-temperature model. // 3 -- Three-temperature model.
// isUseNoneqCond:
// 0 -- compute the source terms without any conditions.
// 1 -- compute the source terms using the non-equilibrium condition.
// frozenCondition: the threshold value of frozen chemical flow condition, 0.1 is the default value.
// nIdealState: whether take all gas species as ideal gas for gas-mixture process. // nIdealState: whether take all gas species as ideal gas for gas-mixture process.
// 0 -- No. // 0 -- No.
// 1 -- Yes. // 1 -- Yes. // nTEnergyModel: the method to computing temperature energy model.
// nTEnergyModel: the method to computing temperature energy model.
// 0 -- the energy term is computed using the conventional method. // 0 -- the energy term is computed using the conventional method.
// 1 -- the energy term is computed using the polynomial fitting method. // 1 -- the energy term is computed using the polynomial fitting method.
// 2 -- the energy term is computed using the piecewise polynomial fitting method. // 2 -- the energy term is computed using the piecewise polynomial fitting method.
@ -946,14 +965,13 @@ int monitorNegativeConstant = 0;
// 1.0 -- proposed by Maxwell. // 1.0 -- proposed by Maxwell.
// sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall. // sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall.
// 1.146 -- proposed for an additional "fictitious" velocity slip. // 1.146 -- proposed for an additional "fictitious" velocity slip.
// chemicalRelaxCorf: The value is in range of [0.001, 1.0]. // chemicalRelaxCorf: The value is in range of [0.001, 1.0].
// spectrumRadiusCoef: The value is in range of [0.0, 2.0]. // spectrumRadiusCoef: The value is in range of [0.0, 2.0].
// staticPressureRelaxCorf: The value is in range of [0.1, 1.0]. // staticPressureRelaxCorf: The value is in range of [0.1, 1.0].
// nIsChemicalFreeze: the flag to freeze the chemical reactions. // nIsChemicalFreeze: the flag to freeze the chemical reactions.
// 0 -- not freeze, the chemical reaction sources will be calculated. // 0 -- not freeze, the chemical reaction sources will be calculated.
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.// veTemperatureMin: The minimum of Tv and Te // 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.
// veTemperatureMin: The minimum of Tv and Te.
// maxViscous: the maximum of Viscous. // maxViscous: the maximum of Viscous.
// trTemperatureMin: the minimum value of trTemperature. // trTemperatureMin: the minimum value of trTemperature.
// veTemperatureMin: the minimum value of veTemperature. // veTemperatureMin: the minimum value of veTemperature.
@ -965,36 +983,34 @@ int monitorNegativeConstant = 0;
// nSpeciesLimit: limitter of gas species // nSpeciesLimit: limitter of gas species
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction // nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction.
// 0 -- method 0. // 0 -- method 0.
// 1 -- method 1. // 1 -- method 1.
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid // nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nViscosityPeModified: Pe Modified for ViscosityCoef // nViscosityPeModified: Pe Modified for ViscosityCoef.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nChemcalSourceModified: Modified on ChemcalSource // nChemcalSourceModified: Modified on ChemcalSource.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nChemcalSourceEsMethod: Modified on ChemcalSource // nChemcalSourceEsMethod: Modified on ChemcalSource.
// 0 -- approximation algorithm 1 (Ori.) // 0 -- approximation algorithm 1 (Ori).
// 1 -- approximation algorithm 2 (New) // 1 -- approximation algorithm 2 (New).
// nMaxStepTemperature: the iterative steps of temperature. // nMaxStepTemperature: the iterative steps of temperature.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs // 0 -- not used.
// 0 -- not used // 1 -- used.
// 1 -- used // nDiagonalModified: Modified on Diagonal.
// 0 -- not used.
// nDiagonalModified: Modified on Diagonal // 1 -- new.
// 0 -- not used // nDiagonalModifiedTurb: Modified on Diagonal for turbulence.
// 1 -- Ori. // 0 -- not used.
// 2 -- new // 1 -- new.
// nGradPrimtiveMethod: // nGradPrimtiveMethod:
// 0 -- Ori. // 0 -- Ori.
// 1 -- new // 1 -- new.
// nAblation: // nAblation:
// 0 -- The wall ablation is not computed. // 0 -- The wall ablation is not computed.
// 1 -- The wall ablation is computed. // 1 -- The wall ablation is computed.
@ -1017,8 +1033,8 @@ int monitorNegativeConstant = 0;
// "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas. // "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas.
// "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions. // "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions.
// "Gas-Mixture" -- indicates the process of mixing gas without reacting. // "Gas-Mixture" -- indicates the process of mixing gas without reacting.
// for struct solver mixing two species£¨SpeciesA, SpeciesB£©. // for struct solver mixing two species<65><73>SpeciesA, SpeciesB<73><42>.
// for unstruct solver mixing multi-species£¨O2 NO CO CO2 H2 N2 Air CH4£©. // for unstruct solver mixing multi-species<65><73>O2 NO CO CO2 H2 N2 Air CH4<48><34>.
// For self-definition model, the gasfile is used to indicate the file path of the new gas model. // For self-definition model, the gasfile is used to indicate the file path of the new gas model.
// speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma. // speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma.
// initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName. // initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName.
@ -1040,13 +1056,16 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting : Setting for HyFLOW GUI.
// 0 -- PHengLEI
// 1 -- HyFLOW
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no // 0 -- no.
// 1 -- yes // 1 -- yes.
// nTvChange: Judge whether the Tv equals Ttr.
// 0 -- yes.
// 1 -- no.
// isMoleFractionType: 1 indicates the mass fractions, or else the mole fractions.
// nFraction: the initial fractions type of species.
// 0 -- mass fraction.
// 1 -- mole fraction.
int dg_high_order = 0; int dg_high_order = 0;
int iapplication = 0; int iapplication = 0;
int isAdaptiveSolver = 0; int isAdaptiveSolver = 0;
@ -1114,6 +1133,7 @@ double densityMin = 1.0e-8;
double densityMinFactor = 0.1; double densityMinFactor = 0.1;
double tAdjustmentFactor = 10.0; double tAdjustmentFactor = 10.0;
double iniSpeedCoef = 1.0; double iniSpeedCoef = 1.0;
int iniSpeedMode = 0;
int nDebug = 0; int nDebug = 0;
int nSpeciesLimit = 1; int nSpeciesLimit = 1;
@ -1125,18 +1145,21 @@ int nChemcalSourceEsMethod = 1;
int nMaxStepTemperature = 5; int nMaxStepTemperature = 5;
int veTemperatureMinModified = 1; int veTemperatureMinModified = 1;
int nDiagonalModified = 0; int nDiagonalModified = 0;
int nDiagonalModifiedTurb = 0;
int nGradPrimtiveMethod = 1; int nGradPrimtiveMethod = 1;
int nInviscidFluxModify = 1; int nInviscidFluxModify = 1;
int nQlLimitMethod = 2; int nQlLimitMethod = 2;
int nSpeciesForWallMethod = 1; int nSpeciesForWallMethod = 1;
int nDensityForWallMethod = 0; int nDensityForWallMethod = 0;
int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
int nMarsModel = 0; int nMarsModel = 0;
int nTvChange = 0;
int isMoleFractionType = 0;
string gasfile = "DK5"; string gasfile = "DK5";
//string gasfile = "./chemical/Dunn-Kang_air5s11r.dat"; //string gasfile = "./chemical/Dunn-Kang_air5s11r.dat";
string speciesName = "O, O2, NO, N, N2"; string speciesName = "O, O2, NO, N, N2";
@ -1173,9 +1196,17 @@ double molecularWeightSpeciesB = 30.0;
//string speciesName = "O2, N2"; //string speciesName = "O2, N2";
//string initMassFraction = "1.0, 0.0"; //string initMassFraction = "1.0, 0.0";
int nFraction = 0;
int nContinueModel = 0; int nContinueModel = 0;
int nChemicalFlowStep = 0; int nChemicalFlowStep = 0;
int ifStartFromPerfectGasResults = 0; int ifStartFromPerfectGasResults = 0;
int isUseNoneqCond = 0;
double frozenCondition = 0.01;
int nLeakageMonitor = 0;
double totalLeakageVolume = 1000.0;
double monitorThresholdValue = 0.05;
double sprayFactor = 0.0;
######################################################################### #########################################################################
// Multi-Grid parameters. // Multi-Grid parameters.
@ -1196,7 +1227,6 @@ int ifStartFromPerfectGasResults = 0;
// 1 -- zero order. // 1 -- zero order.
// 2 -- first-order. (default) // 2 -- first-order. (default)
// mgCorrectionLimit: Multi-grid correction limit. // mgCorrectionLimit: Multi-grid correction limit.
int nMGLevel = 1; int nMGLevel = 1;
int MGCoarsestIteration = 1; int MGCoarsestIteration = 1;
int MGPreIteration = 1; int MGPreIteration = 1;
@ -1226,9 +1256,9 @@ string holeFullFileName = "./grid/holeFullFile.dat";
string linkFileName = "./grid/topology.dat"; string linkFileName = "./grid/topology.dat";
string zoneInverseFileName = "./grid/zoneInverseMapping.inp"; string zoneInverseFileName = "./grid/zoneInverseMapping.inp";
######################################################################### #************************************************************************
# High Order Struct Solver # # High Order Struct Solver *
######################################################################### #************************************************************************
// isFVMOrFDM: // isFVMOrFDM:
// 0 -- NSSolverStruct using Finite Volume Method. // 0 -- NSSolverStruct using Finite Volume Method.
// 1 -- NSSolverStruct using Finite Differ Method. // 1 -- NSSolverStruct using Finite Differ Method.
@ -1273,10 +1303,29 @@ int allReduceStep = 1;
// codeOfOversetGrid: Overlapping(overset) grid or not. // codeOfOversetGrid: Overlapping(overset) grid or not.
// 0 -- NON-overlapping grid. // 0 -- NON-overlapping grid.
// 1 -- Overlapping grid. // 1 -- Overlapping grid.
// oversetInterpolationMethod: the method of overset interpolation while field simulation // oversetInterpolationMethod: the method of overset interpolation while field simulation.
// 0 -- set the acceptor cell value by donor cell value. // 0 -- set the acceptor cell value by donor cell value.
// 1 -- set the acceptor cell value by distance weight of donor cell value. // 1 -- set the acceptor cell value by distance weight of donor cell value.
// readOversetFileOrNo: Whether to read overset-file(.ovs) that has been generated.
// 0 -- no.
// 1 -- yes.
// symetryOrNot: If there exist symetryplanes(XY plane, the coordinate of Z direction is 0) in
// the current overset grid(only for three dimension).
// 0 -- no.
// 1 -- yes.
// readInAuxiliaryInnerGrid: Whether to read auxiliary inner grid.
// 0 -- no.
// 1 -- yes.
// walldistMainZone: The initial value of background grid which does not exist wall boundary condition.
// toleranceForOversetSearch: The tolerance of overset searching zone to judge whether the obtained node is in the current computing cell.
// toleranceForOversetBox: The tolerance of building the minimum box of computing cells in the overlapping region.
// twoOrderInterpolationOrNot: The number of interpolated cell layers in the overlapping boundary.
// 0 -- one layer.
// 1 -- two layers.
// keyEnlargeOfActiveNodes: The number of enlarged overset-boundary layers in the buffer region.
// outTecplotOverset: Whether to dump out the flowfield data after the progress of overset configure.
// 0 -- no.
// 1 -- yes.
int codeOfOversetGrid = 0; int codeOfOversetGrid = 0;
int oversetInterpolationMethod = 0; int oversetInterpolationMethod = 0;
int readOversetFileOrNot = 0; int readOversetFileOrNot = 0;
@ -1295,7 +1344,6 @@ int twoOrderInterpolationOrNot = 0;
int keyEnlargeOfActiveNodes = 0; int keyEnlargeOfActiveNodes = 0;
int outTecplotOverset = 0; int outTecplotOverset = 0;
int outPutOversetVisualization = 0; int outPutOversetVisualization = 0;
int numberOfMovingBodies = 2; int numberOfMovingBodies = 2;
// ----------------- ALE configuration ------------------------------ // ----------------- ALE configuration ------------------------------
@ -1306,34 +1354,40 @@ double referenceLength = 1.0;
double referenceVelocity = 1.0; double referenceVelocity = 1.0;
double referenceDensity = 1.0; double referenceDensity = 1.0;
int strategyForFaceNormalVelocity = 0; //0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd; int strategyForFaceNormalVelocity = 0; // 0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd.
int strategyForGCLSource = 0; //0-present; 1-Ahn; int strategyForGCLSource = 0; // 0-present; 1-Ahn.
//0:1st-Admas-Bashforth; 1:2nd-Admas-Bashforth; 2:1st-Implicit-Euler; 3:2nd-Implicit Euler; 4:2nd-Adams-Moulton; 5:3rd-Adams-Moulton // 0: 1st-Admas-Bashforth; 1: 2nd-Admas-Bashforth; 2: 1st-Implicit-Euler; 3: 2nd-Implicit Euler; 4: 2nd-Adams-Moulton; 5: 3rd-Adams-Moulton.
int methodForKineticEquation = 0; int methodForKineticEquation = 0;
double relaxParameterOfKinetic = 1.0; double relaxParameterOfKinetic = 1.0;
######################################################################### #************************************************************************
# motive information # # motive information *
######################################################################### #************************************************************************
int numberOfMovingBodies = 1; int numberOfMovingBodies = 1;
############################## body0 ############################## ############################## body0 ##############################
//mass of parts // mass of parts.
double mass_0 = 1.0; double mass_0 = 1.0;
//mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz // gravity of parts (along negative direction in Y-axis, eg. 9.8).
double gravity_0 = 0.0;
// mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz.
double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0; double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0;
//initial six DOF position information of parts. xc yc zc // initial six DOF position information of parts. xc yc zc.
double massCenter_0[] = 0.0, 0.0, 0.0; double massCenter_0[] = 0.0, 0.0, 0.0;
//initial six DOF position information of parts. angleX angleY angleZ // if reset mass center while restart.
int resetMassCenter_0 = 0;
// position offset of parts. dx dy dz.
double massCenterDxyz_0[] = 0.0, 0.0, 0.0;
// initial six DOF position information of parts. angleX angleY angleZ.
double attitudeAngle_0[] = 0.0, 0.0, 0.0; double attitudeAngle_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. vc vy vz // initial six DOF move information of parts. vc vy vz.
double massCenterVelocity_0[] = 0.0, 0.0, 0.0; double massCenterVelocity_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. omigX omigY omigZ // initial six DOF move information of parts. omigX omigY omigZ.
double angularVelocity_0[] = 0.0, 0.0, 0.0; double angularVelocity_0[] = 0.0, 0.0, 0.0;
// the object that the parts belong to. // the object that the parts belong to.
int fartherIndex_0 = -1; int fartherIndex_0 = -1;
//the assembly position of the parts. xc yc zc angleX angleY angleZ // the assembly position of the parts. xc yc zc angleX angleY angleZ.
double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0; double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
// the move pattern of the parts. // the move pattern of the parts.
// -1 given motion partten. // -1 given motion partten.
@ -1349,23 +1403,24 @@ double configPamameter_0[] = 0.0 ,0.0 ,0.0 ,0.0 ,0.0
int RBDMethod_0 = 0; int RBDMethod_0 = 0;
double amplitude_0 = 0.0; double amplitude_0 = 0.0;
double reduceFrequency_0 = 0.0; double reduceFrequency_0 = 0.0;
//direction of rotation // direction of rotation.
// 1 -- clockwise from the point of view along the positive x axis. // 1 -- clockwise from the point of view along the positive x axis.
// -1 -- anticlockwise from the point of view along the positive x axis. // -1 -- anticlockwise from the point of view along the positive x axis.
int direction_0 = -1; int direction_0 = -1;
double rotateFrequency_0 = 0.0; double rotateFrequency_0 = 0.0;
//string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter"; //string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter";
//additional force (system axis) fX fY fZ // dimensional physical time for additional force(s).
double addedForceTime_0[] = 0.0;
// additional force(inertia system) fX fY fZ.
double addedForce_0[] = 0.0, 0.0, 0.0; double addedForce_0[] = 0.0, 0.0, 0.0;
//additional moment of Force (system axis) mX mY mZ // additional moment(inertia system) mX mY mZ.
double addedMoment_0[] = 0.0, 0.0, 0.0; double addedMoment_0[] = 0.0, 0.0, 0.0;
// the deformation method of the parts. // the deformation method of the parts.
int morphing_0 = 0; int morphing_0 = 0;
// post indentify // post indentify.
int integralOrder = 4; int integralOrder = 4;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;
@ -1379,18 +1434,34 @@ int integralOrder = 4;
//@string outLetFileName = "./bin/subsonicOutlet.hypara"; //@string outLetFileName = "./bin/subsonicOutlet.hypara";
//@double refDimensionalVelocity = 0; //@double refDimensionalVelocity = 0;
//@double refDimensionalDensity = 0; //@double refDimensionalDensity = 0;
//@string weatherDataFilePath = "./WRFData/";
######################################################################### //@double longitude = 110.95
# Old Parameter # //@double latitude = 19.61;
######################################################################### #************************************************************************
# Old Parameter *
#************************************************************************
int isPlotVolumeField = 0; int isPlotVolumeField = 0;
#************************************************************************
# partial flow field setting Parameter *
#************************************************************************
//int nPartialParameter = 0; // 0/1/2
//int nNumberOfPartialField = 0; //
//int nStartGridIndex[] = [0];
//int nEndGridIndex[] = [0];
######################################################################### //double partialCFL[] = [0.0];
# Incompressible Parameter # //double partialSpeedCoef[] = [0.0];
######################################################################### //double partialSpeed[] = [0.0];
//double partialAttackd[] = [0.0];
//double partialSlide[] = [0.0];
//double partialPressure[] = [0.0];
//double partialTemperature[] = [0.0];
//double partialMassFractions[] = [0.0];
#************************************************************************
# Incompressible Parameter *
#************************************************************************
int isSolveEnergyEquation = 0; int isSolveEnergyEquation = 0;
int isSolveTurbEquation = 0; int isSolveTurbEquation = 0;
int isSolveSpeciesEquation = 0; int isSolveSpeciesEquation = 0;

View File

@ -4,9 +4,12 @@
// gridtype: Grid type for generation, conversion, reconstruction, merging. // gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid. // 0 -- Unstructured grid.
// 1 -- Structured grid. // 1 -- Structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion. // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// 1 -- Y upward. (default) // axisRotateOrder : axis rotating order.
// 2 -- Z upward. // 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
// from_gtype: Type of grid data type in grid conversion process. // from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE. // -1 -- MULTI_TYPE.
// 1 -- PHengLEI, *.fts. // 1 -- PHengLEI, *.fts.
@ -18,7 +21,9 @@
// 7 -- Hybrid, include both of unstructured and structured grid, *.fts. // 7 -- Hybrid, include both of unstructured and structured grid, *.fts.
// 8 -- GMSH, *.msh. // 8 -- GMSH, *.msh.
int gridtype = 0; int gridtype = 0;
int axisup = 1; int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
int from_gtype = 2; int from_gtype = 2;
######################################################################### #########################################################################

View File

@ -8,6 +8,7 @@
// Platform for Hybrid Engineering Simulation of Flows + // Platform for Hybrid Engineering Simulation of Flows +
// China Aerodynamics Research and Development Center + // China Aerodynamics Research and Development Center +
// (C) Copyright, Since 2010 + // (C) Copyright, Since 2010 +
// PHengLEI 2212 +
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
########################################################################### ###########################################################################
# Default parameters for Grid conversion # # Default parameters for Grid conversion #
@ -46,19 +47,24 @@ int gridobj = 1;
int multiblock = 0; int multiblock = 0;
int iadapt = 0; int iadapt = 0;
int SymmetryFaceVector = 1; int SymmetryFaceVector = 1;
int gridReorder = 0; int gridReorder = 0;
int faceReorderMethod = 0; int faceReorderMethod = 0;
// axisup: Type of Cartisien coordinates system, used in grid conversion. // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// 1 -- Y upward. (default) // axisRotateOrder : axis rotating order.
// 2 -- Z upward. // 1 -- X-axis.
int axisup = 1; // 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
// omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition". // omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition".
// 0 -- Interface. (default) // 0 -- Interface. (default)
// 1 -- Physical boundary condition, used in Hybrid solver. // 1 -- Physical boundary condition, used in Hybrid solver.
int omit_no_bound_bc = 0; int omit_no_bound_bc = 0;
int omitRepeatInterface = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# Grid data type # # Grid data type #
@ -89,7 +95,6 @@ int dumpOldGrid = 0;
int numberOfGridFile = 1; int numberOfGridFile = 1;
string from_gfile = "./grid/rae2822_hybrid2d.cas"; string from_gfile = "./grid/rae2822_hybrid2d.cas";
string from_gfile1 = ""; string from_gfile1 = "";
string out_gfile = "./grid/flat_laminr_133_85_2d.fts"; string out_gfile = "./grid/flat_laminr_133_85_2d.fts";
// ----------------- some advanced choices ------------------------------ // ----------------- some advanced choices ------------------------------
@ -178,7 +183,6 @@ double influencePara = 25.0;
which only support one direction. which only support one direction.
// rotationAngle: The relative angle between two periodic face. // rotationAngle: The relative angle between two periodic face.
which is recorded in degrees. which is recorded in degrees.
int periodicType = 0; int periodicType = 0;
double translationLength[] = [0.0, 0.0, 0.0]; double translationLength[] = [0.0, 0.0, 0.0];
double rotationAngle = 0.0; double rotationAngle = 0.0;
@ -192,7 +196,6 @@ double rotationAngle = 0.0;
// 2 -- refine structured grid. // 2 -- refine structured grid.
// maxproc: The number of partition zones that want to be divided into. // maxproc: The number of partition zones that want to be divided into.
// numberOfMultifile: The number of partition grid files that want to be dumped out. // numberOfMultifile: The number of partition grid files that want to be dumped out.
int pgridtype = 0; int pgridtype = 0;
int maxproc = 4; int maxproc = 4;
int numberOfMultifile = 1; int numberOfMultifile = 1;
@ -207,8 +210,8 @@ int blockIndexOfMark = 0;
int cellIndexOfMark[] = [185, 30, 1]; int cellIndexOfMark[] = [185, 30, 1];
// parallelStrategy: // parallelStrategy:
//! -# 0 : each zone is assigned to the one that defined in grid partition procedure. // 0 -- each zone is assigned to the one that defined in grid partition procedure.
//! -# 1 : random assigned for each zone or by some else ways. // 1 -- random assigned for each zone or by some else ways.
int parallelStrategy = 1; int parallelStrategy = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
@ -232,7 +235,6 @@ string partition_grid_file = "./grid/sphere_mixed__4.fts";
// 1 -- perfect balance. // 1 -- perfect balance.
// maxproc -- perfect imbalance. // maxproc -- perfect imbalance.
// 1.05 -- recommended. // 1.05 -- recommended.
int omit_no_bound_bc = 0; int omit_no_bound_bc = 0;
int npartmethod = 1; int npartmethod = 1;
int parallelPartitionMethod = 2; int parallelPartitionMethod = 2;
@ -253,24 +255,30 @@ int numberOfMultigrid = 1;
// intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved. // intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved.
// intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved. // intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved.
// intervalStepRes: The step intervals for residual file 'res.dat' saved. // intervalStepRes: The step intervals for residual file 'res.dat' saved.
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
int maxSimuStep = 20000; int maxSimuStep = 20000;
int intervalStepFlow = 1000; int intervalStepFlow = 1000;
int intervalStepPlot = 1000; int intervalStepPlot = 1000;
int intervalStepSample = 1000; int intervalStepSample = 1000;
int intervalStepForce = 100; int intervalStepForce = 100;
int intervalStepRes = 10; int intervalStepRes = 10;
int ifLowSpeedPrecon = 0;
// compressible: // compressible:
// 0 -- incompressible flow. // 0 -- incompressible flow.
// 1 -- compressible flow. (default) // 1 -- compressible flow. (default)
int compressible = 1; int compressible = 1;
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
// Kprec: The coefficient K for the cut-off velocity.
// 1.0~3.0 is suggested. (default, 3.0)
// preconFarfieldBCMethod: The precondition method for farfield boundary condition.
// 0 -- precondition far-field boundary based on riemann invariants.
// 1 -- Turkel's simplified far-field boundary condition.
int ifLowSpeedPrecon = 0;
double Kprec = 3.0;
int preconFarfieldBCMethod = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# CFD Control Parameter # # CFD Control Parameter #
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
@ -281,9 +289,12 @@ int compressible = 1;
// 0 -- the nondimensional conditions. // 0 -- the nondimensional conditions.
// 1 -- the flight conditions. // 1 -- the flight conditions.
// 2 -- the experiment conditions. // 2 -- the experiment conditions.
// 3 -- the subsonic boundary conditions. // 3 -- the subsonic boundary conditions. (Useless!)
// 4 -- the condition that the velocity, temperature and density are given. // 4 -- the condition that the velocity, temperature and density are given.
// 5 -- the condition that the velocity, temperature and pressure are given. // 5 -- the condition that the velocity, temperature and pressure are given.
//flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -303,11 +314,11 @@ int compressible = 1;
// condition is radiation equilibrium temperature, and 0.8 is the default value. // condition is radiation equilibrium temperature, and 0.8 is the default value.
// refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol. // refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol.
// Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on. // Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on.
int directionMethod = 0; int directionMethod = 0;
double refMachNumber = 0.73; double refMachNumber = 0.73;
double attackd = 2.79; double attackd = 2.79;
double angleSlide = 0.00; double angleSlide = 0.00;
int flowInitMethod = 0;
int inflowParaType = 0; int inflowParaType = 0;
double refReNumber = 6.5e6; double refReNumber = 6.5e6;
@ -321,14 +332,6 @@ double freestream_vibration_temperature = 300.00;
//double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2). //double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2).
//double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)). //double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)).
//int inflowParaType = 3;
//int nsubsonicInlet = 1;
//int nsubsonicOutlet = 1;
//string inLetFileName = "./bin/subsonicInlet.hypara";
//string outLetFileName = "./bin/subsonicOutlet.hypara";
//double refDimensionalTemperature = 288.144;
//double refDimensionalPressure = 1.01313E05;
// The velocity, temperature and density are fixed. // The velocity, temperature and density are fixed.
//int inflowParaType = 4; //int inflowParaType = 4;
//double refDimensionalVelocity = 1000.0; //double refDimensionalVelocity = 1000.0;
@ -341,9 +344,15 @@ double freestream_vibration_temperature = 300.00;
// The MachNumber, temperature and pressure are fixed. // The MachNumber, temperature and pressure are fixed.
//int inflowParaType = 6; //int inflowParaType = 6;
//double refDimensionalTemperature = 293; //double refDimensionalTemperature = 293.0;
//double refDimensionalPressure = 8886.06; //double refDimensionalPressure = 8886.06;
// The velocity, temperature and pressure are read from file.
//int inflowParaType = 7;
//string weatherDataFilePath = "./WRFData/";
//double longitude = 110.95
//double latitude = 19.61;
double wallTemperature = -1.0; double wallTemperature = -1.0;
double radiationCoef = 0.8; double radiationCoef = 0.8;
@ -357,35 +366,35 @@ double forceReferenceArea = 1.0; // unit of meter^2.
double TorqueRefX = 0.0; // unit of meter. double TorqueRefX = 0.0; // unit of meter.
double TorqueRefY = 0.0; // unit of meter. double TorqueRefY = 0.0; // unit of meter.
double TorqueRefZ = 0.0; // unit of meter. double TorqueRefZ = 0.0; // unit of meter.
double knudsenLength = 1.0; // unit of meter.
double refMolecularWeight = 28.9644; // unit of g/mol. double refMolecularWeight = 28.9644; // unit of g/mol.
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# Spatial Discretisation # # Spatial Discretisation #
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
#******************************************************************* #************************************************************************
# Struct Solver * # Struct Solver *
#******************************************************************* #************************************************************************
// inviscidSchemeName: Spatial discretisation scheme of struct grid. // inviscidSchemeName: Spatial discretisation scheme of struct grid.
// Using this when solve structered grid or hybrid. // Using this when solve structered grid or hybrid.
// -- "vanleer", "steger", "hlle", "lax_f". // -- "vanleer", "steger", "hlle", "lax_f",
// -- "roe", "modified_roe". // -- "roe", "modified_roe",
// -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+". // -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+".
// isWennScheme: If using WENN Scheme of struct grid. // isWennScheme: If using WENN Scheme of struct grid.
// 0 -- NO. (default) // 0 -- NO. (default)
// 1 -- Yes. // 1 -- Yes.
// str_limiter_name: Limiter of struct grid. // str_limiter_name: Limiter of struct grid.
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth". // -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth",
// -- "nolim", no limiter. // -- "nolim", no limiter,
// -- "vanalbada_clz", clz supersonic version. // -- "vanalbada_clz", clz supersonic version,
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3" // -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3".
string inviscidSchemeName = "roe"; string inviscidSchemeName = "roe";
int isWennScheme = 0; int isWennScheme = 0;
string str_limiter_name = "vanalbada"; string str_limiter_name = "vanalbada";
#******************************************************************* #************************************************************************
# UnStruct Solver or Common * # UnStruct Solver or Common *
#******************************************************************* #************************************************************************
// viscousType: Viscous model. // viscousType: Viscous model.
// 0 -- Euler. // 0 -- Euler.
// 1 -- Lamilar. // 1 -- Lamilar.
@ -410,11 +419,11 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle". // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod". // -- "barth", "vencat", "vanleer", "minmod",
// -- "vanalbada", "smooth", "nnd", "lpz", "1st". // -- "vanalbada", "smooth", "nnd", "lpz", "1st",
// -- "nolim", no limiter. // -- "nolim", no limiter.
// uns_vis_name: Discretisation method of viscous term. // uns_vis_name: Discretisation method of viscous term.
// -- "std", "test", "aver", "new1", "new2". // -- "std", "test", "aver", "new1", "new2".
@ -442,7 +451,7 @@ string str_limiter_name = "vanalbada";
// 3 -- Harten type, which is default used. // 3 -- Harten type, which is default used.
// roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0. // roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0.
// It is used to scale the default Roe entropy fix coefficients. // It is used to scale the default Roe entropy fix coefficients.
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0 // AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0.
//int viscousType = 0; //int viscousType = 0;
//string viscousName = "Euler"; //string viscousName = "Euler";
@ -475,9 +484,9 @@ double roeEntropyScale = 1.0;
double AusmpwPlusLimiter = 1.0; double AusmpwPlusLimiter = 1.0;
//----------------------------------------------------------------------- #************************************************************************
# Temporal Discretisation # # Temporal Discretisation *
//----------------------------------------------------------------------- #************************************************************************
// iunsteady: Steady or unsteady. // iunsteady: Steady or unsteady.
// 0 -- steady. // 0 -- steady.
// 1 -- unsteay. // 1 -- unsteay.
@ -504,11 +513,18 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// useLUSGSprecond: Initialize flow field for GMRES.
// 0 --Initialize by first order Jacobian matrix.
// 1 --Initialize by LUSGS.
// GMRESInitStep : the number of iteration step of irst order Jacobian matrix or LUSGS for initialize flow field.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -533,7 +549,6 @@ double AusmpwPlusLimiter = 1.0;
// 2 -- Pab3D wall function. // 2 -- Pab3D wall function.
// RKStage: The number of Runge-Kutta step. // RKStage: The number of Runge-Kutta step.
// lamda: Cofficient of Runge-Kutta step. // lamda: Cofficient of Runge-Kutta step.
int iunsteady = 0; int iunsteady = 0;
double physicalTimeStep = 0.01; double physicalTimeStep = 0.01;
double physicalTimeStepDimensional = -0.001; double physicalTimeStepDimensional = -0.001;
@ -543,7 +558,7 @@ int ifStaticsReynoldsStress = 0;
int startStatisticStep = 800000; int startStatisticStep = 800000;
double statisticalTimePeriod = -1.0; double statisticalTimePeriod = -1.0;
int statisticMethod = 0; int statisticMethod = 0;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2; int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2.
int methodOfDualTime = 3; int methodOfDualTime = 3;
int min_sub_iter = 50; int min_sub_iter = 50;
@ -558,7 +573,10 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 9;
int useLUSGSprecond = 1;
int GMRESInitStep = 1000;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -575,7 +593,7 @@ int order = 2;
double visl_min = 0.01; double visl_min = 0.01;
double turbCFLScale = 1.0; double turbCFLScale = 1.0;
double csrv = 2.0; double csrv = 1.0;
double timemax = 1.0e10; double timemax = 1.0e10;
double dtsave = -1.0; double dtsave = -1.0;
int maxale = 10; int maxale = 10;
@ -591,10 +609,9 @@ double lamda[] = [0.5, 1.0];
//int RKStage = 4; //int RKStage = 4;
//double lamda[] = [0.25, 0.33333333333, 0.5, 1.0]; //double lamda[] = [0.25, 0.33333333333, 0.5, 1.0];
#************************************************************************
//----------------------------------------------------------------------- # File In or Out *
# File In or Out # #************************************************************************
//-----------------------------------------------------------------------
// numberOfGridGroups: The number of grid groups. // numberOfGridGroups: The number of grid groups.
// gridfile: The partitioned Grid file path, using relative path, // gridfile: The partitioned Grid file path, using relative path,
// which is relative to the working directory. // which is relative to the working directory.
@ -618,10 +635,8 @@ double lamda[] = [0.5, 1.0];
// nIsComputeWallDist: Whether to compute the wall distance. // nIsComputeWallDist: Whether to compute the wall distance.
// 0 -- Compute wall distance. // 0 -- Compute wall distance.
// 1 -- Not compute. // 1 -- Not compute.
//
// protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism. // protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism.
// wall_heatfluxfile: The file to output the MaxHeatFlux of wall. // wall_heatfluxfile: The file to output the MaxHeatFlux of wall.
int numberOfGridGroups = 1; int numberOfGridGroups = 1;
string gridfile = "./grid/rae2822_hybrid2d__4.fts"; string gridfile = "./grid/rae2822_hybrid2d__4.fts";
string wallTemperaturefile = ""; string wallTemperaturefile = "";
@ -632,10 +647,12 @@ int cellMethodOrNodeMethod = 0;
string resSaveFile = "results/res.dat"; string resSaveFile = "results/res.dat";
string turbresfile = "results/turbres.dat"; string turbresfile = "results/turbres.dat";
string transitionResFile = "results/transitionRes.dat";
string aircoeffile = "results/aircoef.dat"; string aircoeffile = "results/aircoef.dat";
string restartNSFile = "results/flow.dat"; string restartNSFile = "results/flow.dat";
string turbfile = "results/turb.dat"; string turbfile = "results/turb.dat";
string transitionFile = "results/transition.dat";
string visualfile = "results/tecflow.plt"; string visualfile = "results/tecflow.plt";
string wall_aircoefile = "results/wall_aircoef.dat"; string wall_aircoefile = "results/wall_aircoef.dat";
@ -645,11 +662,15 @@ string protectionFile0 = "results/flow0.dat";
string protectionFile1 = "results/flow1.dat"; string protectionFile1 = "results/flow1.dat";
string wall_heatfluxfile = "results/wall_heatflux.dat"; string wall_heatfluxfile = "results/wall_heatflux.dat";
string protectionTurbFile0 = "results/turb0.dat";
string protectionTurbFile1 = "results/turb1.dat";
string protectionTransitionFile0 = "results/transition0.dat";
string protectionTransitionFile1 = "results/transition1.dat";
int nDumpSurfaceInfo = 0; int nDumpSurfaceInfo = 0;
string wall_varfile = ""; string wall_varfile = "";
string jetDefineFile = "bin/jet.hypara";
string sixDofFileName = "results/sixDofInfo.dat"; string sixDofFileName = "results/sixDofInfo.dat";
string derivativeFileName = "results/identify.dat"; string derivativeFileName = "results/identify.dat";
string hysteresisFileName = "results/force_beta.plt"; string hysteresisFileName = "results/force_beta.plt";
@ -659,7 +680,8 @@ int plotFieldType = 0;
// visualfileType: The file type of visualfile. // visualfileType: The file type of visualfile.
// 0 -- Tecplot binary. // 0 -- Tecplot binary.
// 1 -- Tecplot ASCII. // 1 -- Tecplot ASCII.
// 2 -- Ensight binary.
// 3 -- Ensight ASCII.
int visualfileType = 1; int visualfileType = 1;
// samplefileMode: The dump mode of sample file. // samplefileMode: The dump mode of sample file.
@ -697,21 +719,21 @@ double upperPlotFieldBox[] = [1.0 1.0 1.0];
// -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36), // -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36),
// -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40), // -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40),
// -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47), // -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47),
// -- transition intermittency(intermittency, 51), -transition momentum thickness reynolds(MomentumThicknessReynolds, 52), // -- transition intermittency(intermittency, 51), transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- overlap iblank(iblank, 81) // -- local CFL Number(localCFL, 57), minimal CFL Number(minCFL, 58),
// -- overlap iblank(iblank, 81),
// -- specific heat ratio(gama, 56) // -- specific heat ratio(gama, 56), Knudsen number(kn, 60), Damkohler number(Da, 61), vibrational nonequilibrium number(Vi, 62).
// Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!! // Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!!
// Variables order must from small to big. // Variables order must from small to big.
//-----------the optional parameters list for the wall boundary condition---------------- //-----------the optional parameters list for the wall boundary condition----------------
// nVisualWallVariables: The number of visual variables on wall. // nVisualWallVariables: The number of visual variables on wall.
// visualWallVariables : dumped variable types, listed as following: // visualWallVariables : dumped variable types, listed as following:
// -coefficient of pressure(cp, 0), -coefficient of friction(cf, 1), yplus(2), -non-dimensional heat flux(Q_NonDim, 3), -dimensional heat flux(Q_Dim, 4), // -- coefficient of pressure(cp, 0), coefficient of friction(cf, 1), yplus(2), non-dimensional heat flux(Q_NonDim, 3), dimensional heat flux(Q_Dim, 4),
// -pressure on wall(pw, 5), -temperature on wall(Tw, 6), -density on wall(rhow, 7), -heat flux of translational-rotational temperature term(Qtr, 8), // -- pressure on wall(pw, 5), temperature on wall(Tw, 6), density on wall(rhow, 7), heat flux of translational-rotational temperature term(Qtr, 8),
// -heat flux of species diffusion term(Qs, 9), -heat flux of vibrational temperature term(Qv, 10), -heat flux of electron temperature term(Qe, 11), // -- heat flux of species diffusion term(Qs, 9), heat flux of vibrational temperature term(Qv, 10), heat flux of electron temperature term(Qe, 11),
// -species mass fractions(Ns, 12), -x component of wall velocity(Vx, 13), -y component of wall velocity(Vy, 14), -z component of wall velocity(Vz, 15) // -- species mass fractions(Ns, 12), x component of wall velocity(Vx, 13), y component of wall velocity(Vy, 14), z component of wall velocity(Vz, 15),
// -slip translational-rotational temperature(Tts, 16), -slip vibrational temperature(Tvs, 17), -slip electron temperature(Tes, 18), -absolute wall velocity(Vs, 19) // -- slip translational-rotational temperature(Tts, 16), slip vibrational temperature(Tvs, 17), slip electron temperature(Tes, 18), absolute wall velocity(Vs, 19),
// -Stanton number(St, 20), -coefficient of heat rate(Ch, 21), -temperature jump(deltaT, 22), -Grid Reynolds number on wall(Re_w, 23) // -- Stanton number(St, 20), coefficient of heat rate(Ch, 21), temperature jump(deltaT, 22), Grid Reynolds number on wall(Re_w, 23), Knudsen number(Kn_wall, 24).
int nVisualVariables = 8; int nVisualVariables = 8;
int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15]; int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15];
@ -739,7 +761,9 @@ int dumpStandardModel = 0;
// 1 -- Real cell where the probe is located. // 1 -- Real cell where the probe is located.
// nProbeVariables: Number of variables want to be dumped for probes monitered. // nProbeVariables: Number of variables want to be dumped for probes monitered.
// probeVariables : Variable types dumped, listed as following: // probeVariables : Variable types dumped, listed as following:
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6). // -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6),
// -- dimensioanl_density(7), dimensioanl_u(8), dimensioanl_v(9),
// -- dimensioanl_w(10), dimensioanl_pressure(11), dimensioanl_temperature(12).
// Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!! // Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!!
// probeVariables order must from small to big. // probeVariables order must from small to big.
// probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables. // probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables.
@ -761,12 +785,13 @@ string probesDefineFile = "bin/probes_XYZ.dat";
int searchCellsMethod = 0; int searchCellsMethod = 0;
int nProbeVariables = 7; int nProbeVariables = 14;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6]; int probeVariables[] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13];
int probeVariablesInterpolationMethod = 0; int probeVariablesInterpolationMethod = 0;
//-----------------------------------------------------------------------
# Turbulence Parameter # #************************************************************************
//----------------------------------------------------------------------- # Turbulence Parameter *
#************************************************************************
// turbInterval: Iteration number of turbulence. // turbInterval: Iteration number of turbulence.
// kindOfTurbSource: Kinds of turbulent source. // kindOfTurbSource: Kinds of turbulent source.
// 0 -- Original. // 0 -- Original.
@ -774,15 +799,12 @@ int probeVariablesInterpolationMethod = 0;
// transitionType: transition model type // transitionType: transition model type
// 0 -- none. // 0 -- none.
// 2 -- gama-re-theta. // 2 -- gama-re-theta.
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition // turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition.
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not // freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not.
int turbInterval = 1; int turbInterval = 1;
int turbOrderStruct = 2; int turbOrderStruct = 2;
int kindOfTurbSource = 0; int kindOfTurbSource = 0;
int mod_turb_res = 0; int mod_turb_res = 0;
double turb_relax = 1.0;
double freeStreamViscosity = 1.0e-3; double freeStreamViscosity = 1.0e-3;
double muoo = 3.0; double muoo = 3.0;
double kwoo = 5.0; double kwoo = 5.0;
@ -791,28 +813,27 @@ double turbIntensity = -1.0;
int freeturbIntensitySRModify = 0; int freeturbIntensitySRModify = 0;
double freeDecayXLocation = 0.0; double freeDecayXLocation = 0.0;
int compressibleCorrection = 0; int compressibleCorrection = 0;
int prandtlNumberCorrection = 0;
int transitionMaFix = 1; int transitionMaFix = 1;
# maximum eddy viscosity (myt/my) max. // maximum eddy viscosity (myt/my) max.
double eddyViscosityLimit = 1.0e10; double eddyViscosityLimit = 1.0e10;
int monitor_vistmax = 0; int monitor_vistmax = 0;
//----------------------------------------------------------------------- #************************************************************************
# LES Parameter # # LES Parameter *
//----------------------------------------------------------------------- #************************************************************************
// iLES: Create LESSolver or not. // iLES: Create LESSolver or not.
// = 1 - Create LESSolver; // = 1 -- Create LESSolver;
// != 1 - not. // != 1 -- not.
// amplitudeofDisturb: Amplitude of adding disturb. // amplitudeofDisturb: Amplitude of adding disturb.
// disturbstep: Unsteady time step or steady iteration of adding random disturb. // disturbstep: Unsteady time step or steady iteration of adding random disturb.
// iterdisturb: Add random disturb in every sub-iter or only first sub-iter. // iterdisturb: Add random disturb in every sub-iter or only first sub-iter.
// = 0 - in only first sub-iter; // = 0 -- in only first sub-iter;
// != 0 - in every sub-iter. // != 0 -- in every sub-iter.
// ipraddisturb: Add density and pressure disturb or not. // ipraddisturb: Add density and pressure disturb or not.
// ibodyforce: Add body force in source flux of NS equations or not. // ibodyforce: Add body force in source flux of NS equations or not.
// = 0 - not; // = 0 -- not;
// != 0 - Add body force. // != 0 -- Add body force.
// bodyforce: Body force in source flux of NS equations or not. // bodyforce: Body force in source flux of NS equations or not.
// utau: friction velocity, using in DNSDisturb. // utau: friction velocity, using in DNSDisturb.
// sgsmodel: subgrid scale model. // sgsmodel: subgrid scale model.
@ -820,23 +841,22 @@ int monitor_vistmax = 0;
// = "dsmCom"; // = "dsmCom";
// = "wale"; // = "wale";
// = "sigma". // = "sigma".
// deltaFunctionType: = 1 - MAX(deltai, deltaj, deltak); // deltaFunctionType: = 1 -- MAX(deltai, deltaj, deltak);
// = 2 - pow(deltai * deltaj *deltak, 1/3); // = 2 -- pow(deltai * deltaj *deltak, 1/3);
// = 3 - Devloped by Scotti. // = 3 -- Devloped by Scotti.
// wallDampingFunctionType: = 0 - no wall function; // wallDampingFunctionType: = 0 -- no wall function;
// = 1 - van Driest; // = 1 -- van Driest;
// = 2 - developed by Dr. Deng Xiaobing; // = 2 -- developed by Dr. Deng Xiaobing;
// = 3 - developed by Piomelli. // = 3 -- developed by Piomelli.
// turbViscousCutType: turbulent viscosity cut type. // turbViscousCutType: turbulent viscosity cut type.
// = 0 - mu_total = mut + mul; // = 0 -- mu_total = mut + mul;
// = 1 - mu_total = max(mut-mul,0)+ mul; // = 1 -- mu_total = max(mut-mul, 0) + mul;
// = 2 - mu_total = max(mut ,0)+ mul. // = 2 -- mu_total = max(mut , 0) + mul.
// smagConstant: constant of smagorinsky model. // smagConstant: constant of smagorinsky model.
// waleConstant: constant of wale model. // waleConstant: constant of wale model.
// filterDirection [3]: filter variables in i, j, k direction or not. // filterDirection [3]: filter variables in i, j, k direction or not.
// averageDirection[3]: average variables in i, j, k direction or not. // averageDirection[3]: average variables in i, j, k direction or not.
// isotropicConstant: constant of isotropic part of SGS stress. // isotropicConstant: constant of isotropic part of SGS stress.
int iLES = 0; int iLES = 0;
string sgsmodel = "smagorinsky"; string sgsmodel = "smagorinsky";
int deltaFunctionType = 2; int deltaFunctionType = 2;
@ -852,9 +872,9 @@ double testFilterScale = 2.0;
int averageWidth = 1; int averageWidth = 1;
int monitorNegativeConstant = 0; int monitorNegativeConstant = 0;
//----------------------------------------------------------------------- #************************************************************************
# Other Parameters for Hypersonic Non-equilibrium Gas # # Other Parameters for Hypersonic Non-equilibrium Gas *
//----------------------------------------------------------------------- #************************************************************************
// dg_high_order: // dg_high_order:
// 0 -- generic order accuracy. // 0 -- generic order accuracy.
// 1 -- high order accuracy. // 1 -- high order accuracy.
@ -862,9 +882,6 @@ int monitorNegativeConstant = 0;
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver,
// isAdaptiveSolver>0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -886,14 +903,13 @@ int monitorNegativeConstant = 0;
// nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied. // nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied.
// 0 -- perfect gas. // 0 -- perfect gas.
// 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component. // 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component.
// nPCWCycleStep: the maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition. // nPCWCycleStep: The maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: the maximum step number of iteration in the module of computing radiation equilibrium temperature on wall. // nRETCycleStep: The maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:the maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction. // nSLIPCycleStep:The maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nSlipBCModel: The computational model of slip boundary conditions. // nSlipBCModel: The computational model of slip boundary conditions.
// 0 -- no slip. // 0 -- no slip.
// 1 -- the conventional Maxwell slip conditions. // 1 -- the conventional Maxwell slip conditions.
// 2 -- the Gokcen slip conditions. // 2 -- the Gokcen slip conditions.
@ -913,10 +929,13 @@ int monitorNegativeConstant = 0;
// 1 -- One-temperature model. // 1 -- One-temperature model.
// 2 -- Two-temperature model. // 2 -- Two-temperature model.
// 3 -- Three-temperature model. // 3 -- Three-temperature model.
// isUseNoneqCond:
// 0 -- compute the source terms without any conditions.
// 1 -- compute the source terms using the non-equilibrium condition.
// frozenCondition: the threshold value of frozen chemical flow condition, 0.1 is the default value.
// nIdealState: whether take all gas species as ideal gas for gas-mixture process. // nIdealState: whether take all gas species as ideal gas for gas-mixture process.
// 0 -- No. // 0 -- No.
// 1 -- Yes. // 1 -- Yes. // nTEnergyModel: the method to computing temperature energy model.
// nTEnergyModel: the method to computing temperature energy model.
// 0 -- the energy term is computed using the conventional method. // 0 -- the energy term is computed using the conventional method.
// 1 -- the energy term is computed using the polynomial fitting method. // 1 -- the energy term is computed using the polynomial fitting method.
// 2 -- the energy term is computed using the piecewise polynomial fitting method. // 2 -- the energy term is computed using the piecewise polynomial fitting method.
@ -946,14 +965,13 @@ int monitorNegativeConstant = 0;
// 1.0 -- proposed by Maxwell. // 1.0 -- proposed by Maxwell.
// sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall. // sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall.
// 1.146 -- proposed for an additional "fictitious" velocity slip. // 1.146 -- proposed for an additional "fictitious" velocity slip.
// chemicalRelaxCorf: The value is in range of [0.001, 1.0]. // chemicalRelaxCorf: The value is in range of [0.001, 1.0].
// spectrumRadiusCoef: The value is in range of [0.0, 2.0]. // spectrumRadiusCoef: The value is in range of [0.0, 2.0].
// staticPressureRelaxCorf: The value is in range of [0.1, 1.0]. // staticPressureRelaxCorf: The value is in range of [0.1, 1.0].
// nIsChemicalFreeze: the flag to freeze the chemical reactions. // nIsChemicalFreeze: the flag to freeze the chemical reactions.
// 0 -- not freeze, the chemical reaction sources will be calculated. // 0 -- not freeze, the chemical reaction sources will be calculated.
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.// veTemperatureMin: The minimum of Tv and Te // 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.
// veTemperatureMin: The minimum of Tv and Te.
// maxViscous: the maximum of Viscous. // maxViscous: the maximum of Viscous.
// trTemperatureMin: the minimum value of trTemperature. // trTemperatureMin: the minimum value of trTemperature.
// veTemperatureMin: the minimum value of veTemperature. // veTemperatureMin: the minimum value of veTemperature.
@ -965,36 +983,34 @@ int monitorNegativeConstant = 0;
// nSpeciesLimit: limitter of gas species // nSpeciesLimit: limitter of gas species
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction // nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction.
// 0 -- method 0. // 0 -- method 0.
// 1 -- method 1. // 1 -- method 1.
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid // nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nViscosityPeModified: Pe Modified for ViscosityCoef // nViscosityPeModified: Pe Modified for ViscosityCoef.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nChemcalSourceModified: Modified on ChemcalSource // nChemcalSourceModified: Modified on ChemcalSource.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nChemcalSourceEsMethod: Modified on ChemcalSource // nChemcalSourceEsMethod: Modified on ChemcalSource.
// 0 -- approximation algorithm 1 (Ori.) // 0 -- approximation algorithm 1 (Ori).
// 1 -- approximation algorithm 2 (New) // 1 -- approximation algorithm 2 (New).
// nMaxStepTemperature: the iterative steps of temperature. // nMaxStepTemperature: the iterative steps of temperature.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs // 0 -- not used.
// 0 -- not used // 1 -- used.
// 1 -- used // nDiagonalModified: Modified on Diagonal.
// 0 -- not used.
// nDiagonalModified: Modified on Diagonal // 1 -- new.
// 0 -- not used // nDiagonalModifiedTurb: Modified on Diagonal for turbulence.
// 1 -- Ori. // 0 -- not used.
// 2 -- new // 1 -- new.
// nGradPrimtiveMethod: // nGradPrimtiveMethod:
// 0 -- Ori. // 0 -- Ori.
// 1 -- new // 1 -- new.
// nAblation: // nAblation:
// 0 -- The wall ablation is not computed. // 0 -- The wall ablation is not computed.
// 1 -- The wall ablation is computed. // 1 -- The wall ablation is computed.
@ -1017,8 +1033,8 @@ int monitorNegativeConstant = 0;
// "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas. // "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas.
// "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions. // "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions.
// "Gas-Mixture" -- indicates the process of mixing gas without reacting. // "Gas-Mixture" -- indicates the process of mixing gas without reacting.
// for struct solver mixing two species£¨SpeciesA, SpeciesB£©. // for struct solver mixing two species<65><73>SpeciesA, SpeciesB<73><42>.
// for unstruct solver mixing multi-species£¨O2 NO CO CO2 H2 N2 Air CH4£©. // for unstruct solver mixing multi-species<65><73>O2 NO CO CO2 H2 N2 Air CH4<48><34>.
// For self-definition model, the gasfile is used to indicate the file path of the new gas model. // For self-definition model, the gasfile is used to indicate the file path of the new gas model.
// speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma. // speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma.
// initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName. // initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName.
@ -1040,13 +1056,16 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting : Setting for HyFLOW GUI.
// 0 -- PHengLEI
// 1 -- HyFLOW
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no // 0 -- no.
// 1 -- yes // 1 -- yes.
// nTvChange: Judge whether the Tv equals Ttr.
// 0 -- yes.
// 1 -- no.
// isMoleFractionType: 1 indicates the mass fractions, or else the mole fractions.
// nFraction: the initial fractions type of species.
// 0 -- mass fraction.
// 1 -- mole fraction.
int dg_high_order = 0; int dg_high_order = 0;
int iapplication = 0; int iapplication = 0;
int isAdaptiveSolver = 0; int isAdaptiveSolver = 0;
@ -1114,6 +1133,7 @@ double densityMin = 1.0e-8;
double densityMinFactor = 0.1; double densityMinFactor = 0.1;
double tAdjustmentFactor = 10.0; double tAdjustmentFactor = 10.0;
double iniSpeedCoef = 1.0; double iniSpeedCoef = 1.0;
int iniSpeedMode = 0;
int nDebug = 0; int nDebug = 0;
int nSpeciesLimit = 1; int nSpeciesLimit = 1;
@ -1125,18 +1145,21 @@ int nChemcalSourceEsMethod = 1;
int nMaxStepTemperature = 5; int nMaxStepTemperature = 5;
int veTemperatureMinModified = 1; int veTemperatureMinModified = 1;
int nDiagonalModified = 0; int nDiagonalModified = 0;
int nDiagonalModifiedTurb = 0;
int nGradPrimtiveMethod = 1; int nGradPrimtiveMethod = 1;
int nInviscidFluxModify = 1; int nInviscidFluxModify = 1;
int nQlLimitMethod = 2; int nQlLimitMethod = 2;
int nSpeciesForWallMethod = 1; int nSpeciesForWallMethod = 1;
int nDensityForWallMethod = 0; int nDensityForWallMethod = 0;
int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
int nMarsModel = 0; int nMarsModel = 0;
int nTvChange = 0;
int isMoleFractionType = 0;
string gasfile = "DK5"; string gasfile = "DK5";
//string gasfile = "./chemical/Dunn-Kang_air5s11r.dat"; //string gasfile = "./chemical/Dunn-Kang_air5s11r.dat";
string speciesName = "O, O2, NO, N, N2"; string speciesName = "O, O2, NO, N, N2";
@ -1173,9 +1196,17 @@ double molecularWeightSpeciesB = 30.0;
//string speciesName = "O2, N2"; //string speciesName = "O2, N2";
//string initMassFraction = "1.0, 0.0"; //string initMassFraction = "1.0, 0.0";
int nFraction = 0;
int nContinueModel = 0; int nContinueModel = 0;
int nChemicalFlowStep = 0; int nChemicalFlowStep = 0;
int ifStartFromPerfectGasResults = 0; int ifStartFromPerfectGasResults = 0;
int isUseNoneqCond = 0;
double frozenCondition = 0.01;
int nLeakageMonitor = 0;
double totalLeakageVolume = 1000.0;
double monitorThresholdValue = 0.05;
double sprayFactor = 0.0;
######################################################################### #########################################################################
// Multi-Grid parameters. // Multi-Grid parameters.
@ -1196,7 +1227,6 @@ int ifStartFromPerfectGasResults = 0;
// 1 -- zero order. // 1 -- zero order.
// 2 -- first-order. (default) // 2 -- first-order. (default)
// mgCorrectionLimit: Multi-grid correction limit. // mgCorrectionLimit: Multi-grid correction limit.
int nMGLevel = 1; int nMGLevel = 1;
int MGCoarsestIteration = 1; int MGCoarsestIteration = 1;
int MGPreIteration = 1; int MGPreIteration = 1;
@ -1226,9 +1256,9 @@ string holeFullFileName = "./grid/holeFullFile.dat";
string linkFileName = "./grid/topology.dat"; string linkFileName = "./grid/topology.dat";
string zoneInverseFileName = "./grid/zoneInverseMapping.inp"; string zoneInverseFileName = "./grid/zoneInverseMapping.inp";
######################################################################### #************************************************************************
# High Order Struct Solver # # High Order Struct Solver *
######################################################################### #************************************************************************
// isFVMOrFDM: // isFVMOrFDM:
// 0 -- NSSolverStruct using Finite Volume Method. // 0 -- NSSolverStruct using Finite Volume Method.
// 1 -- NSSolverStruct using Finite Differ Method. // 1 -- NSSolverStruct using Finite Differ Method.
@ -1273,10 +1303,29 @@ int allReduceStep = 1;
// codeOfOversetGrid: Overlapping(overset) grid or not. // codeOfOversetGrid: Overlapping(overset) grid or not.
// 0 -- NON-overlapping grid. // 0 -- NON-overlapping grid.
// 1 -- Overlapping grid. // 1 -- Overlapping grid.
// oversetInterpolationMethod: the method of overset interpolation while field simulation // oversetInterpolationMethod: the method of overset interpolation while field simulation.
// 0 -- set the acceptor cell value by donor cell value. // 0 -- set the acceptor cell value by donor cell value.
// 1 -- set the acceptor cell value by distance weight of donor cell value. // 1 -- set the acceptor cell value by distance weight of donor cell value.
// readOversetFileOrNo: Whether to read overset-file(.ovs) that has been generated.
// 0 -- no.
// 1 -- yes.
// symetryOrNot: If there exist symetryplanes(XY plane, the coordinate of Z direction is 0) in
// the current overset grid(only for three dimension).
// 0 -- no.
// 1 -- yes.
// readInAuxiliaryInnerGrid: Whether to read auxiliary inner grid.
// 0 -- no.
// 1 -- yes.
// walldistMainZone: The initial value of background grid which does not exist wall boundary condition.
// toleranceForOversetSearch: The tolerance of overset searching zone to judge whether the obtained node is in the current computing cell.
// toleranceForOversetBox: The tolerance of building the minimum box of computing cells in the overlapping region.
// twoOrderInterpolationOrNot: The number of interpolated cell layers in the overlapping boundary.
// 0 -- one layer.
// 1 -- two layers.
// keyEnlargeOfActiveNodes: The number of enlarged overset-boundary layers in the buffer region.
// outTecplotOverset: Whether to dump out the flowfield data after the progress of overset configure.
// 0 -- no.
// 1 -- yes.
int codeOfOversetGrid = 0; int codeOfOversetGrid = 0;
int oversetInterpolationMethod = 0; int oversetInterpolationMethod = 0;
int readOversetFileOrNot = 0; int readOversetFileOrNot = 0;
@ -1295,7 +1344,6 @@ int twoOrderInterpolationOrNot = 0;
int keyEnlargeOfActiveNodes = 0; int keyEnlargeOfActiveNodes = 0;
int outTecplotOverset = 0; int outTecplotOverset = 0;
int outPutOversetVisualization = 0; int outPutOversetVisualization = 0;
int numberOfMovingBodies = 2; int numberOfMovingBodies = 2;
// ----------------- ALE configuration ------------------------------ // ----------------- ALE configuration ------------------------------
@ -1306,34 +1354,40 @@ double referenceLength = 1.0;
double referenceVelocity = 1.0; double referenceVelocity = 1.0;
double referenceDensity = 1.0; double referenceDensity = 1.0;
int strategyForFaceNormalVelocity = 0; //0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd; int strategyForFaceNormalVelocity = 0; // 0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd.
int strategyForGCLSource = 0; //0-present; 1-Ahn; int strategyForGCLSource = 0; // 0-present; 1-Ahn.
//0:1st-Admas-Bashforth; 1:2nd-Admas-Bashforth; 2:1st-Implicit-Euler; 3:2nd-Implicit Euler; 4:2nd-Adams-Moulton; 5:3rd-Adams-Moulton // 0: 1st-Admas-Bashforth; 1: 2nd-Admas-Bashforth; 2: 1st-Implicit-Euler; 3: 2nd-Implicit Euler; 4: 2nd-Adams-Moulton; 5: 3rd-Adams-Moulton.
int methodForKineticEquation = 0; int methodForKineticEquation = 0;
double relaxParameterOfKinetic = 1.0; double relaxParameterOfKinetic = 1.0;
######################################################################### #************************************************************************
# motive information # # motive information *
######################################################################### #************************************************************************
int numberOfMovingBodies = 1; int numberOfMovingBodies = 1;
############################## body0 ############################## ############################## body0 ##############################
//mass of parts // mass of parts.
double mass_0 = 1.0; double mass_0 = 1.0;
//mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz // gravity of parts (along negative direction in Y-axis, eg. 9.8).
double gravity_0 = 0.0;
// mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz.
double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0; double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0;
//initial six DOF position information of parts. xc yc zc // initial six DOF position information of parts. xc yc zc.
double massCenter_0[] = 0.0, 0.0, 0.0; double massCenter_0[] = 0.0, 0.0, 0.0;
//initial six DOF position information of parts. angleX angleY angleZ // if reset mass center while restart.
int resetMassCenter_0 = 0;
// position offset of parts. dx dy dz.
double massCenterDxyz_0[] = 0.0, 0.0, 0.0;
// initial six DOF position information of parts. angleX angleY angleZ.
double attitudeAngle_0[] = 0.0, 0.0, 0.0; double attitudeAngle_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. vc vy vz // initial six DOF move information of parts. vc vy vz.
double massCenterVelocity_0[] = 0.0, 0.0, 0.0; double massCenterVelocity_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. omigX omigY omigZ // initial six DOF move information of parts. omigX omigY omigZ.
double angularVelocity_0[] = 0.0, 0.0, 0.0; double angularVelocity_0[] = 0.0, 0.0, 0.0;
// the object that the parts belong to. // the object that the parts belong to.
int fartherIndex_0 = -1; int fartherIndex_0 = -1;
//the assembly position of the parts. xc yc zc angleX angleY angleZ // the assembly position of the parts. xc yc zc angleX angleY angleZ.
double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0; double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
// the move pattern of the parts. // the move pattern of the parts.
// -1 given motion partten. // -1 given motion partten.
@ -1349,23 +1403,24 @@ double configPamameter_0[] = 0.0 ,0.0 ,0.0 ,0.0 ,0.0
int RBDMethod_0 = 0; int RBDMethod_0 = 0;
double amplitude_0 = 0.0; double amplitude_0 = 0.0;
double reduceFrequency_0 = 0.0; double reduceFrequency_0 = 0.0;
//direction of rotation // direction of rotation.
// 1 -- clockwise from the point of view along the positive x axis. // 1 -- clockwise from the point of view along the positive x axis.
// -1 -- anticlockwise from the point of view along the positive x axis. // -1 -- anticlockwise from the point of view along the positive x axis.
int direction_0 = -1; int direction_0 = -1;
double rotateFrequency_0 = 0.0; double rotateFrequency_0 = 0.0;
//string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter"; //string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter";
//additional force (system axis) fX fY fZ // dimensional physical time for additional force(s).
double addedForceTime_0[] = 0.0;
// additional force(inertia system) fX fY fZ.
double addedForce_0[] = 0.0, 0.0, 0.0; double addedForce_0[] = 0.0, 0.0, 0.0;
//additional moment of Force (system axis) mX mY mZ // additional moment(inertia system) mX mY mZ.
double addedMoment_0[] = 0.0, 0.0, 0.0; double addedMoment_0[] = 0.0, 0.0, 0.0;
// the deformation method of the parts. // the deformation method of the parts.
int morphing_0 = 0; int morphing_0 = 0;
// post indentify // post indentify.
int integralOrder = 4; int integralOrder = 4;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;
@ -1379,18 +1434,34 @@ int integralOrder = 4;
//@string outLetFileName = "./bin/subsonicOutlet.hypara"; //@string outLetFileName = "./bin/subsonicOutlet.hypara";
//@double refDimensionalVelocity = 0; //@double refDimensionalVelocity = 0;
//@double refDimensionalDensity = 0; //@double refDimensionalDensity = 0;
//@string weatherDataFilePath = "./WRFData/";
######################################################################### //@double longitude = 110.95
# Old Parameter # //@double latitude = 19.61;
######################################################################### #************************************************************************
# Old Parameter *
#************************************************************************
int isPlotVolumeField = 0; int isPlotVolumeField = 0;
#************************************************************************
# partial flow field setting Parameter *
#************************************************************************
//int nPartialParameter = 0; // 0/1/2
//int nNumberOfPartialField = 0; //
//int nStartGridIndex[] = [0];
//int nEndGridIndex[] = [0];
######################################################################### //double partialCFL[] = [0.0];
# Incompressible Parameter # //double partialSpeedCoef[] = [0.0];
######################################################################### //double partialSpeed[] = [0.0];
//double partialAttackd[] = [0.0];
//double partialSlide[] = [0.0];
//double partialPressure[] = [0.0];
//double partialTemperature[] = [0.0];
//double partialMassFractions[] = [0.0];
#************************************************************************
# Incompressible Parameter *
#************************************************************************
int isSolveEnergyEquation = 0; int isSolveEnergyEquation = 0;
int isSolveTurbEquation = 0; int isSolveTurbEquation = 0;
int isSolveSpeciesEquation = 0; int isSolveSpeciesEquation = 0;

View File

@ -4,9 +4,12 @@
// gridtype: Grid type for generation, conversion, reconstruction, merging. // gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid. // 0 -- Unstructured grid.
// 1 -- Structured grid. // 1 -- Structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion. // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// 1 -- Y upward. (default) // axisRotateOrder : axis rotating order.
// 2 -- Z upward. // 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
// from_gtype: Type of grid data type in grid conversion process. // from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE. // -1 -- MULTI_TYPE.
// 1 -- PHengLEI, *.fts. // 1 -- PHengLEI, *.fts.
@ -18,7 +21,9 @@
// 7 -- Hybrid, include both of unstructured and structured grid, *.fts. // 7 -- Hybrid, include both of unstructured and structured grid, *.fts.
// 8 -- GMSH, *.msh. // 8 -- GMSH, *.msh.
int gridtype = 0; int gridtype = 0;
int axisup = 1; int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
int from_gtype = 2; int from_gtype = 2;
######################################################################### #########################################################################

View File

@ -8,6 +8,7 @@
// Platform for Hybrid Engineering Simulation of Flows + // Platform for Hybrid Engineering Simulation of Flows +
// China Aerodynamics Research and Development Center + // China Aerodynamics Research and Development Center +
// (C) Copyright, Since 2010 + // (C) Copyright, Since 2010 +
// PHengLEI 2212 +
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
########################################################################### ###########################################################################
# Default parameters for Grid conversion # # Default parameters for Grid conversion #
@ -46,19 +47,24 @@ int gridobj = 1;
int multiblock = 0; int multiblock = 0;
int iadapt = 0; int iadapt = 0;
int SymmetryFaceVector = 1; int SymmetryFaceVector = 1;
int gridReorder = 0; int gridReorder = 0;
int faceReorderMethod = 0; int faceReorderMethod = 0;
// axisup: Type of Cartisien coordinates system, used in grid conversion. // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// 1 -- Y upward. (default) // axisRotateOrder : axis rotating order.
// 2 -- Z upward. // 1 -- X-axis.
int axisup = 1; // 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
// omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition". // omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition".
// 0 -- Interface. (default) // 0 -- Interface. (default)
// 1 -- Physical boundary condition, used in Hybrid solver. // 1 -- Physical boundary condition, used in Hybrid solver.
int omit_no_bound_bc = 0; int omit_no_bound_bc = 0;
int omitRepeatInterface = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# Grid data type # # Grid data type #
@ -89,7 +95,6 @@ int dumpOldGrid = 0;
int numberOfGridFile = 1; int numberOfGridFile = 1;
string from_gfile = "./grid/rae2822_hybrid2d.cas"; string from_gfile = "./grid/rae2822_hybrid2d.cas";
string from_gfile1 = ""; string from_gfile1 = "";
string out_gfile = "./grid/flat_laminr_133_85_2d.fts"; string out_gfile = "./grid/flat_laminr_133_85_2d.fts";
// ----------------- some advanced choices ------------------------------ // ----------------- some advanced choices ------------------------------
@ -178,7 +183,6 @@ double influencePara = 25.0;
which only support one direction. which only support one direction.
// rotationAngle: The relative angle between two periodic face. // rotationAngle: The relative angle between two periodic face.
which is recorded in degrees. which is recorded in degrees.
int periodicType = 0; int periodicType = 0;
double translationLength[] = [0.0, 0.0, 0.0]; double translationLength[] = [0.0, 0.0, 0.0];
double rotationAngle = 0.0; double rotationAngle = 0.0;
@ -192,7 +196,6 @@ double rotationAngle = 0.0;
// 2 -- refine structured grid. // 2 -- refine structured grid.
// maxproc: The number of partition zones that want to be divided into. // maxproc: The number of partition zones that want to be divided into.
// numberOfMultifile: The number of partition grid files that want to be dumped out. // numberOfMultifile: The number of partition grid files that want to be dumped out.
int pgridtype = 0; int pgridtype = 0;
int maxproc = 4; int maxproc = 4;
int numberOfMultifile = 1; int numberOfMultifile = 1;
@ -207,8 +210,8 @@ int blockIndexOfMark = 0;
int cellIndexOfMark[] = [185, 30, 1]; int cellIndexOfMark[] = [185, 30, 1];
// parallelStrategy: // parallelStrategy:
//! -# 0 : each zone is assigned to the one that defined in grid partition procedure. // 0 -- each zone is assigned to the one that defined in grid partition procedure.
//! -# 1 : random assigned for each zone or by some else ways. // 1 -- random assigned for each zone or by some else ways.
int parallelStrategy = 1; int parallelStrategy = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
@ -232,7 +235,6 @@ string partition_grid_file = "./grid/sphere_mixed__4.fts";
// 1 -- perfect balance. // 1 -- perfect balance.
// maxproc -- perfect imbalance. // maxproc -- perfect imbalance.
// 1.05 -- recommended. // 1.05 -- recommended.
int omit_no_bound_bc = 0; int omit_no_bound_bc = 0;
int npartmethod = 1; int npartmethod = 1;
int parallelPartitionMethod = 2; int parallelPartitionMethod = 2;
@ -253,24 +255,30 @@ int numberOfMultigrid = 1;
// intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved. // intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved.
// intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved. // intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved.
// intervalStepRes: The step intervals for residual file 'res.dat' saved. // intervalStepRes: The step intervals for residual file 'res.dat' saved.
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
int maxSimuStep = 20000; int maxSimuStep = 20000;
int intervalStepFlow = 1000; int intervalStepFlow = 1000;
int intervalStepPlot = 1000; int intervalStepPlot = 1000;
int intervalStepSample = 1000; int intervalStepSample = 1000;
int intervalStepForce = 100; int intervalStepForce = 100;
int intervalStepRes = 10; int intervalStepRes = 10;
int ifLowSpeedPrecon = 0;
// compressible: // compressible:
// 0 -- incompressible flow. // 0 -- incompressible flow.
// 1 -- compressible flow. (default) // 1 -- compressible flow. (default)
int compressible = 1; int compressible = 1;
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
// Kprec: The coefficient K for the cut-off velocity.
// 1.0~3.0 is suggested. (default, 3.0)
// preconFarfieldBCMethod: The precondition method for farfield boundary condition.
// 0 -- precondition far-field boundary based on riemann invariants.
// 1 -- Turkel's simplified far-field boundary condition.
int ifLowSpeedPrecon = 0;
double Kprec = 3.0;
int preconFarfieldBCMethod = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# CFD Control Parameter # # CFD Control Parameter #
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
@ -281,9 +289,12 @@ int compressible = 1;
// 0 -- the nondimensional conditions. // 0 -- the nondimensional conditions.
// 1 -- the flight conditions. // 1 -- the flight conditions.
// 2 -- the experiment conditions. // 2 -- the experiment conditions.
// 3 -- the subsonic boundary conditions. // 3 -- the subsonic boundary conditions. (Useless!)
// 4 -- the condition that the velocity, temperature and density are given. // 4 -- the condition that the velocity, temperature and density are given.
// 5 -- the condition that the velocity, temperature and pressure are given. // 5 -- the condition that the velocity, temperature and pressure are given.
//flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -303,11 +314,11 @@ int compressible = 1;
// condition is radiation equilibrium temperature, and 0.8 is the default value. // condition is radiation equilibrium temperature, and 0.8 is the default value.
// refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol. // refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol.
// Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on. // Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on.
int directionMethod = 0; int directionMethod = 0;
double refMachNumber = 0.73; double refMachNumber = 0.73;
double attackd = 2.79; double attackd = 2.79;
double angleSlide = 0.00; double angleSlide = 0.00;
int flowInitMethod = 0;
int inflowParaType = 0; int inflowParaType = 0;
double refReNumber = 6.5e6; double refReNumber = 6.5e6;
@ -321,14 +332,6 @@ double freestream_vibration_temperature = 300.00;
//double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2). //double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2).
//double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)). //double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)).
//int inflowParaType = 3;
//int nsubsonicInlet = 1;
//int nsubsonicOutlet = 1;
//string inLetFileName = "./bin/subsonicInlet.hypara";
//string outLetFileName = "./bin/subsonicOutlet.hypara";
//double refDimensionalTemperature = 288.144;
//double refDimensionalPressure = 1.01313E05;
// The velocity, temperature and density are fixed. // The velocity, temperature and density are fixed.
//int inflowParaType = 4; //int inflowParaType = 4;
//double refDimensionalVelocity = 1000.0; //double refDimensionalVelocity = 1000.0;
@ -341,9 +344,15 @@ double freestream_vibration_temperature = 300.00;
// The MachNumber, temperature and pressure are fixed. // The MachNumber, temperature and pressure are fixed.
//int inflowParaType = 6; //int inflowParaType = 6;
//double refDimensionalTemperature = 293; //double refDimensionalTemperature = 293.0;
//double refDimensionalPressure = 8886.06; //double refDimensionalPressure = 8886.06;
// The velocity, temperature and pressure are read from file.
//int inflowParaType = 7;
//string weatherDataFilePath = "./WRFData/";
//double longitude = 110.95
//double latitude = 19.61;
double wallTemperature = -1.0; double wallTemperature = -1.0;
double radiationCoef = 0.8; double radiationCoef = 0.8;
@ -357,35 +366,35 @@ double forceReferenceArea = 1.0; // unit of meter^2.
double TorqueRefX = 0.0; // unit of meter. double TorqueRefX = 0.0; // unit of meter.
double TorqueRefY = 0.0; // unit of meter. double TorqueRefY = 0.0; // unit of meter.
double TorqueRefZ = 0.0; // unit of meter. double TorqueRefZ = 0.0; // unit of meter.
double knudsenLength = 1.0; // unit of meter.
double refMolecularWeight = 28.9644; // unit of g/mol. double refMolecularWeight = 28.9644; // unit of g/mol.
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# Spatial Discretisation # # Spatial Discretisation #
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
#******************************************************************* #************************************************************************
# Struct Solver * # Struct Solver *
#******************************************************************* #************************************************************************
// inviscidSchemeName: Spatial discretisation scheme of struct grid. // inviscidSchemeName: Spatial discretisation scheme of struct grid.
// Using this when solve structered grid or hybrid. // Using this when solve structered grid or hybrid.
// -- "vanleer", "steger", "hlle", "lax_f". // -- "vanleer", "steger", "hlle", "lax_f",
// -- "roe", "modified_roe". // -- "roe", "modified_roe",
// -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+". // -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+".
// isWennScheme: If using WENN Scheme of struct grid. // isWennScheme: If using WENN Scheme of struct grid.
// 0 -- NO. (default) // 0 -- NO. (default)
// 1 -- Yes. // 1 -- Yes.
// str_limiter_name: Limiter of struct grid. // str_limiter_name: Limiter of struct grid.
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth". // -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth",
// -- "nolim", no limiter. // -- "nolim", no limiter,
// -- "vanalbada_clz", clz supersonic version. // -- "vanalbada_clz", clz supersonic version,
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3" // -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3".
string inviscidSchemeName = "roe"; string inviscidSchemeName = "roe";
int isWennScheme = 0; int isWennScheme = 0;
string str_limiter_name = "vanalbada"; string str_limiter_name = "vanalbada";
#******************************************************************* #************************************************************************
# UnStruct Solver or Common * # UnStruct Solver or Common *
#******************************************************************* #************************************************************************
// viscousType: Viscous model. // viscousType: Viscous model.
// 0 -- Euler. // 0 -- Euler.
// 1 -- Lamilar. // 1 -- Lamilar.
@ -410,11 +419,11 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle". // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod". // -- "barth", "vencat", "vanleer", "minmod",
// -- "vanalbada", "smooth", "nnd", "lpz", "1st". // -- "vanalbada", "smooth", "nnd", "lpz", "1st",
// -- "nolim", no limiter. // -- "nolim", no limiter.
// uns_vis_name: Discretisation method of viscous term. // uns_vis_name: Discretisation method of viscous term.
// -- "std", "test", "aver", "new1", "new2". // -- "std", "test", "aver", "new1", "new2".
@ -442,7 +451,7 @@ string str_limiter_name = "vanalbada";
// 3 -- Harten type, which is default used. // 3 -- Harten type, which is default used.
// roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0. // roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0.
// It is used to scale the default Roe entropy fix coefficients. // It is used to scale the default Roe entropy fix coefficients.
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0 // AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0.
//int viscousType = 0; //int viscousType = 0;
//string viscousName = "Euler"; //string viscousName = "Euler";
@ -475,9 +484,9 @@ double roeEntropyScale = 1.0;
double AusmpwPlusLimiter = 1.0; double AusmpwPlusLimiter = 1.0;
//----------------------------------------------------------------------- #************************************************************************
# Temporal Discretisation # # Temporal Discretisation *
//----------------------------------------------------------------------- #************************************************************************
// iunsteady: Steady or unsteady. // iunsteady: Steady or unsteady.
// 0 -- steady. // 0 -- steady.
// 1 -- unsteay. // 1 -- unsteay.
@ -504,11 +513,18 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// useLUSGSprecond: Initialize flow field for GMRES.
// 0 --Initialize by first order Jacobian matrix.
// 1 --Initialize by LUSGS.
// GMRESInitStep : the number of iteration step of irst order Jacobian matrix or LUSGS for initialize flow field.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -533,7 +549,6 @@ double AusmpwPlusLimiter = 1.0;
// 2 -- Pab3D wall function. // 2 -- Pab3D wall function.
// RKStage: The number of Runge-Kutta step. // RKStage: The number of Runge-Kutta step.
// lamda: Cofficient of Runge-Kutta step. // lamda: Cofficient of Runge-Kutta step.
int iunsteady = 0; int iunsteady = 0;
double physicalTimeStep = 0.01; double physicalTimeStep = 0.01;
double physicalTimeStepDimensional = -0.001; double physicalTimeStepDimensional = -0.001;
@ -543,7 +558,7 @@ int ifStaticsReynoldsStress = 0;
int startStatisticStep = 800000; int startStatisticStep = 800000;
double statisticalTimePeriod = -1.0; double statisticalTimePeriod = -1.0;
int statisticMethod = 0; int statisticMethod = 0;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2; int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2.
int methodOfDualTime = 3; int methodOfDualTime = 3;
int min_sub_iter = 50; int min_sub_iter = 50;
@ -558,7 +573,10 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 9;
int useLUSGSprecond = 1;
int GMRESInitStep = 1000;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -575,7 +593,7 @@ int order = 2;
double visl_min = 0.01; double visl_min = 0.01;
double turbCFLScale = 1.0; double turbCFLScale = 1.0;
double csrv = 2.0; double csrv = 1.0;
double timemax = 1.0e10; double timemax = 1.0e10;
double dtsave = -1.0; double dtsave = -1.0;
int maxale = 10; int maxale = 10;
@ -591,10 +609,9 @@ double lamda[] = [0.5, 1.0];
//int RKStage = 4; //int RKStage = 4;
//double lamda[] = [0.25, 0.33333333333, 0.5, 1.0]; //double lamda[] = [0.25, 0.33333333333, 0.5, 1.0];
#************************************************************************
//----------------------------------------------------------------------- # File In or Out *
# File In or Out # #************************************************************************
//-----------------------------------------------------------------------
// numberOfGridGroups: The number of grid groups. // numberOfGridGroups: The number of grid groups.
// gridfile: The partitioned Grid file path, using relative path, // gridfile: The partitioned Grid file path, using relative path,
// which is relative to the working directory. // which is relative to the working directory.
@ -618,10 +635,8 @@ double lamda[] = [0.5, 1.0];
// nIsComputeWallDist: Whether to compute the wall distance. // nIsComputeWallDist: Whether to compute the wall distance.
// 0 -- Compute wall distance. // 0 -- Compute wall distance.
// 1 -- Not compute. // 1 -- Not compute.
//
// protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism. // protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism.
// wall_heatfluxfile: The file to output the MaxHeatFlux of wall. // wall_heatfluxfile: The file to output the MaxHeatFlux of wall.
int numberOfGridGroups = 1; int numberOfGridGroups = 1;
string gridfile = "./grid/rae2822_hybrid2d__4.fts"; string gridfile = "./grid/rae2822_hybrid2d__4.fts";
string wallTemperaturefile = ""; string wallTemperaturefile = "";
@ -632,10 +647,12 @@ int cellMethodOrNodeMethod = 0;
string resSaveFile = "results/res.dat"; string resSaveFile = "results/res.dat";
string turbresfile = "results/turbres.dat"; string turbresfile = "results/turbres.dat";
string transitionResFile = "results/transitionRes.dat";
string aircoeffile = "results/aircoef.dat"; string aircoeffile = "results/aircoef.dat";
string restartNSFile = "results/flow.dat"; string restartNSFile = "results/flow.dat";
string turbfile = "results/turb.dat"; string turbfile = "results/turb.dat";
string transitionFile = "results/transition.dat";
string visualfile = "results/tecflow.plt"; string visualfile = "results/tecflow.plt";
string wall_aircoefile = "results/wall_aircoef.dat"; string wall_aircoefile = "results/wall_aircoef.dat";
@ -645,11 +662,15 @@ string protectionFile0 = "results/flow0.dat";
string protectionFile1 = "results/flow1.dat"; string protectionFile1 = "results/flow1.dat";
string wall_heatfluxfile = "results/wall_heatflux.dat"; string wall_heatfluxfile = "results/wall_heatflux.dat";
string protectionTurbFile0 = "results/turb0.dat";
string protectionTurbFile1 = "results/turb1.dat";
string protectionTransitionFile0 = "results/transition0.dat";
string protectionTransitionFile1 = "results/transition1.dat";
int nDumpSurfaceInfo = 0; int nDumpSurfaceInfo = 0;
string wall_varfile = ""; string wall_varfile = "";
string jetDefineFile = "bin/jet.hypara";
string sixDofFileName = "results/sixDofInfo.dat"; string sixDofFileName = "results/sixDofInfo.dat";
string derivativeFileName = "results/identify.dat"; string derivativeFileName = "results/identify.dat";
string hysteresisFileName = "results/force_beta.plt"; string hysteresisFileName = "results/force_beta.plt";
@ -659,7 +680,8 @@ int plotFieldType = 0;
// visualfileType: The file type of visualfile. // visualfileType: The file type of visualfile.
// 0 -- Tecplot binary. // 0 -- Tecplot binary.
// 1 -- Tecplot ASCII. // 1 -- Tecplot ASCII.
// 2 -- Ensight binary.
// 3 -- Ensight ASCII.
int visualfileType = 1; int visualfileType = 1;
// samplefileMode: The dump mode of sample file. // samplefileMode: The dump mode of sample file.
@ -697,21 +719,21 @@ double upperPlotFieldBox[] = [1.0 1.0 1.0];
// -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36), // -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36),
// -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40), // -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40),
// -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47), // -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47),
// -- transition intermittency(intermittency, 51), -transition momentum thickness reynolds(MomentumThicknessReynolds, 52), // -- transition intermittency(intermittency, 51), transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- overlap iblank(iblank, 81) // -- local CFL Number(localCFL, 57), minimal CFL Number(minCFL, 58),
// -- overlap iblank(iblank, 81),
// -- specific heat ratio(gama, 56) // -- specific heat ratio(gama, 56), Knudsen number(kn, 60), Damkohler number(Da, 61), vibrational nonequilibrium number(Vi, 62).
// Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!! // Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!!
// Variables order must from small to big. // Variables order must from small to big.
//-----------the optional parameters list for the wall boundary condition---------------- //-----------the optional parameters list for the wall boundary condition----------------
// nVisualWallVariables: The number of visual variables on wall. // nVisualWallVariables: The number of visual variables on wall.
// visualWallVariables : dumped variable types, listed as following: // visualWallVariables : dumped variable types, listed as following:
// -coefficient of pressure(cp, 0), -coefficient of friction(cf, 1), yplus(2), -non-dimensional heat flux(Q_NonDim, 3), -dimensional heat flux(Q_Dim, 4), // -- coefficient of pressure(cp, 0), coefficient of friction(cf, 1), yplus(2), non-dimensional heat flux(Q_NonDim, 3), dimensional heat flux(Q_Dim, 4),
// -pressure on wall(pw, 5), -temperature on wall(Tw, 6), -density on wall(rhow, 7), -heat flux of translational-rotational temperature term(Qtr, 8), // -- pressure on wall(pw, 5), temperature on wall(Tw, 6), density on wall(rhow, 7), heat flux of translational-rotational temperature term(Qtr, 8),
// -heat flux of species diffusion term(Qs, 9), -heat flux of vibrational temperature term(Qv, 10), -heat flux of electron temperature term(Qe, 11), // -- heat flux of species diffusion term(Qs, 9), heat flux of vibrational temperature term(Qv, 10), heat flux of electron temperature term(Qe, 11),
// -species mass fractions(Ns, 12), -x component of wall velocity(Vx, 13), -y component of wall velocity(Vy, 14), -z component of wall velocity(Vz, 15) // -- species mass fractions(Ns, 12), x component of wall velocity(Vx, 13), y component of wall velocity(Vy, 14), z component of wall velocity(Vz, 15),
// -slip translational-rotational temperature(Tts, 16), -slip vibrational temperature(Tvs, 17), -slip electron temperature(Tes, 18), -absolute wall velocity(Vs, 19) // -- slip translational-rotational temperature(Tts, 16), slip vibrational temperature(Tvs, 17), slip electron temperature(Tes, 18), absolute wall velocity(Vs, 19),
// -Stanton number(St, 20), -coefficient of heat rate(Ch, 21), -temperature jump(deltaT, 22), -Grid Reynolds number on wall(Re_w, 23) // -- Stanton number(St, 20), coefficient of heat rate(Ch, 21), temperature jump(deltaT, 22), Grid Reynolds number on wall(Re_w, 23), Knudsen number(Kn_wall, 24).
int nVisualVariables = 8; int nVisualVariables = 8;
int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15]; int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15];
@ -739,7 +761,9 @@ int dumpStandardModel = 0;
// 1 -- Real cell where the probe is located. // 1 -- Real cell where the probe is located.
// nProbeVariables: Number of variables want to be dumped for probes monitered. // nProbeVariables: Number of variables want to be dumped for probes monitered.
// probeVariables : Variable types dumped, listed as following: // probeVariables : Variable types dumped, listed as following:
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6). // -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6),
// -- dimensioanl_density(7), dimensioanl_u(8), dimensioanl_v(9),
// -- dimensioanl_w(10), dimensioanl_pressure(11), dimensioanl_temperature(12).
// Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!! // Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!!
// probeVariables order must from small to big. // probeVariables order must from small to big.
// probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables. // probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables.
@ -761,12 +785,13 @@ string probesDefineFile = "bin/probes_XYZ.dat";
int searchCellsMethod = 0; int searchCellsMethod = 0;
int nProbeVariables = 7; int nProbeVariables = 14;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6]; int probeVariables[] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13];
int probeVariablesInterpolationMethod = 0; int probeVariablesInterpolationMethod = 0;
//-----------------------------------------------------------------------
# Turbulence Parameter # #************************************************************************
//----------------------------------------------------------------------- # Turbulence Parameter *
#************************************************************************
// turbInterval: Iteration number of turbulence. // turbInterval: Iteration number of turbulence.
// kindOfTurbSource: Kinds of turbulent source. // kindOfTurbSource: Kinds of turbulent source.
// 0 -- Original. // 0 -- Original.
@ -774,15 +799,12 @@ int probeVariablesInterpolationMethod = 0;
// transitionType: transition model type // transitionType: transition model type
// 0 -- none. // 0 -- none.
// 2 -- gama-re-theta. // 2 -- gama-re-theta.
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition // turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition.
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not // freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not.
int turbInterval = 1; int turbInterval = 1;
int turbOrderStruct = 2; int turbOrderStruct = 2;
int kindOfTurbSource = 0; int kindOfTurbSource = 0;
int mod_turb_res = 0; int mod_turb_res = 0;
double turb_relax = 1.0;
double freeStreamViscosity = 1.0e-3; double freeStreamViscosity = 1.0e-3;
double muoo = 3.0; double muoo = 3.0;
double kwoo = 5.0; double kwoo = 5.0;
@ -791,28 +813,27 @@ double turbIntensity = -1.0;
int freeturbIntensitySRModify = 0; int freeturbIntensitySRModify = 0;
double freeDecayXLocation = 0.0; double freeDecayXLocation = 0.0;
int compressibleCorrection = 0; int compressibleCorrection = 0;
int prandtlNumberCorrection = 0;
int transitionMaFix = 1; int transitionMaFix = 1;
# maximum eddy viscosity (myt/my) max. // maximum eddy viscosity (myt/my) max.
double eddyViscosityLimit = 1.0e10; double eddyViscosityLimit = 1.0e10;
int monitor_vistmax = 0; int monitor_vistmax = 0;
//----------------------------------------------------------------------- #************************************************************************
# LES Parameter # # LES Parameter *
//----------------------------------------------------------------------- #************************************************************************
// iLES: Create LESSolver or not. // iLES: Create LESSolver or not.
// = 1 - Create LESSolver; // = 1 -- Create LESSolver;
// != 1 - not. // != 1 -- not.
// amplitudeofDisturb: Amplitude of adding disturb. // amplitudeofDisturb: Amplitude of adding disturb.
// disturbstep: Unsteady time step or steady iteration of adding random disturb. // disturbstep: Unsteady time step or steady iteration of adding random disturb.
// iterdisturb: Add random disturb in every sub-iter or only first sub-iter. // iterdisturb: Add random disturb in every sub-iter or only first sub-iter.
// = 0 - in only first sub-iter; // = 0 -- in only first sub-iter;
// != 0 - in every sub-iter. // != 0 -- in every sub-iter.
// ipraddisturb: Add density and pressure disturb or not. // ipraddisturb: Add density and pressure disturb or not.
// ibodyforce: Add body force in source flux of NS equations or not. // ibodyforce: Add body force in source flux of NS equations or not.
// = 0 - not; // = 0 -- not;
// != 0 - Add body force. // != 0 -- Add body force.
// bodyforce: Body force in source flux of NS equations or not. // bodyforce: Body force in source flux of NS equations or not.
// utau: friction velocity, using in DNSDisturb. // utau: friction velocity, using in DNSDisturb.
// sgsmodel: subgrid scale model. // sgsmodel: subgrid scale model.
@ -820,23 +841,22 @@ int monitor_vistmax = 0;
// = "dsmCom"; // = "dsmCom";
// = "wale"; // = "wale";
// = "sigma". // = "sigma".
// deltaFunctionType: = 1 - MAX(deltai, deltaj, deltak); // deltaFunctionType: = 1 -- MAX(deltai, deltaj, deltak);
// = 2 - pow(deltai * deltaj *deltak, 1/3); // = 2 -- pow(deltai * deltaj *deltak, 1/3);
// = 3 - Devloped by Scotti. // = 3 -- Devloped by Scotti.
// wallDampingFunctionType: = 0 - no wall function; // wallDampingFunctionType: = 0 -- no wall function;
// = 1 - van Driest; // = 1 -- van Driest;
// = 2 - developed by Dr. Deng Xiaobing; // = 2 -- developed by Dr. Deng Xiaobing;
// = 3 - developed by Piomelli. // = 3 -- developed by Piomelli.
// turbViscousCutType: turbulent viscosity cut type. // turbViscousCutType: turbulent viscosity cut type.
// = 0 - mu_total = mut + mul; // = 0 -- mu_total = mut + mul;
// = 1 - mu_total = max(mut-mul,0)+ mul; // = 1 -- mu_total = max(mut-mul, 0) + mul;
// = 2 - mu_total = max(mut ,0)+ mul. // = 2 -- mu_total = max(mut , 0) + mul.
// smagConstant: constant of smagorinsky model. // smagConstant: constant of smagorinsky model.
// waleConstant: constant of wale model. // waleConstant: constant of wale model.
// filterDirection [3]: filter variables in i, j, k direction or not. // filterDirection [3]: filter variables in i, j, k direction or not.
// averageDirection[3]: average variables in i, j, k direction or not. // averageDirection[3]: average variables in i, j, k direction or not.
// isotropicConstant: constant of isotropic part of SGS stress. // isotropicConstant: constant of isotropic part of SGS stress.
int iLES = 0; int iLES = 0;
string sgsmodel = "smagorinsky"; string sgsmodel = "smagorinsky";
int deltaFunctionType = 2; int deltaFunctionType = 2;
@ -852,9 +872,9 @@ double testFilterScale = 2.0;
int averageWidth = 1; int averageWidth = 1;
int monitorNegativeConstant = 0; int monitorNegativeConstant = 0;
//----------------------------------------------------------------------- #************************************************************************
# Other Parameters for Hypersonic Non-equilibrium Gas # # Other Parameters for Hypersonic Non-equilibrium Gas *
//----------------------------------------------------------------------- #************************************************************************
// dg_high_order: // dg_high_order:
// 0 -- generic order accuracy. // 0 -- generic order accuracy.
// 1 -- high order accuracy. // 1 -- high order accuracy.
@ -862,9 +882,6 @@ int monitorNegativeConstant = 0;
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver,
// isAdaptiveSolver>0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -886,14 +903,13 @@ int monitorNegativeConstant = 0;
// nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied. // nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied.
// 0 -- perfect gas. // 0 -- perfect gas.
// 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component. // 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component.
// nPCWCycleStep: the maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition. // nPCWCycleStep: The maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: the maximum step number of iteration in the module of computing radiation equilibrium temperature on wall. // nRETCycleStep: The maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:the maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction. // nSLIPCycleStep:The maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nSlipBCModel: The computational model of slip boundary conditions. // nSlipBCModel: The computational model of slip boundary conditions.
// 0 -- no slip. // 0 -- no slip.
// 1 -- the conventional Maxwell slip conditions. // 1 -- the conventional Maxwell slip conditions.
// 2 -- the Gokcen slip conditions. // 2 -- the Gokcen slip conditions.
@ -913,10 +929,13 @@ int monitorNegativeConstant = 0;
// 1 -- One-temperature model. // 1 -- One-temperature model.
// 2 -- Two-temperature model. // 2 -- Two-temperature model.
// 3 -- Three-temperature model. // 3 -- Three-temperature model.
// isUseNoneqCond:
// 0 -- compute the source terms without any conditions.
// 1 -- compute the source terms using the non-equilibrium condition.
// frozenCondition: the threshold value of frozen chemical flow condition, 0.1 is the default value.
// nIdealState: whether take all gas species as ideal gas for gas-mixture process. // nIdealState: whether take all gas species as ideal gas for gas-mixture process.
// 0 -- No. // 0 -- No.
// 1 -- Yes. // 1 -- Yes. // nTEnergyModel: the method to computing temperature energy model.
// nTEnergyModel: the method to computing temperature energy model.
// 0 -- the energy term is computed using the conventional method. // 0 -- the energy term is computed using the conventional method.
// 1 -- the energy term is computed using the polynomial fitting method. // 1 -- the energy term is computed using the polynomial fitting method.
// 2 -- the energy term is computed using the piecewise polynomial fitting method. // 2 -- the energy term is computed using the piecewise polynomial fitting method.
@ -946,14 +965,13 @@ int monitorNegativeConstant = 0;
// 1.0 -- proposed by Maxwell. // 1.0 -- proposed by Maxwell.
// sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall. // sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall.
// 1.146 -- proposed for an additional "fictitious" velocity slip. // 1.146 -- proposed for an additional "fictitious" velocity slip.
// chemicalRelaxCorf: The value is in range of [0.001, 1.0]. // chemicalRelaxCorf: The value is in range of [0.001, 1.0].
// spectrumRadiusCoef: The value is in range of [0.0, 2.0]. // spectrumRadiusCoef: The value is in range of [0.0, 2.0].
// staticPressureRelaxCorf: The value is in range of [0.1, 1.0]. // staticPressureRelaxCorf: The value is in range of [0.1, 1.0].
// nIsChemicalFreeze: the flag to freeze the chemical reactions. // nIsChemicalFreeze: the flag to freeze the chemical reactions.
// 0 -- not freeze, the chemical reaction sources will be calculated. // 0 -- not freeze, the chemical reaction sources will be calculated.
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.// veTemperatureMin: The minimum of Tv and Te // 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.
// veTemperatureMin: The minimum of Tv and Te.
// maxViscous: the maximum of Viscous. // maxViscous: the maximum of Viscous.
// trTemperatureMin: the minimum value of trTemperature. // trTemperatureMin: the minimum value of trTemperature.
// veTemperatureMin: the minimum value of veTemperature. // veTemperatureMin: the minimum value of veTemperature.
@ -965,36 +983,34 @@ int monitorNegativeConstant = 0;
// nSpeciesLimit: limitter of gas species // nSpeciesLimit: limitter of gas species
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction // nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction.
// 0 -- method 0. // 0 -- method 0.
// 1 -- method 1. // 1 -- method 1.
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid // nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nViscosityPeModified: Pe Modified for ViscosityCoef // nViscosityPeModified: Pe Modified for ViscosityCoef.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nChemcalSourceModified: Modified on ChemcalSource // nChemcalSourceModified: Modified on ChemcalSource.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nChemcalSourceEsMethod: Modified on ChemcalSource // nChemcalSourceEsMethod: Modified on ChemcalSource.
// 0 -- approximation algorithm 1 (Ori.) // 0 -- approximation algorithm 1 (Ori).
// 1 -- approximation algorithm 2 (New) // 1 -- approximation algorithm 2 (New).
// nMaxStepTemperature: the iterative steps of temperature. // nMaxStepTemperature: the iterative steps of temperature.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs // 0 -- not used.
// 0 -- not used // 1 -- used.
// 1 -- used // nDiagonalModified: Modified on Diagonal.
// 0 -- not used.
// nDiagonalModified: Modified on Diagonal // 1 -- new.
// 0 -- not used // nDiagonalModifiedTurb: Modified on Diagonal for turbulence.
// 1 -- Ori. // 0 -- not used.
// 2 -- new // 1 -- new.
// nGradPrimtiveMethod: // nGradPrimtiveMethod:
// 0 -- Ori. // 0 -- Ori.
// 1 -- new // 1 -- new.
// nAblation: // nAblation:
// 0 -- The wall ablation is not computed. // 0 -- The wall ablation is not computed.
// 1 -- The wall ablation is computed. // 1 -- The wall ablation is computed.
@ -1017,8 +1033,8 @@ int monitorNegativeConstant = 0;
// "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas. // "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas.
// "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions. // "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions.
// "Gas-Mixture" -- indicates the process of mixing gas without reacting. // "Gas-Mixture" -- indicates the process of mixing gas without reacting.
// for struct solver mixing two species£¨SpeciesA, SpeciesB£©. // for struct solver mixing two species<65><73>SpeciesA, SpeciesB<73><42>.
// for unstruct solver mixing multi-species£¨O2 NO CO CO2 H2 N2 Air CH4£©. // for unstruct solver mixing multi-species<65><73>O2 NO CO CO2 H2 N2 Air CH4<48><34>.
// For self-definition model, the gasfile is used to indicate the file path of the new gas model. // For self-definition model, the gasfile is used to indicate the file path of the new gas model.
// speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma. // speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma.
// initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName. // initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName.
@ -1040,13 +1056,16 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting : Setting for HyFLOW GUI.
// 0 -- PHengLEI
// 1 -- HyFLOW
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no // 0 -- no.
// 1 -- yes // 1 -- yes.
// nTvChange: Judge whether the Tv equals Ttr.
// 0 -- yes.
// 1 -- no.
// isMoleFractionType: 1 indicates the mass fractions, or else the mole fractions.
// nFraction: the initial fractions type of species.
// 0 -- mass fraction.
// 1 -- mole fraction.
int dg_high_order = 0; int dg_high_order = 0;
int iapplication = 0; int iapplication = 0;
int isAdaptiveSolver = 0; int isAdaptiveSolver = 0;
@ -1114,6 +1133,7 @@ double densityMin = 1.0e-8;
double densityMinFactor = 0.1; double densityMinFactor = 0.1;
double tAdjustmentFactor = 10.0; double tAdjustmentFactor = 10.0;
double iniSpeedCoef = 1.0; double iniSpeedCoef = 1.0;
int iniSpeedMode = 0;
int nDebug = 0; int nDebug = 0;
int nSpeciesLimit = 1; int nSpeciesLimit = 1;
@ -1125,18 +1145,21 @@ int nChemcalSourceEsMethod = 1;
int nMaxStepTemperature = 5; int nMaxStepTemperature = 5;
int veTemperatureMinModified = 1; int veTemperatureMinModified = 1;
int nDiagonalModified = 0; int nDiagonalModified = 0;
int nDiagonalModifiedTurb = 0;
int nGradPrimtiveMethod = 1; int nGradPrimtiveMethod = 1;
int nInviscidFluxModify = 1; int nInviscidFluxModify = 1;
int nQlLimitMethod = 2; int nQlLimitMethod = 2;
int nSpeciesForWallMethod = 1; int nSpeciesForWallMethod = 1;
int nDensityForWallMethod = 0; int nDensityForWallMethod = 0;
int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
int nMarsModel = 0; int nMarsModel = 0;
int nTvChange = 0;
int isMoleFractionType = 0;
string gasfile = "DK5"; string gasfile = "DK5";
//string gasfile = "./chemical/Dunn-Kang_air5s11r.dat"; //string gasfile = "./chemical/Dunn-Kang_air5s11r.dat";
string speciesName = "O, O2, NO, N, N2"; string speciesName = "O, O2, NO, N, N2";
@ -1173,9 +1196,17 @@ double molecularWeightSpeciesB = 30.0;
//string speciesName = "O2, N2"; //string speciesName = "O2, N2";
//string initMassFraction = "1.0, 0.0"; //string initMassFraction = "1.0, 0.0";
int nFraction = 0;
int nContinueModel = 0; int nContinueModel = 0;
int nChemicalFlowStep = 0; int nChemicalFlowStep = 0;
int ifStartFromPerfectGasResults = 0; int ifStartFromPerfectGasResults = 0;
int isUseNoneqCond = 0;
double frozenCondition = 0.01;
int nLeakageMonitor = 0;
double totalLeakageVolume = 1000.0;
double monitorThresholdValue = 0.05;
double sprayFactor = 0.0;
######################################################################### #########################################################################
// Multi-Grid parameters. // Multi-Grid parameters.
@ -1196,7 +1227,6 @@ int ifStartFromPerfectGasResults = 0;
// 1 -- zero order. // 1 -- zero order.
// 2 -- first-order. (default) // 2 -- first-order. (default)
// mgCorrectionLimit: Multi-grid correction limit. // mgCorrectionLimit: Multi-grid correction limit.
int nMGLevel = 1; int nMGLevel = 1;
int MGCoarsestIteration = 1; int MGCoarsestIteration = 1;
int MGPreIteration = 1; int MGPreIteration = 1;
@ -1226,9 +1256,9 @@ string holeFullFileName = "./grid/holeFullFile.dat";
string linkFileName = "./grid/topology.dat"; string linkFileName = "./grid/topology.dat";
string zoneInverseFileName = "./grid/zoneInverseMapping.inp"; string zoneInverseFileName = "./grid/zoneInverseMapping.inp";
######################################################################### #************************************************************************
# High Order Struct Solver # # High Order Struct Solver *
######################################################################### #************************************************************************
// isFVMOrFDM: // isFVMOrFDM:
// 0 -- NSSolverStruct using Finite Volume Method. // 0 -- NSSolverStruct using Finite Volume Method.
// 1 -- NSSolverStruct using Finite Differ Method. // 1 -- NSSolverStruct using Finite Differ Method.
@ -1273,10 +1303,29 @@ int allReduceStep = 1;
// codeOfOversetGrid: Overlapping(overset) grid or not. // codeOfOversetGrid: Overlapping(overset) grid or not.
// 0 -- NON-overlapping grid. // 0 -- NON-overlapping grid.
// 1 -- Overlapping grid. // 1 -- Overlapping grid.
// oversetInterpolationMethod: the method of overset interpolation while field simulation // oversetInterpolationMethod: the method of overset interpolation while field simulation.
// 0 -- set the acceptor cell value by donor cell value. // 0 -- set the acceptor cell value by donor cell value.
// 1 -- set the acceptor cell value by distance weight of donor cell value. // 1 -- set the acceptor cell value by distance weight of donor cell value.
// readOversetFileOrNo: Whether to read overset-file(.ovs) that has been generated.
// 0 -- no.
// 1 -- yes.
// symetryOrNot: If there exist symetryplanes(XY plane, the coordinate of Z direction is 0) in
// the current overset grid(only for three dimension).
// 0 -- no.
// 1 -- yes.
// readInAuxiliaryInnerGrid: Whether to read auxiliary inner grid.
// 0 -- no.
// 1 -- yes.
// walldistMainZone: The initial value of background grid which does not exist wall boundary condition.
// toleranceForOversetSearch: The tolerance of overset searching zone to judge whether the obtained node is in the current computing cell.
// toleranceForOversetBox: The tolerance of building the minimum box of computing cells in the overlapping region.
// twoOrderInterpolationOrNot: The number of interpolated cell layers in the overlapping boundary.
// 0 -- one layer.
// 1 -- two layers.
// keyEnlargeOfActiveNodes: The number of enlarged overset-boundary layers in the buffer region.
// outTecplotOverset: Whether to dump out the flowfield data after the progress of overset configure.
// 0 -- no.
// 1 -- yes.
int codeOfOversetGrid = 0; int codeOfOversetGrid = 0;
int oversetInterpolationMethod = 0; int oversetInterpolationMethod = 0;
int readOversetFileOrNot = 0; int readOversetFileOrNot = 0;
@ -1295,7 +1344,6 @@ int twoOrderInterpolationOrNot = 0;
int keyEnlargeOfActiveNodes = 0; int keyEnlargeOfActiveNodes = 0;
int outTecplotOverset = 0; int outTecplotOverset = 0;
int outPutOversetVisualization = 0; int outPutOversetVisualization = 0;
int numberOfMovingBodies = 2; int numberOfMovingBodies = 2;
// ----------------- ALE configuration ------------------------------ // ----------------- ALE configuration ------------------------------
@ -1306,34 +1354,40 @@ double referenceLength = 1.0;
double referenceVelocity = 1.0; double referenceVelocity = 1.0;
double referenceDensity = 1.0; double referenceDensity = 1.0;
int strategyForFaceNormalVelocity = 0; //0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd; int strategyForFaceNormalVelocity = 0; // 0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd.
int strategyForGCLSource = 0; //0-present; 1-Ahn; int strategyForGCLSource = 0; // 0-present; 1-Ahn.
//0:1st-Admas-Bashforth; 1:2nd-Admas-Bashforth; 2:1st-Implicit-Euler; 3:2nd-Implicit Euler; 4:2nd-Adams-Moulton; 5:3rd-Adams-Moulton // 0: 1st-Admas-Bashforth; 1: 2nd-Admas-Bashforth; 2: 1st-Implicit-Euler; 3: 2nd-Implicit Euler; 4: 2nd-Adams-Moulton; 5: 3rd-Adams-Moulton.
int methodForKineticEquation = 0; int methodForKineticEquation = 0;
double relaxParameterOfKinetic = 1.0; double relaxParameterOfKinetic = 1.0;
######################################################################### #************************************************************************
# motive information # # motive information *
######################################################################### #************************************************************************
int numberOfMovingBodies = 1; int numberOfMovingBodies = 1;
############################## body0 ############################## ############################## body0 ##############################
//mass of parts // mass of parts.
double mass_0 = 1.0; double mass_0 = 1.0;
//mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz // gravity of parts (along negative direction in Y-axis, eg. 9.8).
double gravity_0 = 0.0;
// mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz.
double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0; double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0;
//initial six DOF position information of parts. xc yc zc // initial six DOF position information of parts. xc yc zc.
double massCenter_0[] = 0.0, 0.0, 0.0; double massCenter_0[] = 0.0, 0.0, 0.0;
//initial six DOF position information of parts. angleX angleY angleZ // if reset mass center while restart.
int resetMassCenter_0 = 0;
// position offset of parts. dx dy dz.
double massCenterDxyz_0[] = 0.0, 0.0, 0.0;
// initial six DOF position information of parts. angleX angleY angleZ.
double attitudeAngle_0[] = 0.0, 0.0, 0.0; double attitudeAngle_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. vc vy vz // initial six DOF move information of parts. vc vy vz.
double massCenterVelocity_0[] = 0.0, 0.0, 0.0; double massCenterVelocity_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. omigX omigY omigZ // initial six DOF move information of parts. omigX omigY omigZ.
double angularVelocity_0[] = 0.0, 0.0, 0.0; double angularVelocity_0[] = 0.0, 0.0, 0.0;
// the object that the parts belong to. // the object that the parts belong to.
int fartherIndex_0 = -1; int fartherIndex_0 = -1;
//the assembly position of the parts. xc yc zc angleX angleY angleZ // the assembly position of the parts. xc yc zc angleX angleY angleZ.
double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0; double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
// the move pattern of the parts. // the move pattern of the parts.
// -1 given motion partten. // -1 given motion partten.
@ -1349,23 +1403,24 @@ double configPamameter_0[] = 0.0 ,0.0 ,0.0 ,0.0 ,0.0
int RBDMethod_0 = 0; int RBDMethod_0 = 0;
double amplitude_0 = 0.0; double amplitude_0 = 0.0;
double reduceFrequency_0 = 0.0; double reduceFrequency_0 = 0.0;
//direction of rotation // direction of rotation.
// 1 -- clockwise from the point of view along the positive x axis. // 1 -- clockwise from the point of view along the positive x axis.
// -1 -- anticlockwise from the point of view along the positive x axis. // -1 -- anticlockwise from the point of view along the positive x axis.
int direction_0 = -1; int direction_0 = -1;
double rotateFrequency_0 = 0.0; double rotateFrequency_0 = 0.0;
//string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter"; //string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter";
//additional force (system axis) fX fY fZ // dimensional physical time for additional force(s).
double addedForceTime_0[] = 0.0;
// additional force(inertia system) fX fY fZ.
double addedForce_0[] = 0.0, 0.0, 0.0; double addedForce_0[] = 0.0, 0.0, 0.0;
//additional moment of Force (system axis) mX mY mZ // additional moment(inertia system) mX mY mZ.
double addedMoment_0[] = 0.0, 0.0, 0.0; double addedMoment_0[] = 0.0, 0.0, 0.0;
// the deformation method of the parts. // the deformation method of the parts.
int morphing_0 = 0; int morphing_0 = 0;
// post indentify // post indentify.
int integralOrder = 4; int integralOrder = 4;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;
@ -1379,18 +1434,34 @@ int integralOrder = 4;
//@string outLetFileName = "./bin/subsonicOutlet.hypara"; //@string outLetFileName = "./bin/subsonicOutlet.hypara";
//@double refDimensionalVelocity = 0; //@double refDimensionalVelocity = 0;
//@double refDimensionalDensity = 0; //@double refDimensionalDensity = 0;
//@string weatherDataFilePath = "./WRFData/";
######################################################################### //@double longitude = 110.95
# Old Parameter # //@double latitude = 19.61;
######################################################################### #************************************************************************
# Old Parameter *
#************************************************************************
int isPlotVolumeField = 0; int isPlotVolumeField = 0;
#************************************************************************
# partial flow field setting Parameter *
#************************************************************************
//int nPartialParameter = 0; // 0/1/2
//int nNumberOfPartialField = 0; //
//int nStartGridIndex[] = [0];
//int nEndGridIndex[] = [0];
######################################################################### //double partialCFL[] = [0.0];
# Incompressible Parameter # //double partialSpeedCoef[] = [0.0];
######################################################################### //double partialSpeed[] = [0.0];
//double partialAttackd[] = [0.0];
//double partialSlide[] = [0.0];
//double partialPressure[] = [0.0];
//double partialTemperature[] = [0.0];
//double partialMassFractions[] = [0.0];
#************************************************************************
# Incompressible Parameter *
#************************************************************************
int isSolveEnergyEquation = 0; int isSolveEnergyEquation = 0;
int isSolveTurbEquation = 0; int isSolveTurbEquation = 0;
int isSolveSpeciesEquation = 0; int isSolveSpeciesEquation = 0;

View File

@ -4,9 +4,12 @@
// gridtype: Grid type for generation, conversion, reconstruction, merging. // gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid. // 0 -- Unstructured grid.
// 1 -- Structured grid. // 1 -- Structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion. // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// 1 -- Y upward. (default) // axisRotateOrder : axis rotating order.
// 2 -- Z upward. // 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
// from_gtype: Type of grid data type in grid conversion process. // from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE. // -1 -- MULTI_TYPE.
// 1 -- PHengLEI, *.fts. // 1 -- PHengLEI, *.fts.
@ -19,7 +22,9 @@
// 8 -- GMSH, *.msh. // 8 -- GMSH, *.msh.
// 9 -- Gridgen type of structured grid, *.dat/*.grd. // 9 -- Gridgen type of structured grid, *.dat/*.grd.
int gridtype = 0; int gridtype = 0;
int axisup = 1; int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
int from_gtype = 2; int from_gtype = 2;
######################################################################### #########################################################################

View File

@ -4,9 +4,12 @@
// gridtype: Grid type for generation, conversion, reconstruction, merging. // gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid. // 0 -- Unstructured grid.
// 1 -- Structured grid. // 1 -- Structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion. // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// 1 -- Y upward. (default) // axisRotateOrder : axis rotating order.
// 2 -- Z upward. // 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
// from_gtype: Type of grid data type in grid conversion process. // from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE. // -1 -- MULTI_TYPE.
// 1 -- PHengLEI, *.fts. // 1 -- PHengLEI, *.fts.
@ -18,7 +21,9 @@
// 7 -- Hybrid, include both of unstructured and structured grid, *.fts. // 7 -- Hybrid, include both of unstructured and structured grid, *.fts.
// 8 -- GMSH, *.msh. // 8 -- GMSH, *.msh.
int gridtype = 1; int gridtype = 1;
int axisup = 1; int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
int from_gtype = 3; int from_gtype = 3;
######################################################################### #########################################################################

View File

@ -4,9 +4,12 @@
// gridtype: Grid type for generation, conversion, reconstruction, merging. // gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid. // 0 -- Unstructured grid.
// 1 -- Structured grid. // 1 -- Structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion. // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// 1 -- Y upward. (default) // axisRotateOrder : axis rotating order.
// 2 -- Z upward. // 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
// from_gtype: Type of grid data type in grid conversion process. // from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE. // -1 -- MULTI_TYPE.
// 1 -- PHengLEI, *.fts. // 1 -- PHengLEI, *.fts.
@ -18,7 +21,9 @@
// 7 -- Hybrid, include both of unstructured and structured grid, *.fts. // 7 -- Hybrid, include both of unstructured and structured grid, *.fts.
// 8 -- GMSH, *.msh. // 8 -- GMSH, *.msh.
int gridtype = 1; int gridtype = 1;
int axisup = 1; int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
int from_gtype = 3; int from_gtype = 3;
######################################################################### #########################################################################

View File

@ -8,6 +8,7 @@
// Platform for Hybrid Engineering Simulation of Flows + // Platform for Hybrid Engineering Simulation of Flows +
// China Aerodynamics Research and Development Center + // China Aerodynamics Research and Development Center +
// (C) Copyright, Since 2010 + // (C) Copyright, Since 2010 +
// PHengLEI 2212 +
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
########################################################################### ###########################################################################
# Default parameters for Grid conversion # # Default parameters for Grid conversion #
@ -46,19 +47,24 @@ int gridobj = 1;
int multiblock = 0; int multiblock = 0;
int iadapt = 0; int iadapt = 0;
int SymmetryFaceVector = 1; int SymmetryFaceVector = 1;
int gridReorder = 0; int gridReorder = 0;
int faceReorderMethod = 0; int faceReorderMethod = 0;
// axisup: Type of Cartisien coordinates system, used in grid conversion. // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// 1 -- Y upward. (default) // axisRotateOrder : axis rotating order.
// 2 -- Z upward. // 1 -- X-axis.
int axisup = 1; // 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
// omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition". // omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition".
// 0 -- Interface. (default) // 0 -- Interface. (default)
// 1 -- Physical boundary condition, used in Hybrid solver. // 1 -- Physical boundary condition, used in Hybrid solver.
int omit_no_bound_bc = 0; int omit_no_bound_bc = 0;
int omitRepeatInterface = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# Grid data type # # Grid data type #
@ -89,7 +95,6 @@ int dumpOldGrid = 0;
int numberOfGridFile = 1; int numberOfGridFile = 1;
string from_gfile = "./grid/rae2822_hybrid2d.cas"; string from_gfile = "./grid/rae2822_hybrid2d.cas";
string from_gfile1 = ""; string from_gfile1 = "";
string out_gfile = "./grid/flat_laminr_133_85_2d.fts"; string out_gfile = "./grid/flat_laminr_133_85_2d.fts";
// ----------------- some advanced choices ------------------------------ // ----------------- some advanced choices ------------------------------
@ -178,7 +183,6 @@ double influencePara = 25.0;
which only support one direction. which only support one direction.
// rotationAngle: The relative angle between two periodic face. // rotationAngle: The relative angle between two periodic face.
which is recorded in degrees. which is recorded in degrees.
int periodicType = 0; int periodicType = 0;
double translationLength[] = [0.0, 0.0, 0.0]; double translationLength[] = [0.0, 0.0, 0.0];
double rotationAngle = 0.0; double rotationAngle = 0.0;
@ -192,7 +196,6 @@ double rotationAngle = 0.0;
// 2 -- refine structured grid. // 2 -- refine structured grid.
// maxproc: The number of partition zones that want to be divided into. // maxproc: The number of partition zones that want to be divided into.
// numberOfMultifile: The number of partition grid files that want to be dumped out. // numberOfMultifile: The number of partition grid files that want to be dumped out.
int pgridtype = 0; int pgridtype = 0;
int maxproc = 4; int maxproc = 4;
int numberOfMultifile = 1; int numberOfMultifile = 1;
@ -207,8 +210,8 @@ int blockIndexOfMark = 0;
int cellIndexOfMark[] = [185, 30, 1]; int cellIndexOfMark[] = [185, 30, 1];
// parallelStrategy: // parallelStrategy:
//! -# 0 : each zone is assigned to the one that defined in grid partition procedure. // 0 -- each zone is assigned to the one that defined in grid partition procedure.
//! -# 1 : random assigned for each zone or by some else ways. // 1 -- random assigned for each zone or by some else ways.
int parallelStrategy = 1; int parallelStrategy = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
@ -232,7 +235,6 @@ string partition_grid_file = "./grid/sphere_mixed__4.fts";
// 1 -- perfect balance. // 1 -- perfect balance.
// maxproc -- perfect imbalance. // maxproc -- perfect imbalance.
// 1.05 -- recommended. // 1.05 -- recommended.
int omit_no_bound_bc = 0; int omit_no_bound_bc = 0;
int npartmethod = 1; int npartmethod = 1;
int parallelPartitionMethod = 2; int parallelPartitionMethod = 2;
@ -253,24 +255,30 @@ int numberOfMultigrid = 1;
// intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved. // intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved.
// intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved. // intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved.
// intervalStepRes: The step intervals for residual file 'res.dat' saved. // intervalStepRes: The step intervals for residual file 'res.dat' saved.
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
int maxSimuStep = 20000; int maxSimuStep = 20000;
int intervalStepFlow = 1000; int intervalStepFlow = 1000;
int intervalStepPlot = 1000; int intervalStepPlot = 1000;
int intervalStepSample = 1000; int intervalStepSample = 1000;
int intervalStepForce = 100; int intervalStepForce = 100;
int intervalStepRes = 10; int intervalStepRes = 10;
int ifLowSpeedPrecon = 0;
// compressible: // compressible:
// 0 -- incompressible flow. // 0 -- incompressible flow.
// 1 -- compressible flow. (default) // 1 -- compressible flow. (default)
int compressible = 1; int compressible = 1;
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
// Kprec: The coefficient K for the cut-off velocity.
// 1.0~3.0 is suggested. (default, 3.0)
// preconFarfieldBCMethod: The precondition method for farfield boundary condition.
// 0 -- precondition far-field boundary based on riemann invariants.
// 1 -- Turkel's simplified far-field boundary condition.
int ifLowSpeedPrecon = 0;
double Kprec = 3.0;
int preconFarfieldBCMethod = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# CFD Control Parameter # # CFD Control Parameter #
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
@ -281,9 +289,12 @@ int compressible = 1;
// 0 -- the nondimensional conditions. // 0 -- the nondimensional conditions.
// 1 -- the flight conditions. // 1 -- the flight conditions.
// 2 -- the experiment conditions. // 2 -- the experiment conditions.
// 3 -- the subsonic boundary conditions. // 3 -- the subsonic boundary conditions. (Useless!)
// 4 -- the condition that the velocity, temperature and density are given. // 4 -- the condition that the velocity, temperature and density are given.
// 5 -- the condition that the velocity, temperature and pressure are given. // 5 -- the condition that the velocity, temperature and pressure are given.
//flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -303,11 +314,11 @@ int compressible = 1;
// condition is radiation equilibrium temperature, and 0.8 is the default value. // condition is radiation equilibrium temperature, and 0.8 is the default value.
// refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol. // refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol.
// Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on. // Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on.
int directionMethod = 0; int directionMethod = 0;
double refMachNumber = 0.73; double refMachNumber = 0.73;
double attackd = 2.79; double attackd = 2.79;
double angleSlide = 0.00; double angleSlide = 0.00;
int flowInitMethod = 0;
int inflowParaType = 0; int inflowParaType = 0;
double refReNumber = 6.5e6; double refReNumber = 6.5e6;
@ -321,14 +332,6 @@ double freestream_vibration_temperature = 300.00;
//double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2). //double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2).
//double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)). //double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)).
//int inflowParaType = 3;
//int nsubsonicInlet = 1;
//int nsubsonicOutlet = 1;
//string inLetFileName = "./bin/subsonicInlet.hypara";
//string outLetFileName = "./bin/subsonicOutlet.hypara";
//double refDimensionalTemperature = 288.144;
//double refDimensionalPressure = 1.01313E05;
// The velocity, temperature and density are fixed. // The velocity, temperature and density are fixed.
//int inflowParaType = 4; //int inflowParaType = 4;
//double refDimensionalVelocity = 1000.0; //double refDimensionalVelocity = 1000.0;
@ -341,9 +344,15 @@ double freestream_vibration_temperature = 300.00;
// The MachNumber, temperature and pressure are fixed. // The MachNumber, temperature and pressure are fixed.
//int inflowParaType = 6; //int inflowParaType = 6;
//double refDimensionalTemperature = 293; //double refDimensionalTemperature = 293.0;
//double refDimensionalPressure = 8886.06; //double refDimensionalPressure = 8886.06;
// The velocity, temperature and pressure are read from file.
//int inflowParaType = 7;
//string weatherDataFilePath = "./WRFData/";
//double longitude = 110.95
//double latitude = 19.61;
double wallTemperature = -1.0; double wallTemperature = -1.0;
double radiationCoef = 0.8; double radiationCoef = 0.8;
@ -357,35 +366,35 @@ double forceReferenceArea = 1.0; // unit of meter^2.
double TorqueRefX = 0.0; // unit of meter. double TorqueRefX = 0.0; // unit of meter.
double TorqueRefY = 0.0; // unit of meter. double TorqueRefY = 0.0; // unit of meter.
double TorqueRefZ = 0.0; // unit of meter. double TorqueRefZ = 0.0; // unit of meter.
double knudsenLength = 1.0; // unit of meter.
double refMolecularWeight = 28.9644; // unit of g/mol. double refMolecularWeight = 28.9644; // unit of g/mol.
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# Spatial Discretisation # # Spatial Discretisation #
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
#******************************************************************* #************************************************************************
# Struct Solver * # Struct Solver *
#******************************************************************* #************************************************************************
// inviscidSchemeName: Spatial discretisation scheme of struct grid. // inviscidSchemeName: Spatial discretisation scheme of struct grid.
// Using this when solve structered grid or hybrid. // Using this when solve structered grid or hybrid.
// -- "vanleer", "steger", "hlle", "lax_f". // -- "vanleer", "steger", "hlle", "lax_f",
// -- "roe", "modified_roe". // -- "roe", "modified_roe",
// -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+". // -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+".
// isWennScheme: If using WENN Scheme of struct grid. // isWennScheme: If using WENN Scheme of struct grid.
// 0 -- NO. (default) // 0 -- NO. (default)
// 1 -- Yes. // 1 -- Yes.
// str_limiter_name: Limiter of struct grid. // str_limiter_name: Limiter of struct grid.
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth". // -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth",
// -- "nolim", no limiter. // -- "nolim", no limiter,
// -- "vanalbada_clz", clz supersonic version. // -- "vanalbada_clz", clz supersonic version,
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3" // -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3".
string inviscidSchemeName = "roe"; string inviscidSchemeName = "roe";
int isWennScheme = 0; int isWennScheme = 0;
string str_limiter_name = "vanalbada"; string str_limiter_name = "vanalbada";
#******************************************************************* #************************************************************************
# UnStruct Solver or Common * # UnStruct Solver or Common *
#******************************************************************* #************************************************************************
// viscousType: Viscous model. // viscousType: Viscous model.
// 0 -- Euler. // 0 -- Euler.
// 1 -- Lamilar. // 1 -- Lamilar.
@ -410,11 +419,11 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle". // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod". // -- "barth", "vencat", "vanleer", "minmod",
// -- "vanalbada", "smooth", "nnd", "lpz", "1st". // -- "vanalbada", "smooth", "nnd", "lpz", "1st",
// -- "nolim", no limiter. // -- "nolim", no limiter.
// uns_vis_name: Discretisation method of viscous term. // uns_vis_name: Discretisation method of viscous term.
// -- "std", "test", "aver", "new1", "new2". // -- "std", "test", "aver", "new1", "new2".
@ -442,7 +451,7 @@ string str_limiter_name = "vanalbada";
// 3 -- Harten type, which is default used. // 3 -- Harten type, which is default used.
// roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0. // roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0.
// It is used to scale the default Roe entropy fix coefficients. // It is used to scale the default Roe entropy fix coefficients.
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0 // AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0.
//int viscousType = 0; //int viscousType = 0;
//string viscousName = "Euler"; //string viscousName = "Euler";
@ -475,9 +484,9 @@ double roeEntropyScale = 1.0;
double AusmpwPlusLimiter = 1.0; double AusmpwPlusLimiter = 1.0;
//----------------------------------------------------------------------- #************************************************************************
# Temporal Discretisation # # Temporal Discretisation *
//----------------------------------------------------------------------- #************************************************************************
// iunsteady: Steady or unsteady. // iunsteady: Steady or unsteady.
// 0 -- steady. // 0 -- steady.
// 1 -- unsteay. // 1 -- unsteay.
@ -504,11 +513,18 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// useLUSGSprecond: Initialize flow field for GMRES.
// 0 --Initialize by first order Jacobian matrix.
// 1 --Initialize by LUSGS.
// GMRESInitStep : the number of iteration step of irst order Jacobian matrix or LUSGS for initialize flow field.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -533,7 +549,6 @@ double AusmpwPlusLimiter = 1.0;
// 2 -- Pab3D wall function. // 2 -- Pab3D wall function.
// RKStage: The number of Runge-Kutta step. // RKStage: The number of Runge-Kutta step.
// lamda: Cofficient of Runge-Kutta step. // lamda: Cofficient of Runge-Kutta step.
int iunsteady = 0; int iunsteady = 0;
double physicalTimeStep = 0.01; double physicalTimeStep = 0.01;
double physicalTimeStepDimensional = -0.001; double physicalTimeStepDimensional = -0.001;
@ -543,7 +558,7 @@ int ifStaticsReynoldsStress = 0;
int startStatisticStep = 800000; int startStatisticStep = 800000;
double statisticalTimePeriod = -1.0; double statisticalTimePeriod = -1.0;
int statisticMethod = 0; int statisticMethod = 0;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2; int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2.
int methodOfDualTime = 3; int methodOfDualTime = 3;
int min_sub_iter = 50; int min_sub_iter = 50;
@ -558,7 +573,10 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 9;
int useLUSGSprecond = 1;
int GMRESInitStep = 1000;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -575,7 +593,7 @@ int order = 2;
double visl_min = 0.01; double visl_min = 0.01;
double turbCFLScale = 1.0; double turbCFLScale = 1.0;
double csrv = 2.0; double csrv = 1.0;
double timemax = 1.0e10; double timemax = 1.0e10;
double dtsave = -1.0; double dtsave = -1.0;
int maxale = 10; int maxale = 10;
@ -591,10 +609,9 @@ double lamda[] = [0.5, 1.0];
//int RKStage = 4; //int RKStage = 4;
//double lamda[] = [0.25, 0.33333333333, 0.5, 1.0]; //double lamda[] = [0.25, 0.33333333333, 0.5, 1.0];
#************************************************************************
//----------------------------------------------------------------------- # File In or Out *
# File In or Out # #************************************************************************
//-----------------------------------------------------------------------
// numberOfGridGroups: The number of grid groups. // numberOfGridGroups: The number of grid groups.
// gridfile: The partitioned Grid file path, using relative path, // gridfile: The partitioned Grid file path, using relative path,
// which is relative to the working directory. // which is relative to the working directory.
@ -618,10 +635,8 @@ double lamda[] = [0.5, 1.0];
// nIsComputeWallDist: Whether to compute the wall distance. // nIsComputeWallDist: Whether to compute the wall distance.
// 0 -- Compute wall distance. // 0 -- Compute wall distance.
// 1 -- Not compute. // 1 -- Not compute.
//
// protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism. // protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism.
// wall_heatfluxfile: The file to output the MaxHeatFlux of wall. // wall_heatfluxfile: The file to output the MaxHeatFlux of wall.
int numberOfGridGroups = 1; int numberOfGridGroups = 1;
string gridfile = "./grid/rae2822_hybrid2d__4.fts"; string gridfile = "./grid/rae2822_hybrid2d__4.fts";
string wallTemperaturefile = ""; string wallTemperaturefile = "";
@ -632,10 +647,12 @@ int cellMethodOrNodeMethod = 0;
string resSaveFile = "results/res.dat"; string resSaveFile = "results/res.dat";
string turbresfile = "results/turbres.dat"; string turbresfile = "results/turbres.dat";
string transitionResFile = "results/transitionRes.dat";
string aircoeffile = "results/aircoef.dat"; string aircoeffile = "results/aircoef.dat";
string restartNSFile = "results/flow.dat"; string restartNSFile = "results/flow.dat";
string turbfile = "results/turb.dat"; string turbfile = "results/turb.dat";
string transitionFile = "results/transition.dat";
string visualfile = "results/tecflow.plt"; string visualfile = "results/tecflow.plt";
string wall_aircoefile = "results/wall_aircoef.dat"; string wall_aircoefile = "results/wall_aircoef.dat";
@ -645,11 +662,15 @@ string protectionFile0 = "results/flow0.dat";
string protectionFile1 = "results/flow1.dat"; string protectionFile1 = "results/flow1.dat";
string wall_heatfluxfile = "results/wall_heatflux.dat"; string wall_heatfluxfile = "results/wall_heatflux.dat";
string protectionTurbFile0 = "results/turb0.dat";
string protectionTurbFile1 = "results/turb1.dat";
string protectionTransitionFile0 = "results/transition0.dat";
string protectionTransitionFile1 = "results/transition1.dat";
int nDumpSurfaceInfo = 0; int nDumpSurfaceInfo = 0;
string wall_varfile = ""; string wall_varfile = "";
string jetDefineFile = "bin/jet.hypara";
string sixDofFileName = "results/sixDofInfo.dat"; string sixDofFileName = "results/sixDofInfo.dat";
string derivativeFileName = "results/identify.dat"; string derivativeFileName = "results/identify.dat";
string hysteresisFileName = "results/force_beta.plt"; string hysteresisFileName = "results/force_beta.plt";
@ -659,7 +680,8 @@ int plotFieldType = 0;
// visualfileType: The file type of visualfile. // visualfileType: The file type of visualfile.
// 0 -- Tecplot binary. // 0 -- Tecplot binary.
// 1 -- Tecplot ASCII. // 1 -- Tecplot ASCII.
// 2 -- Ensight binary.
// 3 -- Ensight ASCII.
int visualfileType = 1; int visualfileType = 1;
// samplefileMode: The dump mode of sample file. // samplefileMode: The dump mode of sample file.
@ -697,21 +719,21 @@ double upperPlotFieldBox[] = [1.0 1.0 1.0];
// -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36), // -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36),
// -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40), // -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40),
// -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47), // -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47),
// -- transition intermittency(intermittency, 51), -transition momentum thickness reynolds(MomentumThicknessReynolds, 52), // -- transition intermittency(intermittency, 51), transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- overlap iblank(iblank, 81) // -- local CFL Number(localCFL, 57), minimal CFL Number(minCFL, 58),
// -- overlap iblank(iblank, 81),
// -- specific heat ratio(gama, 56) // -- specific heat ratio(gama, 56), Knudsen number(kn, 60), Damkohler number(Da, 61), vibrational nonequilibrium number(Vi, 62).
// Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!! // Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!!
// Variables order must from small to big. // Variables order must from small to big.
//-----------the optional parameters list for the wall boundary condition---------------- //-----------the optional parameters list for the wall boundary condition----------------
// nVisualWallVariables: The number of visual variables on wall. // nVisualWallVariables: The number of visual variables on wall.
// visualWallVariables : dumped variable types, listed as following: // visualWallVariables : dumped variable types, listed as following:
// -coefficient of pressure(cp, 0), -coefficient of friction(cf, 1), yplus(2), -non-dimensional heat flux(Q_NonDim, 3), -dimensional heat flux(Q_Dim, 4), // -- coefficient of pressure(cp, 0), coefficient of friction(cf, 1), yplus(2), non-dimensional heat flux(Q_NonDim, 3), dimensional heat flux(Q_Dim, 4),
// -pressure on wall(pw, 5), -temperature on wall(Tw, 6), -density on wall(rhow, 7), -heat flux of translational-rotational temperature term(Qtr, 8), // -- pressure on wall(pw, 5), temperature on wall(Tw, 6), density on wall(rhow, 7), heat flux of translational-rotational temperature term(Qtr, 8),
// -heat flux of species diffusion term(Qs, 9), -heat flux of vibrational temperature term(Qv, 10), -heat flux of electron temperature term(Qe, 11), // -- heat flux of species diffusion term(Qs, 9), heat flux of vibrational temperature term(Qv, 10), heat flux of electron temperature term(Qe, 11),
// -species mass fractions(Ns, 12), -x component of wall velocity(Vx, 13), -y component of wall velocity(Vy, 14), -z component of wall velocity(Vz, 15) // -- species mass fractions(Ns, 12), x component of wall velocity(Vx, 13), y component of wall velocity(Vy, 14), z component of wall velocity(Vz, 15),
// -slip translational-rotational temperature(Tts, 16), -slip vibrational temperature(Tvs, 17), -slip electron temperature(Tes, 18), -absolute wall velocity(Vs, 19) // -- slip translational-rotational temperature(Tts, 16), slip vibrational temperature(Tvs, 17), slip electron temperature(Tes, 18), absolute wall velocity(Vs, 19),
// -Stanton number(St, 20), -coefficient of heat rate(Ch, 21), -temperature jump(deltaT, 22), -Grid Reynolds number on wall(Re_w, 23) // -- Stanton number(St, 20), coefficient of heat rate(Ch, 21), temperature jump(deltaT, 22), Grid Reynolds number on wall(Re_w, 23), Knudsen number(Kn_wall, 24).
int nVisualVariables = 8; int nVisualVariables = 8;
int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15]; int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15];
@ -739,7 +761,9 @@ int dumpStandardModel = 0;
// 1 -- Real cell where the probe is located. // 1 -- Real cell where the probe is located.
// nProbeVariables: Number of variables want to be dumped for probes monitered. // nProbeVariables: Number of variables want to be dumped for probes monitered.
// probeVariables : Variable types dumped, listed as following: // probeVariables : Variable types dumped, listed as following:
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6). // -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6),
// -- dimensioanl_density(7), dimensioanl_u(8), dimensioanl_v(9),
// -- dimensioanl_w(10), dimensioanl_pressure(11), dimensioanl_temperature(12).
// Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!! // Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!!
// probeVariables order must from small to big. // probeVariables order must from small to big.
// probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables. // probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables.
@ -761,12 +785,13 @@ string probesDefineFile = "bin/probes_XYZ.dat";
int searchCellsMethod = 0; int searchCellsMethod = 0;
int nProbeVariables = 7; int nProbeVariables = 14;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6]; int probeVariables[] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13];
int probeVariablesInterpolationMethod = 0; int probeVariablesInterpolationMethod = 0;
//-----------------------------------------------------------------------
# Turbulence Parameter # #************************************************************************
//----------------------------------------------------------------------- # Turbulence Parameter *
#************************************************************************
// turbInterval: Iteration number of turbulence. // turbInterval: Iteration number of turbulence.
// kindOfTurbSource: Kinds of turbulent source. // kindOfTurbSource: Kinds of turbulent source.
// 0 -- Original. // 0 -- Original.
@ -774,15 +799,12 @@ int probeVariablesInterpolationMethod = 0;
// transitionType: transition model type // transitionType: transition model type
// 0 -- none. // 0 -- none.
// 2 -- gama-re-theta. // 2 -- gama-re-theta.
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition // turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition.
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not // freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not.
int turbInterval = 1; int turbInterval = 1;
int turbOrderStruct = 2; int turbOrderStruct = 2;
int kindOfTurbSource = 0; int kindOfTurbSource = 0;
int mod_turb_res = 0; int mod_turb_res = 0;
double turb_relax = 1.0;
double freeStreamViscosity = 1.0e-3; double freeStreamViscosity = 1.0e-3;
double muoo = 3.0; double muoo = 3.0;
double kwoo = 5.0; double kwoo = 5.0;
@ -791,28 +813,27 @@ double turbIntensity = -1.0;
int freeturbIntensitySRModify = 0; int freeturbIntensitySRModify = 0;
double freeDecayXLocation = 0.0; double freeDecayXLocation = 0.0;
int compressibleCorrection = 0; int compressibleCorrection = 0;
int prandtlNumberCorrection = 0;
int transitionMaFix = 1; int transitionMaFix = 1;
# maximum eddy viscosity (myt/my) max. // maximum eddy viscosity (myt/my) max.
double eddyViscosityLimit = 1.0e10; double eddyViscosityLimit = 1.0e10;
int monitor_vistmax = 0; int monitor_vistmax = 0;
//----------------------------------------------------------------------- #************************************************************************
# LES Parameter # # LES Parameter *
//----------------------------------------------------------------------- #************************************************************************
// iLES: Create LESSolver or not. // iLES: Create LESSolver or not.
// = 1 - Create LESSolver; // = 1 -- Create LESSolver;
// != 1 - not. // != 1 -- not.
// amplitudeofDisturb: Amplitude of adding disturb. // amplitudeofDisturb: Amplitude of adding disturb.
// disturbstep: Unsteady time step or steady iteration of adding random disturb. // disturbstep: Unsteady time step or steady iteration of adding random disturb.
// iterdisturb: Add random disturb in every sub-iter or only first sub-iter. // iterdisturb: Add random disturb in every sub-iter or only first sub-iter.
// = 0 - in only first sub-iter; // = 0 -- in only first sub-iter;
// != 0 - in every sub-iter. // != 0 -- in every sub-iter.
// ipraddisturb: Add density and pressure disturb or not. // ipraddisturb: Add density and pressure disturb or not.
// ibodyforce: Add body force in source flux of NS equations or not. // ibodyforce: Add body force in source flux of NS equations or not.
// = 0 - not; // = 0 -- not;
// != 0 - Add body force. // != 0 -- Add body force.
// bodyforce: Body force in source flux of NS equations or not. // bodyforce: Body force in source flux of NS equations or not.
// utau: friction velocity, using in DNSDisturb. // utau: friction velocity, using in DNSDisturb.
// sgsmodel: subgrid scale model. // sgsmodel: subgrid scale model.
@ -820,23 +841,22 @@ int monitor_vistmax = 0;
// = "dsmCom"; // = "dsmCom";
// = "wale"; // = "wale";
// = "sigma". // = "sigma".
// deltaFunctionType: = 1 - MAX(deltai, deltaj, deltak); // deltaFunctionType: = 1 -- MAX(deltai, deltaj, deltak);
// = 2 - pow(deltai * deltaj *deltak, 1/3); // = 2 -- pow(deltai * deltaj *deltak, 1/3);
// = 3 - Devloped by Scotti. // = 3 -- Devloped by Scotti.
// wallDampingFunctionType: = 0 - no wall function; // wallDampingFunctionType: = 0 -- no wall function;
// = 1 - van Driest; // = 1 -- van Driest;
// = 2 - developed by Dr. Deng Xiaobing; // = 2 -- developed by Dr. Deng Xiaobing;
// = 3 - developed by Piomelli. // = 3 -- developed by Piomelli.
// turbViscousCutType: turbulent viscosity cut type. // turbViscousCutType: turbulent viscosity cut type.
// = 0 - mu_total = mut + mul; // = 0 -- mu_total = mut + mul;
// = 1 - mu_total = max(mut-mul,0)+ mul; // = 1 -- mu_total = max(mut-mul, 0) + mul;
// = 2 - mu_total = max(mut ,0)+ mul. // = 2 -- mu_total = max(mut , 0) + mul.
// smagConstant: constant of smagorinsky model. // smagConstant: constant of smagorinsky model.
// waleConstant: constant of wale model. // waleConstant: constant of wale model.
// filterDirection [3]: filter variables in i, j, k direction or not. // filterDirection [3]: filter variables in i, j, k direction or not.
// averageDirection[3]: average variables in i, j, k direction or not. // averageDirection[3]: average variables in i, j, k direction or not.
// isotropicConstant: constant of isotropic part of SGS stress. // isotropicConstant: constant of isotropic part of SGS stress.
int iLES = 0; int iLES = 0;
string sgsmodel = "smagorinsky"; string sgsmodel = "smagorinsky";
int deltaFunctionType = 2; int deltaFunctionType = 2;
@ -852,9 +872,9 @@ double testFilterScale = 2.0;
int averageWidth = 1; int averageWidth = 1;
int monitorNegativeConstant = 0; int monitorNegativeConstant = 0;
//----------------------------------------------------------------------- #************************************************************************
# Other Parameters for Hypersonic Non-equilibrium Gas # # Other Parameters for Hypersonic Non-equilibrium Gas *
//----------------------------------------------------------------------- #************************************************************************
// dg_high_order: // dg_high_order:
// 0 -- generic order accuracy. // 0 -- generic order accuracy.
// 1 -- high order accuracy. // 1 -- high order accuracy.
@ -862,9 +882,6 @@ int monitorNegativeConstant = 0;
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver,
// isAdaptiveSolver>0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -886,14 +903,13 @@ int monitorNegativeConstant = 0;
// nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied. // nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied.
// 0 -- perfect gas. // 0 -- perfect gas.
// 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component. // 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component.
// nPCWCycleStep: the maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition. // nPCWCycleStep: The maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: the maximum step number of iteration in the module of computing radiation equilibrium temperature on wall. // nRETCycleStep: The maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:the maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction. // nSLIPCycleStep:The maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nSlipBCModel: The computational model of slip boundary conditions. // nSlipBCModel: The computational model of slip boundary conditions.
// 0 -- no slip. // 0 -- no slip.
// 1 -- the conventional Maxwell slip conditions. // 1 -- the conventional Maxwell slip conditions.
// 2 -- the Gokcen slip conditions. // 2 -- the Gokcen slip conditions.
@ -913,10 +929,13 @@ int monitorNegativeConstant = 0;
// 1 -- One-temperature model. // 1 -- One-temperature model.
// 2 -- Two-temperature model. // 2 -- Two-temperature model.
// 3 -- Three-temperature model. // 3 -- Three-temperature model.
// isUseNoneqCond:
// 0 -- compute the source terms without any conditions.
// 1 -- compute the source terms using the non-equilibrium condition.
// frozenCondition: the threshold value of frozen chemical flow condition, 0.1 is the default value.
// nIdealState: whether take all gas species as ideal gas for gas-mixture process. // nIdealState: whether take all gas species as ideal gas for gas-mixture process.
// 0 -- No. // 0 -- No.
// 1 -- Yes. // 1 -- Yes. // nTEnergyModel: the method to computing temperature energy model.
// nTEnergyModel: the method to computing temperature energy model.
// 0 -- the energy term is computed using the conventional method. // 0 -- the energy term is computed using the conventional method.
// 1 -- the energy term is computed using the polynomial fitting method. // 1 -- the energy term is computed using the polynomial fitting method.
// 2 -- the energy term is computed using the piecewise polynomial fitting method. // 2 -- the energy term is computed using the piecewise polynomial fitting method.
@ -946,14 +965,13 @@ int monitorNegativeConstant = 0;
// 1.0 -- proposed by Maxwell. // 1.0 -- proposed by Maxwell.
// sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall. // sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall.
// 1.146 -- proposed for an additional "fictitious" velocity slip. // 1.146 -- proposed for an additional "fictitious" velocity slip.
// chemicalRelaxCorf: The value is in range of [0.001, 1.0]. // chemicalRelaxCorf: The value is in range of [0.001, 1.0].
// spectrumRadiusCoef: The value is in range of [0.0, 2.0]. // spectrumRadiusCoef: The value is in range of [0.0, 2.0].
// staticPressureRelaxCorf: The value is in range of [0.1, 1.0]. // staticPressureRelaxCorf: The value is in range of [0.1, 1.0].
// nIsChemicalFreeze: the flag to freeze the chemical reactions. // nIsChemicalFreeze: the flag to freeze the chemical reactions.
// 0 -- not freeze, the chemical reaction sources will be calculated. // 0 -- not freeze, the chemical reaction sources will be calculated.
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.// veTemperatureMin: The minimum of Tv and Te // 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.
// veTemperatureMin: The minimum of Tv and Te.
// maxViscous: the maximum of Viscous. // maxViscous: the maximum of Viscous.
// trTemperatureMin: the minimum value of trTemperature. // trTemperatureMin: the minimum value of trTemperature.
// veTemperatureMin: the minimum value of veTemperature. // veTemperatureMin: the minimum value of veTemperature.
@ -965,36 +983,34 @@ int monitorNegativeConstant = 0;
// nSpeciesLimit: limitter of gas species // nSpeciesLimit: limitter of gas species
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction // nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction.
// 0 -- method 0. // 0 -- method 0.
// 1 -- method 1. // 1 -- method 1.
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid // nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nViscosityPeModified: Pe Modified for ViscosityCoef // nViscosityPeModified: Pe Modified for ViscosityCoef.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nChemcalSourceModified: Modified on ChemcalSource // nChemcalSourceModified: Modified on ChemcalSource.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nChemcalSourceEsMethod: Modified on ChemcalSource // nChemcalSourceEsMethod: Modified on ChemcalSource.
// 0 -- approximation algorithm 1 (Ori.) // 0 -- approximation algorithm 1 (Ori).
// 1 -- approximation algorithm 2 (New) // 1 -- approximation algorithm 2 (New).
// nMaxStepTemperature: the iterative steps of temperature. // nMaxStepTemperature: the iterative steps of temperature.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs // 0 -- not used.
// 0 -- not used // 1 -- used.
// 1 -- used // nDiagonalModified: Modified on Diagonal.
// 0 -- not used.
// nDiagonalModified: Modified on Diagonal // 1 -- new.
// 0 -- not used // nDiagonalModifiedTurb: Modified on Diagonal for turbulence.
// 1 -- Ori. // 0 -- not used.
// 2 -- new // 1 -- new.
// nGradPrimtiveMethod: // nGradPrimtiveMethod:
// 0 -- Ori. // 0 -- Ori.
// 1 -- new // 1 -- new.
// nAblation: // nAblation:
// 0 -- The wall ablation is not computed. // 0 -- The wall ablation is not computed.
// 1 -- The wall ablation is computed. // 1 -- The wall ablation is computed.
@ -1017,8 +1033,8 @@ int monitorNegativeConstant = 0;
// "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas. // "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas.
// "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions. // "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions.
// "Gas-Mixture" -- indicates the process of mixing gas without reacting. // "Gas-Mixture" -- indicates the process of mixing gas without reacting.
// for struct solver mixing two species£¨SpeciesA, SpeciesB£©. // for struct solver mixing two species<65><73>SpeciesA, SpeciesB<73><42>.
// for unstruct solver mixing multi-species£¨O2 NO CO CO2 H2 N2 Air CH4£©. // for unstruct solver mixing multi-species<65><73>O2 NO CO CO2 H2 N2 Air CH4<48><34>.
// For self-definition model, the gasfile is used to indicate the file path of the new gas model. // For self-definition model, the gasfile is used to indicate the file path of the new gas model.
// speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma. // speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma.
// initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName. // initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName.
@ -1040,13 +1056,16 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting : Setting for HyFLOW GUI.
// 0 -- PHengLEI
// 1 -- HyFLOW
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no // 0 -- no.
// 1 -- yes // 1 -- yes.
// nTvChange: Judge whether the Tv equals Ttr.
// 0 -- yes.
// 1 -- no.
// isMoleFractionType: 1 indicates the mass fractions, or else the mole fractions.
// nFraction: the initial fractions type of species.
// 0 -- mass fraction.
// 1 -- mole fraction.
int dg_high_order = 0; int dg_high_order = 0;
int iapplication = 0; int iapplication = 0;
int isAdaptiveSolver = 0; int isAdaptiveSolver = 0;
@ -1114,6 +1133,7 @@ double densityMin = 1.0e-8;
double densityMinFactor = 0.1; double densityMinFactor = 0.1;
double tAdjustmentFactor = 10.0; double tAdjustmentFactor = 10.0;
double iniSpeedCoef = 1.0; double iniSpeedCoef = 1.0;
int iniSpeedMode = 0;
int nDebug = 0; int nDebug = 0;
int nSpeciesLimit = 1; int nSpeciesLimit = 1;
@ -1125,18 +1145,21 @@ int nChemcalSourceEsMethod = 1;
int nMaxStepTemperature = 5; int nMaxStepTemperature = 5;
int veTemperatureMinModified = 1; int veTemperatureMinModified = 1;
int nDiagonalModified = 0; int nDiagonalModified = 0;
int nDiagonalModifiedTurb = 0;
int nGradPrimtiveMethod = 1; int nGradPrimtiveMethod = 1;
int nInviscidFluxModify = 1; int nInviscidFluxModify = 1;
int nQlLimitMethod = 2; int nQlLimitMethod = 2;
int nSpeciesForWallMethod = 1; int nSpeciesForWallMethod = 1;
int nDensityForWallMethod = 0; int nDensityForWallMethod = 0;
int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
int nMarsModel = 0; int nMarsModel = 0;
int nTvChange = 0;
int isMoleFractionType = 0;
string gasfile = "DK5"; string gasfile = "DK5";
//string gasfile = "./chemical/Dunn-Kang_air5s11r.dat"; //string gasfile = "./chemical/Dunn-Kang_air5s11r.dat";
string speciesName = "O, O2, NO, N, N2"; string speciesName = "O, O2, NO, N, N2";
@ -1173,9 +1196,17 @@ double molecularWeightSpeciesB = 30.0;
//string speciesName = "O2, N2"; //string speciesName = "O2, N2";
//string initMassFraction = "1.0, 0.0"; //string initMassFraction = "1.0, 0.0";
int nFraction = 0;
int nContinueModel = 0; int nContinueModel = 0;
int nChemicalFlowStep = 0; int nChemicalFlowStep = 0;
int ifStartFromPerfectGasResults = 0; int ifStartFromPerfectGasResults = 0;
int isUseNoneqCond = 0;
double frozenCondition = 0.01;
int nLeakageMonitor = 0;
double totalLeakageVolume = 1000.0;
double monitorThresholdValue = 0.05;
double sprayFactor = 0.0;
######################################################################### #########################################################################
// Multi-Grid parameters. // Multi-Grid parameters.
@ -1196,7 +1227,6 @@ int ifStartFromPerfectGasResults = 0;
// 1 -- zero order. // 1 -- zero order.
// 2 -- first-order. (default) // 2 -- first-order. (default)
// mgCorrectionLimit: Multi-grid correction limit. // mgCorrectionLimit: Multi-grid correction limit.
int nMGLevel = 1; int nMGLevel = 1;
int MGCoarsestIteration = 1; int MGCoarsestIteration = 1;
int MGPreIteration = 1; int MGPreIteration = 1;
@ -1226,9 +1256,9 @@ string holeFullFileName = "./grid/holeFullFile.dat";
string linkFileName = "./grid/topology.dat"; string linkFileName = "./grid/topology.dat";
string zoneInverseFileName = "./grid/zoneInverseMapping.inp"; string zoneInverseFileName = "./grid/zoneInverseMapping.inp";
######################################################################### #************************************************************************
# High Order Struct Solver # # High Order Struct Solver *
######################################################################### #************************************************************************
// isFVMOrFDM: // isFVMOrFDM:
// 0 -- NSSolverStruct using Finite Volume Method. // 0 -- NSSolverStruct using Finite Volume Method.
// 1 -- NSSolverStruct using Finite Differ Method. // 1 -- NSSolverStruct using Finite Differ Method.
@ -1273,10 +1303,29 @@ int allReduceStep = 1;
// codeOfOversetGrid: Overlapping(overset) grid or not. // codeOfOversetGrid: Overlapping(overset) grid or not.
// 0 -- NON-overlapping grid. // 0 -- NON-overlapping grid.
// 1 -- Overlapping grid. // 1 -- Overlapping grid.
// oversetInterpolationMethod: the method of overset interpolation while field simulation // oversetInterpolationMethod: the method of overset interpolation while field simulation.
// 0 -- set the acceptor cell value by donor cell value. // 0 -- set the acceptor cell value by donor cell value.
// 1 -- set the acceptor cell value by distance weight of donor cell value. // 1 -- set the acceptor cell value by distance weight of donor cell value.
// readOversetFileOrNo: Whether to read overset-file(.ovs) that has been generated.
// 0 -- no.
// 1 -- yes.
// symetryOrNot: If there exist symetryplanes(XY plane, the coordinate of Z direction is 0) in
// the current overset grid(only for three dimension).
// 0 -- no.
// 1 -- yes.
// readInAuxiliaryInnerGrid: Whether to read auxiliary inner grid.
// 0 -- no.
// 1 -- yes.
// walldistMainZone: The initial value of background grid which does not exist wall boundary condition.
// toleranceForOversetSearch: The tolerance of overset searching zone to judge whether the obtained node is in the current computing cell.
// toleranceForOversetBox: The tolerance of building the minimum box of computing cells in the overlapping region.
// twoOrderInterpolationOrNot: The number of interpolated cell layers in the overlapping boundary.
// 0 -- one layer.
// 1 -- two layers.
// keyEnlargeOfActiveNodes: The number of enlarged overset-boundary layers in the buffer region.
// outTecplotOverset: Whether to dump out the flowfield data after the progress of overset configure.
// 0 -- no.
// 1 -- yes.
int codeOfOversetGrid = 0; int codeOfOversetGrid = 0;
int oversetInterpolationMethod = 0; int oversetInterpolationMethod = 0;
int readOversetFileOrNot = 0; int readOversetFileOrNot = 0;
@ -1295,7 +1344,6 @@ int twoOrderInterpolationOrNot = 0;
int keyEnlargeOfActiveNodes = 0; int keyEnlargeOfActiveNodes = 0;
int outTecplotOverset = 0; int outTecplotOverset = 0;
int outPutOversetVisualization = 0; int outPutOversetVisualization = 0;
int numberOfMovingBodies = 2; int numberOfMovingBodies = 2;
// ----------------- ALE configuration ------------------------------ // ----------------- ALE configuration ------------------------------
@ -1306,34 +1354,40 @@ double referenceLength = 1.0;
double referenceVelocity = 1.0; double referenceVelocity = 1.0;
double referenceDensity = 1.0; double referenceDensity = 1.0;
int strategyForFaceNormalVelocity = 0; //0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd; int strategyForFaceNormalVelocity = 0; // 0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd.
int strategyForGCLSource = 0; //0-present; 1-Ahn; int strategyForGCLSource = 0; // 0-present; 1-Ahn.
//0:1st-Admas-Bashforth; 1:2nd-Admas-Bashforth; 2:1st-Implicit-Euler; 3:2nd-Implicit Euler; 4:2nd-Adams-Moulton; 5:3rd-Adams-Moulton // 0: 1st-Admas-Bashforth; 1: 2nd-Admas-Bashforth; 2: 1st-Implicit-Euler; 3: 2nd-Implicit Euler; 4: 2nd-Adams-Moulton; 5: 3rd-Adams-Moulton.
int methodForKineticEquation = 0; int methodForKineticEquation = 0;
double relaxParameterOfKinetic = 1.0; double relaxParameterOfKinetic = 1.0;
######################################################################### #************************************************************************
# motive information # # motive information *
######################################################################### #************************************************************************
int numberOfMovingBodies = 1; int numberOfMovingBodies = 1;
############################## body0 ############################## ############################## body0 ##############################
//mass of parts // mass of parts.
double mass_0 = 1.0; double mass_0 = 1.0;
//mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz // gravity of parts (along negative direction in Y-axis, eg. 9.8).
double gravity_0 = 0.0;
// mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz.
double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0; double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0;
//initial six DOF position information of parts. xc yc zc // initial six DOF position information of parts. xc yc zc.
double massCenter_0[] = 0.0, 0.0, 0.0; double massCenter_0[] = 0.0, 0.0, 0.0;
//initial six DOF position information of parts. angleX angleY angleZ // if reset mass center while restart.
int resetMassCenter_0 = 0;
// position offset of parts. dx dy dz.
double massCenterDxyz_0[] = 0.0, 0.0, 0.0;
// initial six DOF position information of parts. angleX angleY angleZ.
double attitudeAngle_0[] = 0.0, 0.0, 0.0; double attitudeAngle_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. vc vy vz // initial six DOF move information of parts. vc vy vz.
double massCenterVelocity_0[] = 0.0, 0.0, 0.0; double massCenterVelocity_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. omigX omigY omigZ // initial six DOF move information of parts. omigX omigY omigZ.
double angularVelocity_0[] = 0.0, 0.0, 0.0; double angularVelocity_0[] = 0.0, 0.0, 0.0;
// the object that the parts belong to. // the object that the parts belong to.
int fartherIndex_0 = -1; int fartherIndex_0 = -1;
//the assembly position of the parts. xc yc zc angleX angleY angleZ // the assembly position of the parts. xc yc zc angleX angleY angleZ.
double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0; double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
// the move pattern of the parts. // the move pattern of the parts.
// -1 given motion partten. // -1 given motion partten.
@ -1349,23 +1403,24 @@ double configPamameter_0[] = 0.0 ,0.0 ,0.0 ,0.0 ,0.0
int RBDMethod_0 = 0; int RBDMethod_0 = 0;
double amplitude_0 = 0.0; double amplitude_0 = 0.0;
double reduceFrequency_0 = 0.0; double reduceFrequency_0 = 0.0;
//direction of rotation // direction of rotation.
// 1 -- clockwise from the point of view along the positive x axis. // 1 -- clockwise from the point of view along the positive x axis.
// -1 -- anticlockwise from the point of view along the positive x axis. // -1 -- anticlockwise from the point of view along the positive x axis.
int direction_0 = -1; int direction_0 = -1;
double rotateFrequency_0 = 0.0; double rotateFrequency_0 = 0.0;
//string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter"; //string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter";
//additional force (system axis) fX fY fZ // dimensional physical time for additional force(s).
double addedForceTime_0[] = 0.0;
// additional force(inertia system) fX fY fZ.
double addedForce_0[] = 0.0, 0.0, 0.0; double addedForce_0[] = 0.0, 0.0, 0.0;
//additional moment of Force (system axis) mX mY mZ // additional moment(inertia system) mX mY mZ.
double addedMoment_0[] = 0.0, 0.0, 0.0; double addedMoment_0[] = 0.0, 0.0, 0.0;
// the deformation method of the parts. // the deformation method of the parts.
int morphing_0 = 0; int morphing_0 = 0;
// post indentify // post indentify.
int integralOrder = 4; int integralOrder = 4;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;
@ -1379,18 +1434,34 @@ int integralOrder = 4;
//@string outLetFileName = "./bin/subsonicOutlet.hypara"; //@string outLetFileName = "./bin/subsonicOutlet.hypara";
//@double refDimensionalVelocity = 0; //@double refDimensionalVelocity = 0;
//@double refDimensionalDensity = 0; //@double refDimensionalDensity = 0;
//@string weatherDataFilePath = "./WRFData/";
######################################################################### //@double longitude = 110.95
# Old Parameter # //@double latitude = 19.61;
######################################################################### #************************************************************************
# Old Parameter *
#************************************************************************
int isPlotVolumeField = 0; int isPlotVolumeField = 0;
#************************************************************************
# partial flow field setting Parameter *
#************************************************************************
//int nPartialParameter = 0; // 0/1/2
//int nNumberOfPartialField = 0; //
//int nStartGridIndex[] = [0];
//int nEndGridIndex[] = [0];
######################################################################### //double partialCFL[] = [0.0];
# Incompressible Parameter # //double partialSpeedCoef[] = [0.0];
######################################################################### //double partialSpeed[] = [0.0];
//double partialAttackd[] = [0.0];
//double partialSlide[] = [0.0];
//double partialPressure[] = [0.0];
//double partialTemperature[] = [0.0];
//double partialMassFractions[] = [0.0];
#************************************************************************
# Incompressible Parameter *
#************************************************************************
int isSolveEnergyEquation = 0; int isSolveEnergyEquation = 0;
int isSolveTurbEquation = 0; int isSolveTurbEquation = 0;
int isSolveSpeciesEquation = 0; int isSolveSpeciesEquation = 0;

View File

@ -4,9 +4,12 @@
// gridtype: Grid type for generation, conversion, reconstruction, merging. // gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid. // 0 -- Unstructured grid.
// 1 -- Structured grid. // 1 -- Structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion. // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// 1 -- Y upward. (default) // axisRotateOrder : axis rotating order.
// 2 -- Z upward. // 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
// from_gtype: Type of grid data type in grid conversion process. // from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE. // -1 -- MULTI_TYPE.
// 1 -- PHengLEI, *.fts. // 1 -- PHengLEI, *.fts.
@ -18,7 +21,9 @@
// 7 -- Hybrid, include both of unstructured and structured grid, *.fts. // 7 -- Hybrid, include both of unstructured and structured grid, *.fts.
// 8 -- GMSH, *.msh. // 8 -- GMSH, *.msh.
int gridtype = 0; int gridtype = 0;
int axisup = 1; int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
int from_gtype = 2; int from_gtype = 2;
######################################################################### #########################################################################
# File path # # File path #

View File

@ -8,6 +8,7 @@
// Platform for Hybrid Engineering Simulation of Flows + // Platform for Hybrid Engineering Simulation of Flows +
// China Aerodynamics Research and Development Center + // China Aerodynamics Research and Development Center +
// (C) Copyright, Since 2010 + // (C) Copyright, Since 2010 +
// PHengLEI 2212 +
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
########################################################################### ###########################################################################
# Default parameters for Grid conversion # # Default parameters for Grid conversion #
@ -46,19 +47,24 @@ int gridobj = 1;
int multiblock = 0; int multiblock = 0;
int iadapt = 0; int iadapt = 0;
int SymmetryFaceVector = 1; int SymmetryFaceVector = 1;
int gridReorder = 0; int gridReorder = 0;
int faceReorderMethod = 0; int faceReorderMethod = 0;
// axisup: Type of Cartisien coordinates system, used in grid conversion. // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// 1 -- Y upward. (default) // axisRotateOrder : axis rotating order.
// 2 -- Z upward. // 1 -- X-axis.
int axisup = 1; // 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
// omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition". // omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition".
// 0 -- Interface. (default) // 0 -- Interface. (default)
// 1 -- Physical boundary condition, used in Hybrid solver. // 1 -- Physical boundary condition, used in Hybrid solver.
int omit_no_bound_bc = 0; int omit_no_bound_bc = 0;
int omitRepeatInterface = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# Grid data type # # Grid data type #
@ -89,7 +95,6 @@ int dumpOldGrid = 0;
int numberOfGridFile = 1; int numberOfGridFile = 1;
string from_gfile = "./grid/rae2822_hybrid2d.cas"; string from_gfile = "./grid/rae2822_hybrid2d.cas";
string from_gfile1 = ""; string from_gfile1 = "";
string out_gfile = "./grid/flat_laminr_133_85_2d.fts"; string out_gfile = "./grid/flat_laminr_133_85_2d.fts";
// ----------------- some advanced choices ------------------------------ // ----------------- some advanced choices ------------------------------
@ -178,7 +183,6 @@ double influencePara = 25.0;
which only support one direction. which only support one direction.
// rotationAngle: The relative angle between two periodic face. // rotationAngle: The relative angle between two periodic face.
which is recorded in degrees. which is recorded in degrees.
int periodicType = 0; int periodicType = 0;
double translationLength[] = [0.0, 0.0, 0.0]; double translationLength[] = [0.0, 0.0, 0.0];
double rotationAngle = 0.0; double rotationAngle = 0.0;
@ -192,7 +196,6 @@ double rotationAngle = 0.0;
// 2 -- refine structured grid. // 2 -- refine structured grid.
// maxproc: The number of partition zones that want to be divided into. // maxproc: The number of partition zones that want to be divided into.
// numberOfMultifile: The number of partition grid files that want to be dumped out. // numberOfMultifile: The number of partition grid files that want to be dumped out.
int pgridtype = 0; int pgridtype = 0;
int maxproc = 4; int maxproc = 4;
int numberOfMultifile = 1; int numberOfMultifile = 1;
@ -207,8 +210,8 @@ int blockIndexOfMark = 0;
int cellIndexOfMark[] = [185, 30, 1]; int cellIndexOfMark[] = [185, 30, 1];
// parallelStrategy: // parallelStrategy:
//! -# 0 : each zone is assigned to the one that defined in grid partition procedure. // 0 -- each zone is assigned to the one that defined in grid partition procedure.
//! -# 1 : random assigned for each zone or by some else ways. // 1 -- random assigned for each zone or by some else ways.
int parallelStrategy = 1; int parallelStrategy = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
@ -232,7 +235,6 @@ string partition_grid_file = "./grid/sphere_mixed__4.fts";
// 1 -- perfect balance. // 1 -- perfect balance.
// maxproc -- perfect imbalance. // maxproc -- perfect imbalance.
// 1.05 -- recommended. // 1.05 -- recommended.
int omit_no_bound_bc = 0; int omit_no_bound_bc = 0;
int npartmethod = 1; int npartmethod = 1;
int parallelPartitionMethod = 2; int parallelPartitionMethod = 2;
@ -253,24 +255,30 @@ int numberOfMultigrid = 1;
// intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved. // intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved.
// intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved. // intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved.
// intervalStepRes: The step intervals for residual file 'res.dat' saved. // intervalStepRes: The step intervals for residual file 'res.dat' saved.
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
int maxSimuStep = 20000; int maxSimuStep = 20000;
int intervalStepFlow = 1000; int intervalStepFlow = 1000;
int intervalStepPlot = 1000; int intervalStepPlot = 1000;
int intervalStepSample = 1000; int intervalStepSample = 1000;
int intervalStepForce = 100; int intervalStepForce = 100;
int intervalStepRes = 10; int intervalStepRes = 10;
int ifLowSpeedPrecon = 0;
// compressible: // compressible:
// 0 -- incompressible flow. // 0 -- incompressible flow.
// 1 -- compressible flow. (default) // 1 -- compressible flow. (default)
int compressible = 1; int compressible = 1;
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
// Kprec: The coefficient K for the cut-off velocity.
// 1.0~3.0 is suggested. (default, 3.0)
// preconFarfieldBCMethod: The precondition method for farfield boundary condition.
// 0 -- precondition far-field boundary based on riemann invariants.
// 1 -- Turkel's simplified far-field boundary condition.
int ifLowSpeedPrecon = 0;
double Kprec = 3.0;
int preconFarfieldBCMethod = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# CFD Control Parameter # # CFD Control Parameter #
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
@ -281,9 +289,12 @@ int compressible = 1;
// 0 -- the nondimensional conditions. // 0 -- the nondimensional conditions.
// 1 -- the flight conditions. // 1 -- the flight conditions.
// 2 -- the experiment conditions. // 2 -- the experiment conditions.
// 3 -- the subsonic boundary conditions. // 3 -- the subsonic boundary conditions. (Useless!)
// 4 -- the condition that the velocity, temperature and density are given. // 4 -- the condition that the velocity, temperature and density are given.
// 5 -- the condition that the velocity, temperature and pressure are given. // 5 -- the condition that the velocity, temperature and pressure are given.
//flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -303,11 +314,11 @@ int compressible = 1;
// condition is radiation equilibrium temperature, and 0.8 is the default value. // condition is radiation equilibrium temperature, and 0.8 is the default value.
// refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol. // refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol.
// Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on. // Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on.
int directionMethod = 0; int directionMethod = 0;
double refMachNumber = 0.73; double refMachNumber = 0.73;
double attackd = 2.79; double attackd = 2.79;
double angleSlide = 0.00; double angleSlide = 0.00;
int flowInitMethod = 0;
int inflowParaType = 0; int inflowParaType = 0;
double refReNumber = 6.5e6; double refReNumber = 6.5e6;
@ -321,14 +332,6 @@ double freestream_vibration_temperature = 300.00;
//double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2). //double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2).
//double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)). //double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)).
//int inflowParaType = 3;
//int nsubsonicInlet = 1;
//int nsubsonicOutlet = 1;
//string inLetFileName = "./bin/subsonicInlet.hypara";
//string outLetFileName = "./bin/subsonicOutlet.hypara";
//double refDimensionalTemperature = 288.144;
//double refDimensionalPressure = 1.01313E05;
// The velocity, temperature and density are fixed. // The velocity, temperature and density are fixed.
//int inflowParaType = 4; //int inflowParaType = 4;
//double refDimensionalVelocity = 1000.0; //double refDimensionalVelocity = 1000.0;
@ -341,9 +344,15 @@ double freestream_vibration_temperature = 300.00;
// The MachNumber, temperature and pressure are fixed. // The MachNumber, temperature and pressure are fixed.
//int inflowParaType = 6; //int inflowParaType = 6;
//double refDimensionalTemperature = 293; //double refDimensionalTemperature = 293.0;
//double refDimensionalPressure = 8886.06; //double refDimensionalPressure = 8886.06;
// The velocity, temperature and pressure are read from file.
//int inflowParaType = 7;
//string weatherDataFilePath = "./WRFData/";
//double longitude = 110.95
//double latitude = 19.61;
double wallTemperature = -1.0; double wallTemperature = -1.0;
double radiationCoef = 0.8; double radiationCoef = 0.8;
@ -357,35 +366,35 @@ double forceReferenceArea = 1.0; // unit of meter^2.
double TorqueRefX = 0.0; // unit of meter. double TorqueRefX = 0.0; // unit of meter.
double TorqueRefY = 0.0; // unit of meter. double TorqueRefY = 0.0; // unit of meter.
double TorqueRefZ = 0.0; // unit of meter. double TorqueRefZ = 0.0; // unit of meter.
double knudsenLength = 1.0; // unit of meter.
double refMolecularWeight = 28.9644; // unit of g/mol. double refMolecularWeight = 28.9644; // unit of g/mol.
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# Spatial Discretisation # # Spatial Discretisation #
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
#******************************************************************* #************************************************************************
# Struct Solver * # Struct Solver *
#******************************************************************* #************************************************************************
// inviscidSchemeName: Spatial discretisation scheme of struct grid. // inviscidSchemeName: Spatial discretisation scheme of struct grid.
// Using this when solve structered grid or hybrid. // Using this when solve structered grid or hybrid.
// -- "vanleer", "steger", "hlle", "lax_f". // -- "vanleer", "steger", "hlle", "lax_f",
// -- "roe", "modified_roe". // -- "roe", "modified_roe",
// -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+". // -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+".
// isWennScheme: If using WENN Scheme of struct grid. // isWennScheme: If using WENN Scheme of struct grid.
// 0 -- NO. (default) // 0 -- NO. (default)
// 1 -- Yes. // 1 -- Yes.
// str_limiter_name: Limiter of struct grid. // str_limiter_name: Limiter of struct grid.
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth". // -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth",
// -- "nolim", no limiter. // -- "nolim", no limiter,
// -- "vanalbada_clz", clz supersonic version. // -- "vanalbada_clz", clz supersonic version,
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3" // -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3".
string inviscidSchemeName = "roe"; string inviscidSchemeName = "roe";
int isWennScheme = 0; int isWennScheme = 0;
string str_limiter_name = "vanalbada"; string str_limiter_name = "vanalbada";
#******************************************************************* #************************************************************************
# UnStruct Solver or Common * # UnStruct Solver or Common *
#******************************************************************* #************************************************************************
// viscousType: Viscous model. // viscousType: Viscous model.
// 0 -- Euler. // 0 -- Euler.
// 1 -- Lamilar. // 1 -- Lamilar.
@ -410,11 +419,11 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle". // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod". // -- "barth", "vencat", "vanleer", "minmod",
// -- "vanalbada", "smooth", "nnd", "lpz", "1st". // -- "vanalbada", "smooth", "nnd", "lpz", "1st",
// -- "nolim", no limiter. // -- "nolim", no limiter.
// uns_vis_name: Discretisation method of viscous term. // uns_vis_name: Discretisation method of viscous term.
// -- "std", "test", "aver", "new1", "new2". // -- "std", "test", "aver", "new1", "new2".
@ -442,7 +451,7 @@ string str_limiter_name = "vanalbada";
// 3 -- Harten type, which is default used. // 3 -- Harten type, which is default used.
// roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0. // roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0.
// It is used to scale the default Roe entropy fix coefficients. // It is used to scale the default Roe entropy fix coefficients.
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0 // AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0.
//int viscousType = 0; //int viscousType = 0;
//string viscousName = "Euler"; //string viscousName = "Euler";
@ -475,9 +484,9 @@ double roeEntropyScale = 1.0;
double AusmpwPlusLimiter = 1.0; double AusmpwPlusLimiter = 1.0;
//----------------------------------------------------------------------- #************************************************************************
# Temporal Discretisation # # Temporal Discretisation *
//----------------------------------------------------------------------- #************************************************************************
// iunsteady: Steady or unsteady. // iunsteady: Steady or unsteady.
// 0 -- steady. // 0 -- steady.
// 1 -- unsteay. // 1 -- unsteay.
@ -504,11 +513,18 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// useLUSGSprecond: Initialize flow field for GMRES.
// 0 --Initialize by first order Jacobian matrix.
// 1 --Initialize by LUSGS.
// GMRESInitStep : the number of iteration step of irst order Jacobian matrix or LUSGS for initialize flow field.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -533,7 +549,6 @@ double AusmpwPlusLimiter = 1.0;
// 2 -- Pab3D wall function. // 2 -- Pab3D wall function.
// RKStage: The number of Runge-Kutta step. // RKStage: The number of Runge-Kutta step.
// lamda: Cofficient of Runge-Kutta step. // lamda: Cofficient of Runge-Kutta step.
int iunsteady = 0; int iunsteady = 0;
double physicalTimeStep = 0.01; double physicalTimeStep = 0.01;
double physicalTimeStepDimensional = -0.001; double physicalTimeStepDimensional = -0.001;
@ -543,7 +558,7 @@ int ifStaticsReynoldsStress = 0;
int startStatisticStep = 800000; int startStatisticStep = 800000;
double statisticalTimePeriod = -1.0; double statisticalTimePeriod = -1.0;
int statisticMethod = 0; int statisticMethod = 0;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2; int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2.
int methodOfDualTime = 3; int methodOfDualTime = 3;
int min_sub_iter = 50; int min_sub_iter = 50;
@ -558,7 +573,10 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 9;
int useLUSGSprecond = 1;
int GMRESInitStep = 1000;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -575,7 +593,7 @@ int order = 2;
double visl_min = 0.01; double visl_min = 0.01;
double turbCFLScale = 1.0; double turbCFLScale = 1.0;
double csrv = 2.0; double csrv = 1.0;
double timemax = 1.0e10; double timemax = 1.0e10;
double dtsave = -1.0; double dtsave = -1.0;
int maxale = 10; int maxale = 10;
@ -591,10 +609,9 @@ double lamda[] = [0.5, 1.0];
//int RKStage = 4; //int RKStage = 4;
//double lamda[] = [0.25, 0.33333333333, 0.5, 1.0]; //double lamda[] = [0.25, 0.33333333333, 0.5, 1.0];
#************************************************************************
//----------------------------------------------------------------------- # File In or Out *
# File In or Out # #************************************************************************
//-----------------------------------------------------------------------
// numberOfGridGroups: The number of grid groups. // numberOfGridGroups: The number of grid groups.
// gridfile: The partitioned Grid file path, using relative path, // gridfile: The partitioned Grid file path, using relative path,
// which is relative to the working directory. // which is relative to the working directory.
@ -618,10 +635,8 @@ double lamda[] = [0.5, 1.0];
// nIsComputeWallDist: Whether to compute the wall distance. // nIsComputeWallDist: Whether to compute the wall distance.
// 0 -- Compute wall distance. // 0 -- Compute wall distance.
// 1 -- Not compute. // 1 -- Not compute.
//
// protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism. // protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism.
// wall_heatfluxfile: The file to output the MaxHeatFlux of wall. // wall_heatfluxfile: The file to output the MaxHeatFlux of wall.
int numberOfGridGroups = 1; int numberOfGridGroups = 1;
string gridfile = "./grid/rae2822_hybrid2d__4.fts"; string gridfile = "./grid/rae2822_hybrid2d__4.fts";
string wallTemperaturefile = ""; string wallTemperaturefile = "";
@ -632,10 +647,12 @@ int cellMethodOrNodeMethod = 0;
string resSaveFile = "results/res.dat"; string resSaveFile = "results/res.dat";
string turbresfile = "results/turbres.dat"; string turbresfile = "results/turbres.dat";
string transitionResFile = "results/transitionRes.dat";
string aircoeffile = "results/aircoef.dat"; string aircoeffile = "results/aircoef.dat";
string restartNSFile = "results/flow.dat"; string restartNSFile = "results/flow.dat";
string turbfile = "results/turb.dat"; string turbfile = "results/turb.dat";
string transitionFile = "results/transition.dat";
string visualfile = "results/tecflow.plt"; string visualfile = "results/tecflow.plt";
string wall_aircoefile = "results/wall_aircoef.dat"; string wall_aircoefile = "results/wall_aircoef.dat";
@ -645,11 +662,15 @@ string protectionFile0 = "results/flow0.dat";
string protectionFile1 = "results/flow1.dat"; string protectionFile1 = "results/flow1.dat";
string wall_heatfluxfile = "results/wall_heatflux.dat"; string wall_heatfluxfile = "results/wall_heatflux.dat";
string protectionTurbFile0 = "results/turb0.dat";
string protectionTurbFile1 = "results/turb1.dat";
string protectionTransitionFile0 = "results/transition0.dat";
string protectionTransitionFile1 = "results/transition1.dat";
int nDumpSurfaceInfo = 0; int nDumpSurfaceInfo = 0;
string wall_varfile = ""; string wall_varfile = "";
string jetDefineFile = "bin/jet.hypara";
string sixDofFileName = "results/sixDofInfo.dat"; string sixDofFileName = "results/sixDofInfo.dat";
string derivativeFileName = "results/identify.dat"; string derivativeFileName = "results/identify.dat";
string hysteresisFileName = "results/force_beta.plt"; string hysteresisFileName = "results/force_beta.plt";
@ -659,7 +680,8 @@ int plotFieldType = 0;
// visualfileType: The file type of visualfile. // visualfileType: The file type of visualfile.
// 0 -- Tecplot binary. // 0 -- Tecplot binary.
// 1 -- Tecplot ASCII. // 1 -- Tecplot ASCII.
// 2 -- Ensight binary.
// 3 -- Ensight ASCII.
int visualfileType = 1; int visualfileType = 1;
// samplefileMode: The dump mode of sample file. // samplefileMode: The dump mode of sample file.
@ -697,21 +719,21 @@ double upperPlotFieldBox[] = [1.0 1.0 1.0];
// -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36), // -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36),
// -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40), // -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40),
// -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47), // -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47),
// -- transition intermittency(intermittency, 51), -transition momentum thickness reynolds(MomentumThicknessReynolds, 52), // -- transition intermittency(intermittency, 51), transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- overlap iblank(iblank, 81) // -- local CFL Number(localCFL, 57), minimal CFL Number(minCFL, 58),
// -- overlap iblank(iblank, 81),
// -- specific heat ratio(gama, 56) // -- specific heat ratio(gama, 56), Knudsen number(kn, 60), Damkohler number(Da, 61), vibrational nonequilibrium number(Vi, 62).
// Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!! // Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!!
// Variables order must from small to big. // Variables order must from small to big.
//-----------the optional parameters list for the wall boundary condition---------------- //-----------the optional parameters list for the wall boundary condition----------------
// nVisualWallVariables: The number of visual variables on wall. // nVisualWallVariables: The number of visual variables on wall.
// visualWallVariables : dumped variable types, listed as following: // visualWallVariables : dumped variable types, listed as following:
// -coefficient of pressure(cp, 0), -coefficient of friction(cf, 1), yplus(2), -non-dimensional heat flux(Q_NonDim, 3), -dimensional heat flux(Q_Dim, 4), // -- coefficient of pressure(cp, 0), coefficient of friction(cf, 1), yplus(2), non-dimensional heat flux(Q_NonDim, 3), dimensional heat flux(Q_Dim, 4),
// -pressure on wall(pw, 5), -temperature on wall(Tw, 6), -density on wall(rhow, 7), -heat flux of translational-rotational temperature term(Qtr, 8), // -- pressure on wall(pw, 5), temperature on wall(Tw, 6), density on wall(rhow, 7), heat flux of translational-rotational temperature term(Qtr, 8),
// -heat flux of species diffusion term(Qs, 9), -heat flux of vibrational temperature term(Qv, 10), -heat flux of electron temperature term(Qe, 11), // -- heat flux of species diffusion term(Qs, 9), heat flux of vibrational temperature term(Qv, 10), heat flux of electron temperature term(Qe, 11),
// -species mass fractions(Ns, 12), -x component of wall velocity(Vx, 13), -y component of wall velocity(Vy, 14), -z component of wall velocity(Vz, 15) // -- species mass fractions(Ns, 12), x component of wall velocity(Vx, 13), y component of wall velocity(Vy, 14), z component of wall velocity(Vz, 15),
// -slip translational-rotational temperature(Tts, 16), -slip vibrational temperature(Tvs, 17), -slip electron temperature(Tes, 18), -absolute wall velocity(Vs, 19) // -- slip translational-rotational temperature(Tts, 16), slip vibrational temperature(Tvs, 17), slip electron temperature(Tes, 18), absolute wall velocity(Vs, 19),
// -Stanton number(St, 20), -coefficient of heat rate(Ch, 21), -temperature jump(deltaT, 22), -Grid Reynolds number on wall(Re_w, 23) // -- Stanton number(St, 20), coefficient of heat rate(Ch, 21), temperature jump(deltaT, 22), Grid Reynolds number on wall(Re_w, 23), Knudsen number(Kn_wall, 24).
int nVisualVariables = 8; int nVisualVariables = 8;
int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15]; int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15];
@ -739,7 +761,9 @@ int dumpStandardModel = 0;
// 1 -- Real cell where the probe is located. // 1 -- Real cell where the probe is located.
// nProbeVariables: Number of variables want to be dumped for probes monitered. // nProbeVariables: Number of variables want to be dumped for probes monitered.
// probeVariables : Variable types dumped, listed as following: // probeVariables : Variable types dumped, listed as following:
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6). // -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6),
// -- dimensioanl_density(7), dimensioanl_u(8), dimensioanl_v(9),
// -- dimensioanl_w(10), dimensioanl_pressure(11), dimensioanl_temperature(12).
// Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!! // Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!!
// probeVariables order must from small to big. // probeVariables order must from small to big.
// probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables. // probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables.
@ -761,12 +785,13 @@ string probesDefineFile = "bin/probes_XYZ.dat";
int searchCellsMethod = 0; int searchCellsMethod = 0;
int nProbeVariables = 7; int nProbeVariables = 14;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6]; int probeVariables[] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13];
int probeVariablesInterpolationMethod = 0; int probeVariablesInterpolationMethod = 0;
//-----------------------------------------------------------------------
# Turbulence Parameter # #************************************************************************
//----------------------------------------------------------------------- # Turbulence Parameter *
#************************************************************************
// turbInterval: Iteration number of turbulence. // turbInterval: Iteration number of turbulence.
// kindOfTurbSource: Kinds of turbulent source. // kindOfTurbSource: Kinds of turbulent source.
// 0 -- Original. // 0 -- Original.
@ -774,15 +799,12 @@ int probeVariablesInterpolationMethod = 0;
// transitionType: transition model type // transitionType: transition model type
// 0 -- none. // 0 -- none.
// 2 -- gama-re-theta. // 2 -- gama-re-theta.
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition // turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition.
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not // freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not.
int turbInterval = 1; int turbInterval = 1;
int turbOrderStruct = 2; int turbOrderStruct = 2;
int kindOfTurbSource = 0; int kindOfTurbSource = 0;
int mod_turb_res = 0; int mod_turb_res = 0;
double turb_relax = 1.0;
double freeStreamViscosity = 1.0e-3; double freeStreamViscosity = 1.0e-3;
double muoo = 3.0; double muoo = 3.0;
double kwoo = 5.0; double kwoo = 5.0;
@ -791,28 +813,27 @@ double turbIntensity = -1.0;
int freeturbIntensitySRModify = 0; int freeturbIntensitySRModify = 0;
double freeDecayXLocation = 0.0; double freeDecayXLocation = 0.0;
int compressibleCorrection = 0; int compressibleCorrection = 0;
int prandtlNumberCorrection = 0;
int transitionMaFix = 1; int transitionMaFix = 1;
# maximum eddy viscosity (myt/my) max. // maximum eddy viscosity (myt/my) max.
double eddyViscosityLimit = 1.0e10; double eddyViscosityLimit = 1.0e10;
int monitor_vistmax = 0; int monitor_vistmax = 0;
//----------------------------------------------------------------------- #************************************************************************
# LES Parameter # # LES Parameter *
//----------------------------------------------------------------------- #************************************************************************
// iLES: Create LESSolver or not. // iLES: Create LESSolver or not.
// = 1 - Create LESSolver; // = 1 -- Create LESSolver;
// != 1 - not. // != 1 -- not.
// amplitudeofDisturb: Amplitude of adding disturb. // amplitudeofDisturb: Amplitude of adding disturb.
// disturbstep: Unsteady time step or steady iteration of adding random disturb. // disturbstep: Unsteady time step or steady iteration of adding random disturb.
// iterdisturb: Add random disturb in every sub-iter or only first sub-iter. // iterdisturb: Add random disturb in every sub-iter or only first sub-iter.
// = 0 - in only first sub-iter; // = 0 -- in only first sub-iter;
// != 0 - in every sub-iter. // != 0 -- in every sub-iter.
// ipraddisturb: Add density and pressure disturb or not. // ipraddisturb: Add density and pressure disturb or not.
// ibodyforce: Add body force in source flux of NS equations or not. // ibodyforce: Add body force in source flux of NS equations or not.
// = 0 - not; // = 0 -- not;
// != 0 - Add body force. // != 0 -- Add body force.
// bodyforce: Body force in source flux of NS equations or not. // bodyforce: Body force in source flux of NS equations or not.
// utau: friction velocity, using in DNSDisturb. // utau: friction velocity, using in DNSDisturb.
// sgsmodel: subgrid scale model. // sgsmodel: subgrid scale model.
@ -820,23 +841,22 @@ int monitor_vistmax = 0;
// = "dsmCom"; // = "dsmCom";
// = "wale"; // = "wale";
// = "sigma". // = "sigma".
// deltaFunctionType: = 1 - MAX(deltai, deltaj, deltak); // deltaFunctionType: = 1 -- MAX(deltai, deltaj, deltak);
// = 2 - pow(deltai * deltaj *deltak, 1/3); // = 2 -- pow(deltai * deltaj *deltak, 1/3);
// = 3 - Devloped by Scotti. // = 3 -- Devloped by Scotti.
// wallDampingFunctionType: = 0 - no wall function; // wallDampingFunctionType: = 0 -- no wall function;
// = 1 - van Driest; // = 1 -- van Driest;
// = 2 - developed by Dr. Deng Xiaobing; // = 2 -- developed by Dr. Deng Xiaobing;
// = 3 - developed by Piomelli. // = 3 -- developed by Piomelli.
// turbViscousCutType: turbulent viscosity cut type. // turbViscousCutType: turbulent viscosity cut type.
// = 0 - mu_total = mut + mul; // = 0 -- mu_total = mut + mul;
// = 1 - mu_total = max(mut-mul,0)+ mul; // = 1 -- mu_total = max(mut-mul, 0) + mul;
// = 2 - mu_total = max(mut ,0)+ mul. // = 2 -- mu_total = max(mut , 0) + mul.
// smagConstant: constant of smagorinsky model. // smagConstant: constant of smagorinsky model.
// waleConstant: constant of wale model. // waleConstant: constant of wale model.
// filterDirection [3]: filter variables in i, j, k direction or not. // filterDirection [3]: filter variables in i, j, k direction or not.
// averageDirection[3]: average variables in i, j, k direction or not. // averageDirection[3]: average variables in i, j, k direction or not.
// isotropicConstant: constant of isotropic part of SGS stress. // isotropicConstant: constant of isotropic part of SGS stress.
int iLES = 0; int iLES = 0;
string sgsmodel = "smagorinsky"; string sgsmodel = "smagorinsky";
int deltaFunctionType = 2; int deltaFunctionType = 2;
@ -852,9 +872,9 @@ double testFilterScale = 2.0;
int averageWidth = 1; int averageWidth = 1;
int monitorNegativeConstant = 0; int monitorNegativeConstant = 0;
//----------------------------------------------------------------------- #************************************************************************
# Other Parameters for Hypersonic Non-equilibrium Gas # # Other Parameters for Hypersonic Non-equilibrium Gas *
//----------------------------------------------------------------------- #************************************************************************
// dg_high_order: // dg_high_order:
// 0 -- generic order accuracy. // 0 -- generic order accuracy.
// 1 -- high order accuracy. // 1 -- high order accuracy.
@ -862,9 +882,6 @@ int monitorNegativeConstant = 0;
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver,
// isAdaptiveSolver>0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -886,14 +903,13 @@ int monitorNegativeConstant = 0;
// nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied. // nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied.
// 0 -- perfect gas. // 0 -- perfect gas.
// 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component. // 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component.
// nPCWCycleStep: the maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition. // nPCWCycleStep: The maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: the maximum step number of iteration in the module of computing radiation equilibrium temperature on wall. // nRETCycleStep: The maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:the maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction. // nSLIPCycleStep:The maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nSlipBCModel: The computational model of slip boundary conditions. // nSlipBCModel: The computational model of slip boundary conditions.
// 0 -- no slip. // 0 -- no slip.
// 1 -- the conventional Maxwell slip conditions. // 1 -- the conventional Maxwell slip conditions.
// 2 -- the Gokcen slip conditions. // 2 -- the Gokcen slip conditions.
@ -913,10 +929,13 @@ int monitorNegativeConstant = 0;
// 1 -- One-temperature model. // 1 -- One-temperature model.
// 2 -- Two-temperature model. // 2 -- Two-temperature model.
// 3 -- Three-temperature model. // 3 -- Three-temperature model.
// isUseNoneqCond:
// 0 -- compute the source terms without any conditions.
// 1 -- compute the source terms using the non-equilibrium condition.
// frozenCondition: the threshold value of frozen chemical flow condition, 0.1 is the default value.
// nIdealState: whether take all gas species as ideal gas for gas-mixture process. // nIdealState: whether take all gas species as ideal gas for gas-mixture process.
// 0 -- No. // 0 -- No.
// 1 -- Yes. // 1 -- Yes. // nTEnergyModel: the method to computing temperature energy model.
// nTEnergyModel: the method to computing temperature energy model.
// 0 -- the energy term is computed using the conventional method. // 0 -- the energy term is computed using the conventional method.
// 1 -- the energy term is computed using the polynomial fitting method. // 1 -- the energy term is computed using the polynomial fitting method.
// 2 -- the energy term is computed using the piecewise polynomial fitting method. // 2 -- the energy term is computed using the piecewise polynomial fitting method.
@ -946,14 +965,13 @@ int monitorNegativeConstant = 0;
// 1.0 -- proposed by Maxwell. // 1.0 -- proposed by Maxwell.
// sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall. // sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall.
// 1.146 -- proposed for an additional "fictitious" velocity slip. // 1.146 -- proposed for an additional "fictitious" velocity slip.
// chemicalRelaxCorf: The value is in range of [0.001, 1.0]. // chemicalRelaxCorf: The value is in range of [0.001, 1.0].
// spectrumRadiusCoef: The value is in range of [0.0, 2.0]. // spectrumRadiusCoef: The value is in range of [0.0, 2.0].
// staticPressureRelaxCorf: The value is in range of [0.1, 1.0]. // staticPressureRelaxCorf: The value is in range of [0.1, 1.0].
// nIsChemicalFreeze: the flag to freeze the chemical reactions. // nIsChemicalFreeze: the flag to freeze the chemical reactions.
// 0 -- not freeze, the chemical reaction sources will be calculated. // 0 -- not freeze, the chemical reaction sources will be calculated.
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.// veTemperatureMin: The minimum of Tv and Te // 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.
// veTemperatureMin: The minimum of Tv and Te.
// maxViscous: the maximum of Viscous. // maxViscous: the maximum of Viscous.
// trTemperatureMin: the minimum value of trTemperature. // trTemperatureMin: the minimum value of trTemperature.
// veTemperatureMin: the minimum value of veTemperature. // veTemperatureMin: the minimum value of veTemperature.
@ -965,36 +983,34 @@ int monitorNegativeConstant = 0;
// nSpeciesLimit: limitter of gas species // nSpeciesLimit: limitter of gas species
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction // nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction.
// 0 -- method 0. // 0 -- method 0.
// 1 -- method 1. // 1 -- method 1.
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid // nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nViscosityPeModified: Pe Modified for ViscosityCoef // nViscosityPeModified: Pe Modified for ViscosityCoef.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nChemcalSourceModified: Modified on ChemcalSource // nChemcalSourceModified: Modified on ChemcalSource.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nChemcalSourceEsMethod: Modified on ChemcalSource // nChemcalSourceEsMethod: Modified on ChemcalSource.
// 0 -- approximation algorithm 1 (Ori.) // 0 -- approximation algorithm 1 (Ori).
// 1 -- approximation algorithm 2 (New) // 1 -- approximation algorithm 2 (New).
// nMaxStepTemperature: the iterative steps of temperature. // nMaxStepTemperature: the iterative steps of temperature.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs // 0 -- not used.
// 0 -- not used // 1 -- used.
// 1 -- used // nDiagonalModified: Modified on Diagonal.
// 0 -- not used.
// nDiagonalModified: Modified on Diagonal // 1 -- new.
// 0 -- not used // nDiagonalModifiedTurb: Modified on Diagonal for turbulence.
// 1 -- Ori. // 0 -- not used.
// 2 -- new // 1 -- new.
// nGradPrimtiveMethod: // nGradPrimtiveMethod:
// 0 -- Ori. // 0 -- Ori.
// 1 -- new // 1 -- new.
// nAblation: // nAblation:
// 0 -- The wall ablation is not computed. // 0 -- The wall ablation is not computed.
// 1 -- The wall ablation is computed. // 1 -- The wall ablation is computed.
@ -1017,8 +1033,8 @@ int monitorNegativeConstant = 0;
// "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas. // "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas.
// "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions. // "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions.
// "Gas-Mixture" -- indicates the process of mixing gas without reacting. // "Gas-Mixture" -- indicates the process of mixing gas without reacting.
// for struct solver mixing two species£¨SpeciesA, SpeciesB£©. // for struct solver mixing two species<65><73>SpeciesA, SpeciesB<73><42>.
// for unstruct solver mixing multi-species£¨O2 NO CO CO2 H2 N2 Air CH4£©. // for unstruct solver mixing multi-species<65><73>O2 NO CO CO2 H2 N2 Air CH4<48><34>.
// For self-definition model, the gasfile is used to indicate the file path of the new gas model. // For self-definition model, the gasfile is used to indicate the file path of the new gas model.
// speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma. // speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma.
// initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName. // initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName.
@ -1040,13 +1056,16 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting : Setting for HyFLOW GUI.
// 0 -- PHengLEI
// 1 -- HyFLOW
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no // 0 -- no.
// 1 -- yes // 1 -- yes.
// nTvChange: Judge whether the Tv equals Ttr.
// 0 -- yes.
// 1 -- no.
// isMoleFractionType: 1 indicates the mass fractions, or else the mole fractions.
// nFraction: the initial fractions type of species.
// 0 -- mass fraction.
// 1 -- mole fraction.
int dg_high_order = 0; int dg_high_order = 0;
int iapplication = 0; int iapplication = 0;
int isAdaptiveSolver = 0; int isAdaptiveSolver = 0;
@ -1114,6 +1133,7 @@ double densityMin = 1.0e-8;
double densityMinFactor = 0.1; double densityMinFactor = 0.1;
double tAdjustmentFactor = 10.0; double tAdjustmentFactor = 10.0;
double iniSpeedCoef = 1.0; double iniSpeedCoef = 1.0;
int iniSpeedMode = 0;
int nDebug = 0; int nDebug = 0;
int nSpeciesLimit = 1; int nSpeciesLimit = 1;
@ -1125,18 +1145,21 @@ int nChemcalSourceEsMethod = 1;
int nMaxStepTemperature = 5; int nMaxStepTemperature = 5;
int veTemperatureMinModified = 1; int veTemperatureMinModified = 1;
int nDiagonalModified = 0; int nDiagonalModified = 0;
int nDiagonalModifiedTurb = 0;
int nGradPrimtiveMethod = 1; int nGradPrimtiveMethod = 1;
int nInviscidFluxModify = 1; int nInviscidFluxModify = 1;
int nQlLimitMethod = 2; int nQlLimitMethod = 2;
int nSpeciesForWallMethod = 1; int nSpeciesForWallMethod = 1;
int nDensityForWallMethod = 0; int nDensityForWallMethod = 0;
int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
int nMarsModel = 0; int nMarsModel = 0;
int nTvChange = 0;
int isMoleFractionType = 0;
string gasfile = "DK5"; string gasfile = "DK5";
//string gasfile = "./chemical/Dunn-Kang_air5s11r.dat"; //string gasfile = "./chemical/Dunn-Kang_air5s11r.dat";
string speciesName = "O, O2, NO, N, N2"; string speciesName = "O, O2, NO, N, N2";
@ -1173,9 +1196,17 @@ double molecularWeightSpeciesB = 30.0;
//string speciesName = "O2, N2"; //string speciesName = "O2, N2";
//string initMassFraction = "1.0, 0.0"; //string initMassFraction = "1.0, 0.0";
int nFraction = 0;
int nContinueModel = 0; int nContinueModel = 0;
int nChemicalFlowStep = 0; int nChemicalFlowStep = 0;
int ifStartFromPerfectGasResults = 0; int ifStartFromPerfectGasResults = 0;
int isUseNoneqCond = 0;
double frozenCondition = 0.01;
int nLeakageMonitor = 0;
double totalLeakageVolume = 1000.0;
double monitorThresholdValue = 0.05;
double sprayFactor = 0.0;
######################################################################### #########################################################################
// Multi-Grid parameters. // Multi-Grid parameters.
@ -1196,7 +1227,6 @@ int ifStartFromPerfectGasResults = 0;
// 1 -- zero order. // 1 -- zero order.
// 2 -- first-order. (default) // 2 -- first-order. (default)
// mgCorrectionLimit: Multi-grid correction limit. // mgCorrectionLimit: Multi-grid correction limit.
int nMGLevel = 1; int nMGLevel = 1;
int MGCoarsestIteration = 1; int MGCoarsestIteration = 1;
int MGPreIteration = 1; int MGPreIteration = 1;
@ -1226,9 +1256,9 @@ string holeFullFileName = "./grid/holeFullFile.dat";
string linkFileName = "./grid/topology.dat"; string linkFileName = "./grid/topology.dat";
string zoneInverseFileName = "./grid/zoneInverseMapping.inp"; string zoneInverseFileName = "./grid/zoneInverseMapping.inp";
######################################################################### #************************************************************************
# High Order Struct Solver # # High Order Struct Solver *
######################################################################### #************************************************************************
// isFVMOrFDM: // isFVMOrFDM:
// 0 -- NSSolverStruct using Finite Volume Method. // 0 -- NSSolverStruct using Finite Volume Method.
// 1 -- NSSolverStruct using Finite Differ Method. // 1 -- NSSolverStruct using Finite Differ Method.
@ -1273,10 +1303,29 @@ int allReduceStep = 1;
// codeOfOversetGrid: Overlapping(overset) grid or not. // codeOfOversetGrid: Overlapping(overset) grid or not.
// 0 -- NON-overlapping grid. // 0 -- NON-overlapping grid.
// 1 -- Overlapping grid. // 1 -- Overlapping grid.
// oversetInterpolationMethod: the method of overset interpolation while field simulation // oversetInterpolationMethod: the method of overset interpolation while field simulation.
// 0 -- set the acceptor cell value by donor cell value. // 0 -- set the acceptor cell value by donor cell value.
// 1 -- set the acceptor cell value by distance weight of donor cell value. // 1 -- set the acceptor cell value by distance weight of donor cell value.
// readOversetFileOrNo: Whether to read overset-file(.ovs) that has been generated.
// 0 -- no.
// 1 -- yes.
// symetryOrNot: If there exist symetryplanes(XY plane, the coordinate of Z direction is 0) in
// the current overset grid(only for three dimension).
// 0 -- no.
// 1 -- yes.
// readInAuxiliaryInnerGrid: Whether to read auxiliary inner grid.
// 0 -- no.
// 1 -- yes.
// walldistMainZone: The initial value of background grid which does not exist wall boundary condition.
// toleranceForOversetSearch: The tolerance of overset searching zone to judge whether the obtained node is in the current computing cell.
// toleranceForOversetBox: The tolerance of building the minimum box of computing cells in the overlapping region.
// twoOrderInterpolationOrNot: The number of interpolated cell layers in the overlapping boundary.
// 0 -- one layer.
// 1 -- two layers.
// keyEnlargeOfActiveNodes: The number of enlarged overset-boundary layers in the buffer region.
// outTecplotOverset: Whether to dump out the flowfield data after the progress of overset configure.
// 0 -- no.
// 1 -- yes.
int codeOfOversetGrid = 0; int codeOfOversetGrid = 0;
int oversetInterpolationMethod = 0; int oversetInterpolationMethod = 0;
int readOversetFileOrNot = 0; int readOversetFileOrNot = 0;
@ -1295,7 +1344,6 @@ int twoOrderInterpolationOrNot = 0;
int keyEnlargeOfActiveNodes = 0; int keyEnlargeOfActiveNodes = 0;
int outTecplotOverset = 0; int outTecplotOverset = 0;
int outPutOversetVisualization = 0; int outPutOversetVisualization = 0;
int numberOfMovingBodies = 2; int numberOfMovingBodies = 2;
// ----------------- ALE configuration ------------------------------ // ----------------- ALE configuration ------------------------------
@ -1306,34 +1354,40 @@ double referenceLength = 1.0;
double referenceVelocity = 1.0; double referenceVelocity = 1.0;
double referenceDensity = 1.0; double referenceDensity = 1.0;
int strategyForFaceNormalVelocity = 0; //0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd; int strategyForFaceNormalVelocity = 0; // 0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd.
int strategyForGCLSource = 0; //0-present; 1-Ahn; int strategyForGCLSource = 0; // 0-present; 1-Ahn.
//0:1st-Admas-Bashforth; 1:2nd-Admas-Bashforth; 2:1st-Implicit-Euler; 3:2nd-Implicit Euler; 4:2nd-Adams-Moulton; 5:3rd-Adams-Moulton // 0: 1st-Admas-Bashforth; 1: 2nd-Admas-Bashforth; 2: 1st-Implicit-Euler; 3: 2nd-Implicit Euler; 4: 2nd-Adams-Moulton; 5: 3rd-Adams-Moulton.
int methodForKineticEquation = 0; int methodForKineticEquation = 0;
double relaxParameterOfKinetic = 1.0; double relaxParameterOfKinetic = 1.0;
######################################################################### #************************************************************************
# motive information # # motive information *
######################################################################### #************************************************************************
int numberOfMovingBodies = 1; int numberOfMovingBodies = 1;
############################## body0 ############################## ############################## body0 ##############################
//mass of parts // mass of parts.
double mass_0 = 1.0; double mass_0 = 1.0;
//mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz // gravity of parts (along negative direction in Y-axis, eg. 9.8).
double gravity_0 = 0.0;
// mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz.
double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0; double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0;
//initial six DOF position information of parts. xc yc zc // initial six DOF position information of parts. xc yc zc.
double massCenter_0[] = 0.0, 0.0, 0.0; double massCenter_0[] = 0.0, 0.0, 0.0;
//initial six DOF position information of parts. angleX angleY angleZ // if reset mass center while restart.
int resetMassCenter_0 = 0;
// position offset of parts. dx dy dz.
double massCenterDxyz_0[] = 0.0, 0.0, 0.0;
// initial six DOF position information of parts. angleX angleY angleZ.
double attitudeAngle_0[] = 0.0, 0.0, 0.0; double attitudeAngle_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. vc vy vz // initial six DOF move information of parts. vc vy vz.
double massCenterVelocity_0[] = 0.0, 0.0, 0.0; double massCenterVelocity_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. omigX omigY omigZ // initial six DOF move information of parts. omigX omigY omigZ.
double angularVelocity_0[] = 0.0, 0.0, 0.0; double angularVelocity_0[] = 0.0, 0.0, 0.0;
// the object that the parts belong to. // the object that the parts belong to.
int fartherIndex_0 = -1; int fartherIndex_0 = -1;
//the assembly position of the parts. xc yc zc angleX angleY angleZ // the assembly position of the parts. xc yc zc angleX angleY angleZ.
double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0; double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
// the move pattern of the parts. // the move pattern of the parts.
// -1 given motion partten. // -1 given motion partten.
@ -1349,23 +1403,24 @@ double configPamameter_0[] = 0.0 ,0.0 ,0.0 ,0.0 ,0.0
int RBDMethod_0 = 0; int RBDMethod_0 = 0;
double amplitude_0 = 0.0; double amplitude_0 = 0.0;
double reduceFrequency_0 = 0.0; double reduceFrequency_0 = 0.0;
//direction of rotation // direction of rotation.
// 1 -- clockwise from the point of view along the positive x axis. // 1 -- clockwise from the point of view along the positive x axis.
// -1 -- anticlockwise from the point of view along the positive x axis. // -1 -- anticlockwise from the point of view along the positive x axis.
int direction_0 = -1; int direction_0 = -1;
double rotateFrequency_0 = 0.0; double rotateFrequency_0 = 0.0;
//string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter"; //string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter";
//additional force (system axis) fX fY fZ // dimensional physical time for additional force(s).
double addedForceTime_0[] = 0.0;
// additional force(inertia system) fX fY fZ.
double addedForce_0[] = 0.0, 0.0, 0.0; double addedForce_0[] = 0.0, 0.0, 0.0;
//additional moment of Force (system axis) mX mY mZ // additional moment(inertia system) mX mY mZ.
double addedMoment_0[] = 0.0, 0.0, 0.0; double addedMoment_0[] = 0.0, 0.0, 0.0;
// the deformation method of the parts. // the deformation method of the parts.
int morphing_0 = 0; int morphing_0 = 0;
// post indentify // post indentify.
int integralOrder = 4; int integralOrder = 4;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;
@ -1379,18 +1434,34 @@ int integralOrder = 4;
//@string outLetFileName = "./bin/subsonicOutlet.hypara"; //@string outLetFileName = "./bin/subsonicOutlet.hypara";
//@double refDimensionalVelocity = 0; //@double refDimensionalVelocity = 0;
//@double refDimensionalDensity = 0; //@double refDimensionalDensity = 0;
//@string weatherDataFilePath = "./WRFData/";
######################################################################### //@double longitude = 110.95
# Old Parameter # //@double latitude = 19.61;
######################################################################### #************************************************************************
# Old Parameter *
#************************************************************************
int isPlotVolumeField = 0; int isPlotVolumeField = 0;
#************************************************************************
# partial flow field setting Parameter *
#************************************************************************
//int nPartialParameter = 0; // 0/1/2
//int nNumberOfPartialField = 0; //
//int nStartGridIndex[] = [0];
//int nEndGridIndex[] = [0];
######################################################################### //double partialCFL[] = [0.0];
# Incompressible Parameter # //double partialSpeedCoef[] = [0.0];
######################################################################### //double partialSpeed[] = [0.0];
//double partialAttackd[] = [0.0];
//double partialSlide[] = [0.0];
//double partialPressure[] = [0.0];
//double partialTemperature[] = [0.0];
//double partialMassFractions[] = [0.0];
#************************************************************************
# Incompressible Parameter *
#************************************************************************
int isSolveEnergyEquation = 0; int isSolveEnergyEquation = 0;
int isSolveTurbEquation = 0; int isSolveTurbEquation = 0;
int isSolveSpeciesEquation = 0; int isSolveSpeciesEquation = 0;

View File

@ -4,9 +4,12 @@
// gridtype: Grid type for generation, conversion, reconstruction, merging. // gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid. // 0 -- Unstructured grid.
// 1 -- Structured grid. // 1 -- Structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion. // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// 1 -- Y upward. (default) // axisRotateOrder : axis rotating order.
// 2 -- Z upward. // 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
// from_gtype: Type of grid data type in grid conversion process. // from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE. // -1 -- MULTI_TYPE.
// 1 -- PHengLEI, *.fts. // 1 -- PHengLEI, *.fts.
@ -18,7 +21,9 @@
// 7 -- Hybrid, include both of unstructured and structured grid, *.fts. // 7 -- Hybrid, include both of unstructured and structured grid, *.fts.
// 8 -- GMSH, *.msh. // 8 -- GMSH, *.msh.
int gridtype = 0; int gridtype = 0;
int axisup = 1; int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
int from_gtype = 2; int from_gtype = 2;
######################################################################### #########################################################################
# File path # # File path #

View File

@ -8,6 +8,7 @@
// Platform for Hybrid Engineering Simulation of Flows + // Platform for Hybrid Engineering Simulation of Flows +
// China Aerodynamics Research and Development Center + // China Aerodynamics Research and Development Center +
// (C) Copyright, Since 2010 + // (C) Copyright, Since 2010 +
// PHengLEI 2212 +
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
########################################################################### ###########################################################################
# Default parameters for Grid conversion # # Default parameters for Grid conversion #
@ -46,19 +47,24 @@ int gridobj = 1;
int multiblock = 0; int multiblock = 0;
int iadapt = 0; int iadapt = 0;
int SymmetryFaceVector = 1; int SymmetryFaceVector = 1;
int gridReorder = 0; int gridReorder = 0;
int faceReorderMethod = 0; int faceReorderMethod = 0;
// axisup: Type of Cartisien coordinates system, used in grid conversion. // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// 1 -- Y upward. (default) // axisRotateOrder : axis rotating order.
// 2 -- Z upward. // 1 -- X-axis.
int axisup = 1; // 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
// omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition". // omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition".
// 0 -- Interface. (default) // 0 -- Interface. (default)
// 1 -- Physical boundary condition, used in Hybrid solver. // 1 -- Physical boundary condition, used in Hybrid solver.
int omit_no_bound_bc = 0; int omit_no_bound_bc = 0;
int omitRepeatInterface = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# Grid data type # # Grid data type #
@ -89,7 +95,6 @@ int dumpOldGrid = 0;
int numberOfGridFile = 1; int numberOfGridFile = 1;
string from_gfile = "./grid/rae2822_hybrid2d.cas"; string from_gfile = "./grid/rae2822_hybrid2d.cas";
string from_gfile1 = ""; string from_gfile1 = "";
string out_gfile = "./grid/flat_laminr_133_85_2d.fts"; string out_gfile = "./grid/flat_laminr_133_85_2d.fts";
// ----------------- some advanced choices ------------------------------ // ----------------- some advanced choices ------------------------------
@ -178,7 +183,6 @@ double influencePara = 25.0;
which only support one direction. which only support one direction.
// rotationAngle: The relative angle between two periodic face. // rotationAngle: The relative angle between two periodic face.
which is recorded in degrees. which is recorded in degrees.
int periodicType = 0; int periodicType = 0;
double translationLength[] = [0.0, 0.0, 0.0]; double translationLength[] = [0.0, 0.0, 0.0];
double rotationAngle = 0.0; double rotationAngle = 0.0;
@ -192,7 +196,6 @@ double rotationAngle = 0.0;
// 2 -- refine structured grid. // 2 -- refine structured grid.
// maxproc: The number of partition zones that want to be divided into. // maxproc: The number of partition zones that want to be divided into.
// numberOfMultifile: The number of partition grid files that want to be dumped out. // numberOfMultifile: The number of partition grid files that want to be dumped out.
int pgridtype = 0; int pgridtype = 0;
int maxproc = 4; int maxproc = 4;
int numberOfMultifile = 1; int numberOfMultifile = 1;
@ -207,8 +210,8 @@ int blockIndexOfMark = 0;
int cellIndexOfMark[] = [185, 30, 1]; int cellIndexOfMark[] = [185, 30, 1];
// parallelStrategy: // parallelStrategy:
//! -# 0 : each zone is assigned to the one that defined in grid partition procedure. // 0 -- each zone is assigned to the one that defined in grid partition procedure.
//! -# 1 : random assigned for each zone or by some else ways. // 1 -- random assigned for each zone or by some else ways.
int parallelStrategy = 1; int parallelStrategy = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
@ -232,7 +235,6 @@ string partition_grid_file = "./grid/sphere_mixed__4.fts";
// 1 -- perfect balance. // 1 -- perfect balance.
// maxproc -- perfect imbalance. // maxproc -- perfect imbalance.
// 1.05 -- recommended. // 1.05 -- recommended.
int omit_no_bound_bc = 0; int omit_no_bound_bc = 0;
int npartmethod = 1; int npartmethod = 1;
int parallelPartitionMethod = 2; int parallelPartitionMethod = 2;
@ -253,24 +255,30 @@ int numberOfMultigrid = 1;
// intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved. // intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved.
// intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved. // intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved.
// intervalStepRes: The step intervals for residual file 'res.dat' saved. // intervalStepRes: The step intervals for residual file 'res.dat' saved.
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
int maxSimuStep = 20000; int maxSimuStep = 20000;
int intervalStepFlow = 1000; int intervalStepFlow = 1000;
int intervalStepPlot = 1000; int intervalStepPlot = 1000;
int intervalStepSample = 1000; int intervalStepSample = 1000;
int intervalStepForce = 100; int intervalStepForce = 100;
int intervalStepRes = 10; int intervalStepRes = 10;
int ifLowSpeedPrecon = 0;
// compressible: // compressible:
// 0 -- incompressible flow. // 0 -- incompressible flow.
// 1 -- compressible flow. (default) // 1 -- compressible flow. (default)
int compressible = 1; int compressible = 1;
// ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow.
// 0 -- no precondition process. (default, mach > 0.3)
// 1 -- carry out precondition process. (mach number <= 0.3)
// Kprec: The coefficient K for the cut-off velocity.
// 1.0~3.0 is suggested. (default, 3.0)
// preconFarfieldBCMethod: The precondition method for farfield boundary condition.
// 0 -- precondition far-field boundary based on riemann invariants.
// 1 -- Turkel's simplified far-field boundary condition.
int ifLowSpeedPrecon = 0;
double Kprec = 3.0;
int preconFarfieldBCMethod = 1;
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# CFD Control Parameter # # CFD Control Parameter #
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
@ -281,9 +289,12 @@ int compressible = 1;
// 0 -- the nondimensional conditions. // 0 -- the nondimensional conditions.
// 1 -- the flight conditions. // 1 -- the flight conditions.
// 2 -- the experiment conditions. // 2 -- the experiment conditions.
// 3 -- the subsonic boundary conditions. // 3 -- the subsonic boundary conditions. (Useless!)
// 4 -- the condition that the velocity, temperature and density are given. // 4 -- the condition that the velocity, temperature and density are given.
// 5 -- the condition that the velocity, temperature and pressure are given. // 5 -- the condition that the velocity, temperature and pressure are given.
//flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -303,11 +314,11 @@ int compressible = 1;
// condition is radiation equilibrium temperature, and 0.8 is the default value. // condition is radiation equilibrium temperature, and 0.8 is the default value.
// refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol. // refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol.
// Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on. // Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on.
int directionMethod = 0; int directionMethod = 0;
double refMachNumber = 0.73; double refMachNumber = 0.73;
double attackd = 2.79; double attackd = 2.79;
double angleSlide = 0.00; double angleSlide = 0.00;
int flowInitMethod = 0;
int inflowParaType = 0; int inflowParaType = 0;
double refReNumber = 6.5e6; double refReNumber = 6.5e6;
@ -321,14 +332,6 @@ double freestream_vibration_temperature = 300.00;
//double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2). //double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2).
//double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)). //double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)).
//int inflowParaType = 3;
//int nsubsonicInlet = 1;
//int nsubsonicOutlet = 1;
//string inLetFileName = "./bin/subsonicInlet.hypara";
//string outLetFileName = "./bin/subsonicOutlet.hypara";
//double refDimensionalTemperature = 288.144;
//double refDimensionalPressure = 1.01313E05;
// The velocity, temperature and density are fixed. // The velocity, temperature and density are fixed.
//int inflowParaType = 4; //int inflowParaType = 4;
//double refDimensionalVelocity = 1000.0; //double refDimensionalVelocity = 1000.0;
@ -341,9 +344,15 @@ double freestream_vibration_temperature = 300.00;
// The MachNumber, temperature and pressure are fixed. // The MachNumber, temperature and pressure are fixed.
//int inflowParaType = 6; //int inflowParaType = 6;
//double refDimensionalTemperature = 293; //double refDimensionalTemperature = 293.0;
//double refDimensionalPressure = 8886.06; //double refDimensionalPressure = 8886.06;
// The velocity, temperature and pressure are read from file.
//int inflowParaType = 7;
//string weatherDataFilePath = "./WRFData/";
//double longitude = 110.95
//double latitude = 19.61;
double wallTemperature = -1.0; double wallTemperature = -1.0;
double radiationCoef = 0.8; double radiationCoef = 0.8;
@ -357,35 +366,35 @@ double forceReferenceArea = 1.0; // unit of meter^2.
double TorqueRefX = 0.0; // unit of meter. double TorqueRefX = 0.0; // unit of meter.
double TorqueRefY = 0.0; // unit of meter. double TorqueRefY = 0.0; // unit of meter.
double TorqueRefZ = 0.0; // unit of meter. double TorqueRefZ = 0.0; // unit of meter.
double knudsenLength = 1.0; // unit of meter.
double refMolecularWeight = 28.9644; // unit of g/mol. double refMolecularWeight = 28.9644; // unit of g/mol.
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
# Spatial Discretisation # # Spatial Discretisation #
//----------------------------------------------------------------------- //-----------------------------------------------------------------------
#******************************************************************* #************************************************************************
# Struct Solver * # Struct Solver *
#******************************************************************* #************************************************************************
// inviscidSchemeName: Spatial discretisation scheme of struct grid. // inviscidSchemeName: Spatial discretisation scheme of struct grid.
// Using this when solve structered grid or hybrid. // Using this when solve structered grid or hybrid.
// -- "vanleer", "steger", "hlle", "lax_f". // -- "vanleer", "steger", "hlle", "lax_f",
// -- "roe", "modified_roe". // -- "roe", "modified_roe",
// -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+". // -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+".
// isWennScheme: If using WENN Scheme of struct grid. // isWennScheme: If using WENN Scheme of struct grid.
// 0 -- NO. (default) // 0 -- NO. (default)
// 1 -- Yes. // 1 -- Yes.
// str_limiter_name: Limiter of struct grid. // str_limiter_name: Limiter of struct grid.
// -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth". // -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth",
// -- "nolim", no limiter. // -- "nolim", no limiter,
// -- "vanalbada_clz", clz supersonic version. // -- "vanalbada_clz", clz supersonic version,
// -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3" // -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3".
string inviscidSchemeName = "roe"; string inviscidSchemeName = "roe";
int isWennScheme = 0; int isWennScheme = 0;
string str_limiter_name = "vanalbada"; string str_limiter_name = "vanalbada";
#******************************************************************* #************************************************************************
# UnStruct Solver or Common * # UnStruct Solver or Common *
#******************************************************************* #************************************************************************
// viscousType: Viscous model. // viscousType: Viscous model.
// 0 -- Euler. // 0 -- Euler.
// 1 -- Lamilar. // 1 -- Lamilar.
@ -410,11 +419,11 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle". // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod". // -- "barth", "vencat", "vanleer", "minmod",
// -- "vanalbada", "smooth", "nnd", "lpz", "1st". // -- "vanalbada", "smooth", "nnd", "lpz", "1st",
// -- "nolim", no limiter. // -- "nolim", no limiter.
// uns_vis_name: Discretisation method of viscous term. // uns_vis_name: Discretisation method of viscous term.
// -- "std", "test", "aver", "new1", "new2". // -- "std", "test", "aver", "new1", "new2".
@ -442,7 +451,7 @@ string str_limiter_name = "vanalbada";
// 3 -- Harten type, which is default used. // 3 -- Harten type, which is default used.
// roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0. // roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0.
// It is used to scale the default Roe entropy fix coefficients. // It is used to scale the default Roe entropy fix coefficients.
// AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0 // AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0.
//int viscousType = 0; //int viscousType = 0;
//string viscousName = "Euler"; //string viscousName = "Euler";
@ -475,9 +484,9 @@ double roeEntropyScale = 1.0;
double AusmpwPlusLimiter = 1.0; double AusmpwPlusLimiter = 1.0;
//----------------------------------------------------------------------- #************************************************************************
# Temporal Discretisation # # Temporal Discretisation *
//----------------------------------------------------------------------- #************************************************************************
// iunsteady: Steady or unsteady. // iunsteady: Steady or unsteady.
// 0 -- steady. // 0 -- steady.
// 1 -- unsteay. // 1 -- unsteay.
@ -504,11 +513,18 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// useLUSGSprecond: Initialize flow field for GMRES.
// 0 --Initialize by first order Jacobian matrix.
// 1 --Initialize by LUSGS.
// GMRESInitStep : the number of iteration step of irst order Jacobian matrix or LUSGS for initialize flow field.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -533,7 +549,6 @@ double AusmpwPlusLimiter = 1.0;
// 2 -- Pab3D wall function. // 2 -- Pab3D wall function.
// RKStage: The number of Runge-Kutta step. // RKStage: The number of Runge-Kutta step.
// lamda: Cofficient of Runge-Kutta step. // lamda: Cofficient of Runge-Kutta step.
int iunsteady = 0; int iunsteady = 0;
double physicalTimeStep = 0.01; double physicalTimeStep = 0.01;
double physicalTimeStepDimensional = -0.001; double physicalTimeStepDimensional = -0.001;
@ -543,7 +558,7 @@ int ifStaticsReynoldsStress = 0;
int startStatisticStep = 800000; int startStatisticStep = 800000;
double statisticalTimePeriod = -1.0; double statisticalTimePeriod = -1.0;
int statisticMethod = 0; int statisticMethod = 0;
int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2; int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2.
int methodOfDualTime = 3; int methodOfDualTime = 3;
int min_sub_iter = 50; int min_sub_iter = 50;
@ -558,7 +573,10 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 9;
int useLUSGSprecond = 1;
int GMRESInitStep = 1000;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -575,7 +593,7 @@ int order = 2;
double visl_min = 0.01; double visl_min = 0.01;
double turbCFLScale = 1.0; double turbCFLScale = 1.0;
double csrv = 2.0; double csrv = 1.0;
double timemax = 1.0e10; double timemax = 1.0e10;
double dtsave = -1.0; double dtsave = -1.0;
int maxale = 10; int maxale = 10;
@ -591,10 +609,9 @@ double lamda[] = [0.5, 1.0];
//int RKStage = 4; //int RKStage = 4;
//double lamda[] = [0.25, 0.33333333333, 0.5, 1.0]; //double lamda[] = [0.25, 0.33333333333, 0.5, 1.0];
#************************************************************************
//----------------------------------------------------------------------- # File In or Out *
# File In or Out # #************************************************************************
//-----------------------------------------------------------------------
// numberOfGridGroups: The number of grid groups. // numberOfGridGroups: The number of grid groups.
// gridfile: The partitioned Grid file path, using relative path, // gridfile: The partitioned Grid file path, using relative path,
// which is relative to the working directory. // which is relative to the working directory.
@ -618,10 +635,8 @@ double lamda[] = [0.5, 1.0];
// nIsComputeWallDist: Whether to compute the wall distance. // nIsComputeWallDist: Whether to compute the wall distance.
// 0 -- Compute wall distance. // 0 -- Compute wall distance.
// 1 -- Not compute. // 1 -- Not compute.
//
// protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism. // protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism.
// wall_heatfluxfile: The file to output the MaxHeatFlux of wall. // wall_heatfluxfile: The file to output the MaxHeatFlux of wall.
int numberOfGridGroups = 1; int numberOfGridGroups = 1;
string gridfile = "./grid/rae2822_hybrid2d__4.fts"; string gridfile = "./grid/rae2822_hybrid2d__4.fts";
string wallTemperaturefile = ""; string wallTemperaturefile = "";
@ -632,10 +647,12 @@ int cellMethodOrNodeMethod = 0;
string resSaveFile = "results/res.dat"; string resSaveFile = "results/res.dat";
string turbresfile = "results/turbres.dat"; string turbresfile = "results/turbres.dat";
string transitionResFile = "results/transitionRes.dat";
string aircoeffile = "results/aircoef.dat"; string aircoeffile = "results/aircoef.dat";
string restartNSFile = "results/flow.dat"; string restartNSFile = "results/flow.dat";
string turbfile = "results/turb.dat"; string turbfile = "results/turb.dat";
string transitionFile = "results/transition.dat";
string visualfile = "results/tecflow.plt"; string visualfile = "results/tecflow.plt";
string wall_aircoefile = "results/wall_aircoef.dat"; string wall_aircoefile = "results/wall_aircoef.dat";
@ -645,11 +662,15 @@ string protectionFile0 = "results/flow0.dat";
string protectionFile1 = "results/flow1.dat"; string protectionFile1 = "results/flow1.dat";
string wall_heatfluxfile = "results/wall_heatflux.dat"; string wall_heatfluxfile = "results/wall_heatflux.dat";
string protectionTurbFile0 = "results/turb0.dat";
string protectionTurbFile1 = "results/turb1.dat";
string protectionTransitionFile0 = "results/transition0.dat";
string protectionTransitionFile1 = "results/transition1.dat";
int nDumpSurfaceInfo = 0; int nDumpSurfaceInfo = 0;
string wall_varfile = ""; string wall_varfile = "";
string jetDefineFile = "bin/jet.hypara";
string sixDofFileName = "results/sixDofInfo.dat"; string sixDofFileName = "results/sixDofInfo.dat";
string derivativeFileName = "results/identify.dat"; string derivativeFileName = "results/identify.dat";
string hysteresisFileName = "results/force_beta.plt"; string hysteresisFileName = "results/force_beta.plt";
@ -659,7 +680,8 @@ int plotFieldType = 0;
// visualfileType: The file type of visualfile. // visualfileType: The file type of visualfile.
// 0 -- Tecplot binary. // 0 -- Tecplot binary.
// 1 -- Tecplot ASCII. // 1 -- Tecplot ASCII.
// 2 -- Ensight binary.
// 3 -- Ensight ASCII.
int visualfileType = 1; int visualfileType = 1;
// samplefileMode: The dump mode of sample file. // samplefileMode: The dump mode of sample file.
@ -697,21 +719,21 @@ double upperPlotFieldBox[] = [1.0 1.0 1.0];
// -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36), // -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36),
// -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40), // -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40),
// -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47), // -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47),
// -- transition intermittency(intermittency, 51), -transition momentum thickness reynolds(MomentumThicknessReynolds, 52), // -- transition intermittency(intermittency, 51), transition momentum thickness reynolds(MomentumThicknessReynolds, 52),
// -- overlap iblank(iblank, 81) // -- local CFL Number(localCFL, 57), minimal CFL Number(minCFL, 58),
// -- overlap iblank(iblank, 81),
// -- specific heat ratio(gama, 56) // -- specific heat ratio(gama, 56), Knudsen number(kn, 60), Damkohler number(Da, 61), vibrational nonequilibrium number(Vi, 62).
// Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!! // Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!!
// Variables order must from small to big. // Variables order must from small to big.
//-----------the optional parameters list for the wall boundary condition---------------- //-----------the optional parameters list for the wall boundary condition----------------
// nVisualWallVariables: The number of visual variables on wall. // nVisualWallVariables: The number of visual variables on wall.
// visualWallVariables : dumped variable types, listed as following: // visualWallVariables : dumped variable types, listed as following:
// -coefficient of pressure(cp, 0), -coefficient of friction(cf, 1), yplus(2), -non-dimensional heat flux(Q_NonDim, 3), -dimensional heat flux(Q_Dim, 4), // -- coefficient of pressure(cp, 0), coefficient of friction(cf, 1), yplus(2), non-dimensional heat flux(Q_NonDim, 3), dimensional heat flux(Q_Dim, 4),
// -pressure on wall(pw, 5), -temperature on wall(Tw, 6), -density on wall(rhow, 7), -heat flux of translational-rotational temperature term(Qtr, 8), // -- pressure on wall(pw, 5), temperature on wall(Tw, 6), density on wall(rhow, 7), heat flux of translational-rotational temperature term(Qtr, 8),
// -heat flux of species diffusion term(Qs, 9), -heat flux of vibrational temperature term(Qv, 10), -heat flux of electron temperature term(Qe, 11), // -- heat flux of species diffusion term(Qs, 9), heat flux of vibrational temperature term(Qv, 10), heat flux of electron temperature term(Qe, 11),
// -species mass fractions(Ns, 12), -x component of wall velocity(Vx, 13), -y component of wall velocity(Vy, 14), -z component of wall velocity(Vz, 15) // -- species mass fractions(Ns, 12), x component of wall velocity(Vx, 13), y component of wall velocity(Vy, 14), z component of wall velocity(Vz, 15),
// -slip translational-rotational temperature(Tts, 16), -slip vibrational temperature(Tvs, 17), -slip electron temperature(Tes, 18), -absolute wall velocity(Vs, 19) // -- slip translational-rotational temperature(Tts, 16), slip vibrational temperature(Tvs, 17), slip electron temperature(Tes, 18), absolute wall velocity(Vs, 19),
// -Stanton number(St, 20), -coefficient of heat rate(Ch, 21), -temperature jump(deltaT, 22), -Grid Reynolds number on wall(Re_w, 23) // -- Stanton number(St, 20), coefficient of heat rate(Ch, 21), temperature jump(deltaT, 22), Grid Reynolds number on wall(Re_w, 23), Knudsen number(Kn_wall, 24).
int nVisualVariables = 8; int nVisualVariables = 8;
int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15]; int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15];
@ -739,7 +761,9 @@ int dumpStandardModel = 0;
// 1 -- Real cell where the probe is located. // 1 -- Real cell where the probe is located.
// nProbeVariables: Number of variables want to be dumped for probes monitered. // nProbeVariables: Number of variables want to be dumped for probes monitered.
// probeVariables : Variable types dumped, listed as following: // probeVariables : Variable types dumped, listed as following:
// -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6). // -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6),
// -- dimensioanl_density(7), dimensioanl_u(8), dimensioanl_v(9),
// -- dimensioanl_w(10), dimensioanl_pressure(11), dimensioanl_temperature(12).
// Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!! // Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!!
// probeVariables order must from small to big. // probeVariables order must from small to big.
// probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables. // probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables.
@ -761,12 +785,13 @@ string probesDefineFile = "bin/probes_XYZ.dat";
int searchCellsMethod = 0; int searchCellsMethod = 0;
int nProbeVariables = 7; int nProbeVariables = 14;
int probeVariables[] = [0, 1, 2, 3, 4, 5, 6]; int probeVariables[] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13];
int probeVariablesInterpolationMethod = 0; int probeVariablesInterpolationMethod = 0;
//-----------------------------------------------------------------------
# Turbulence Parameter # #************************************************************************
//----------------------------------------------------------------------- # Turbulence Parameter *
#************************************************************************
// turbInterval: Iteration number of turbulence. // turbInterval: Iteration number of turbulence.
// kindOfTurbSource: Kinds of turbulent source. // kindOfTurbSource: Kinds of turbulent source.
// 0 -- Original. // 0 -- Original.
@ -774,15 +799,12 @@ int probeVariablesInterpolationMethod = 0;
// transitionType: transition model type // transitionType: transition model type
// 0 -- none. // 0 -- none.
// 2 -- gama-re-theta. // 2 -- gama-re-theta.
// turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition // turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition.
// freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not // freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not.
int turbInterval = 1; int turbInterval = 1;
int turbOrderStruct = 2; int turbOrderStruct = 2;
int kindOfTurbSource = 0; int kindOfTurbSource = 0;
int mod_turb_res = 0; int mod_turb_res = 0;
double turb_relax = 1.0;
double freeStreamViscosity = 1.0e-3; double freeStreamViscosity = 1.0e-3;
double muoo = 3.0; double muoo = 3.0;
double kwoo = 5.0; double kwoo = 5.0;
@ -791,28 +813,27 @@ double turbIntensity = -1.0;
int freeturbIntensitySRModify = 0; int freeturbIntensitySRModify = 0;
double freeDecayXLocation = 0.0; double freeDecayXLocation = 0.0;
int compressibleCorrection = 0; int compressibleCorrection = 0;
int prandtlNumberCorrection = 0;
int transitionMaFix = 1; int transitionMaFix = 1;
# maximum eddy viscosity (myt/my) max. // maximum eddy viscosity (myt/my) max.
double eddyViscosityLimit = 1.0e10; double eddyViscosityLimit = 1.0e10;
int monitor_vistmax = 0; int monitor_vistmax = 0;
//----------------------------------------------------------------------- #************************************************************************
# LES Parameter # # LES Parameter *
//----------------------------------------------------------------------- #************************************************************************
// iLES: Create LESSolver or not. // iLES: Create LESSolver or not.
// = 1 - Create LESSolver; // = 1 -- Create LESSolver;
// != 1 - not. // != 1 -- not.
// amplitudeofDisturb: Amplitude of adding disturb. // amplitudeofDisturb: Amplitude of adding disturb.
// disturbstep: Unsteady time step or steady iteration of adding random disturb. // disturbstep: Unsteady time step or steady iteration of adding random disturb.
// iterdisturb: Add random disturb in every sub-iter or only first sub-iter. // iterdisturb: Add random disturb in every sub-iter or only first sub-iter.
// = 0 - in only first sub-iter; // = 0 -- in only first sub-iter;
// != 0 - in every sub-iter. // != 0 -- in every sub-iter.
// ipraddisturb: Add density and pressure disturb or not. // ipraddisturb: Add density and pressure disturb or not.
// ibodyforce: Add body force in source flux of NS equations or not. // ibodyforce: Add body force in source flux of NS equations or not.
// = 0 - not; // = 0 -- not;
// != 0 - Add body force. // != 0 -- Add body force.
// bodyforce: Body force in source flux of NS equations or not. // bodyforce: Body force in source flux of NS equations or not.
// utau: friction velocity, using in DNSDisturb. // utau: friction velocity, using in DNSDisturb.
// sgsmodel: subgrid scale model. // sgsmodel: subgrid scale model.
@ -820,23 +841,22 @@ int monitor_vistmax = 0;
// = "dsmCom"; // = "dsmCom";
// = "wale"; // = "wale";
// = "sigma". // = "sigma".
// deltaFunctionType: = 1 - MAX(deltai, deltaj, deltak); // deltaFunctionType: = 1 -- MAX(deltai, deltaj, deltak);
// = 2 - pow(deltai * deltaj *deltak, 1/3); // = 2 -- pow(deltai * deltaj *deltak, 1/3);
// = 3 - Devloped by Scotti. // = 3 -- Devloped by Scotti.
// wallDampingFunctionType: = 0 - no wall function; // wallDampingFunctionType: = 0 -- no wall function;
// = 1 - van Driest; // = 1 -- van Driest;
// = 2 - developed by Dr. Deng Xiaobing; // = 2 -- developed by Dr. Deng Xiaobing;
// = 3 - developed by Piomelli. // = 3 -- developed by Piomelli.
// turbViscousCutType: turbulent viscosity cut type. // turbViscousCutType: turbulent viscosity cut type.
// = 0 - mu_total = mut + mul; // = 0 -- mu_total = mut + mul;
// = 1 - mu_total = max(mut-mul,0)+ mul; // = 1 -- mu_total = max(mut-mul, 0) + mul;
// = 2 - mu_total = max(mut ,0)+ mul. // = 2 -- mu_total = max(mut , 0) + mul.
// smagConstant: constant of smagorinsky model. // smagConstant: constant of smagorinsky model.
// waleConstant: constant of wale model. // waleConstant: constant of wale model.
// filterDirection [3]: filter variables in i, j, k direction or not. // filterDirection [3]: filter variables in i, j, k direction or not.
// averageDirection[3]: average variables in i, j, k direction or not. // averageDirection[3]: average variables in i, j, k direction or not.
// isotropicConstant: constant of isotropic part of SGS stress. // isotropicConstant: constant of isotropic part of SGS stress.
int iLES = 0; int iLES = 0;
string sgsmodel = "smagorinsky"; string sgsmodel = "smagorinsky";
int deltaFunctionType = 2; int deltaFunctionType = 2;
@ -852,9 +872,9 @@ double testFilterScale = 2.0;
int averageWidth = 1; int averageWidth = 1;
int monitorNegativeConstant = 0; int monitorNegativeConstant = 0;
//----------------------------------------------------------------------- #************************************************************************
# Other Parameters for Hypersonic Non-equilibrium Gas # # Other Parameters for Hypersonic Non-equilibrium Gas *
//----------------------------------------------------------------------- #************************************************************************
// dg_high_order: // dg_high_order:
// 0 -- generic order accuracy. // 0 -- generic order accuracy.
// 1 -- high order accuracy. // 1 -- high order accuracy.
@ -862,9 +882,6 @@ int monitorNegativeConstant = 0;
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver,
// isAdaptiveSolver>0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -886,14 +903,13 @@ int monitorNegativeConstant = 0;
// nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied. // nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied.
// 0 -- perfect gas. // 0 -- perfect gas.
// 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component. // 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component.
// nPCWCycleStep: the maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition. // nPCWCycleStep: The maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nRETCycleStep: the maximum step number of iteration in the module of computing radiation equilibrium temperature on wall. // nRETCycleStep: The maximum step number of iteration in the module of computing radiation equilibrium temperature on wall.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nSLIPCycleStep:the maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction. // nSLIPCycleStep:The maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction.
// the value equals to or is greater than 1, and 3 is for default value. // The value equals to or is greater than 1, and 3 is for default value.
// nSlipBCModel: The computational model of slip boundary conditions. // nSlipBCModel: The computational model of slip boundary conditions.
// 0 -- no slip. // 0 -- no slip.
// 1 -- the conventional Maxwell slip conditions. // 1 -- the conventional Maxwell slip conditions.
// 2 -- the Gokcen slip conditions. // 2 -- the Gokcen slip conditions.
@ -913,10 +929,13 @@ int monitorNegativeConstant = 0;
// 1 -- One-temperature model. // 1 -- One-temperature model.
// 2 -- Two-temperature model. // 2 -- Two-temperature model.
// 3 -- Three-temperature model. // 3 -- Three-temperature model.
// isUseNoneqCond:
// 0 -- compute the source terms without any conditions.
// 1 -- compute the source terms using the non-equilibrium condition.
// frozenCondition: the threshold value of frozen chemical flow condition, 0.1 is the default value.
// nIdealState: whether take all gas species as ideal gas for gas-mixture process. // nIdealState: whether take all gas species as ideal gas for gas-mixture process.
// 0 -- No. // 0 -- No.
// 1 -- Yes. // 1 -- Yes. // nTEnergyModel: the method to computing temperature energy model.
// nTEnergyModel: the method to computing temperature energy model.
// 0 -- the energy term is computed using the conventional method. // 0 -- the energy term is computed using the conventional method.
// 1 -- the energy term is computed using the polynomial fitting method. // 1 -- the energy term is computed using the polynomial fitting method.
// 2 -- the energy term is computed using the piecewise polynomial fitting method. // 2 -- the energy term is computed using the piecewise polynomial fitting method.
@ -946,14 +965,13 @@ int monitorNegativeConstant = 0;
// 1.0 -- proposed by Maxwell. // 1.0 -- proposed by Maxwell.
// sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall. // sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall.
// 1.146 -- proposed for an additional "fictitious" velocity slip. // 1.146 -- proposed for an additional "fictitious" velocity slip.
// chemicalRelaxCorf: The value is in range of [0.001, 1.0]. // chemicalRelaxCorf: The value is in range of [0.001, 1.0].
// spectrumRadiusCoef: The value is in range of [0.0, 2.0]. // spectrumRadiusCoef: The value is in range of [0.0, 2.0].
// staticPressureRelaxCorf: The value is in range of [0.1, 1.0]. // staticPressureRelaxCorf: The value is in range of [0.1, 1.0].
// nIsChemicalFreeze: the flag to freeze the chemical reactions. // nIsChemicalFreeze: the flag to freeze the chemical reactions.
// 0 -- not freeze, the chemical reaction sources will be calculated. // 0 -- not freeze, the chemical reaction sources will be calculated.
// 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.// veTemperatureMin: The minimum of Tv and Te // 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated.
// veTemperatureMin: The minimum of Tv and Te.
// maxViscous: the maximum of Viscous. // maxViscous: the maximum of Viscous.
// trTemperatureMin: the minimum value of trTemperature. // trTemperatureMin: the minimum value of trTemperature.
// veTemperatureMin: the minimum value of veTemperature. // veTemperatureMin: the minimum value of veTemperature.
@ -965,36 +983,34 @@ int monitorNegativeConstant = 0;
// nSpeciesLimit: limitter of gas species // nSpeciesLimit: limitter of gas species
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction // nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction.
// 0 -- method 0. // 0 -- method 0.
// 1 -- method 1. // 1 -- method 1.
// nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid // nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nViscosityPeModified: Pe Modified for ViscosityCoef // nViscosityPeModified: Pe Modified for ViscosityCoef.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nChemcalSourceModified: Modified on ChemcalSource // nChemcalSourceModified: Modified on ChemcalSource.
// 0 -- not used. // 0 -- not used.
// 1 -- used. // 1 -- used.
// nChemcalSourceEsMethod: Modified on ChemcalSource // nChemcalSourceEsMethod: Modified on ChemcalSource.
// 0 -- approximation algorithm 1 (Ori.) // 0 -- approximation algorithm 1 (Ori).
// 1 -- approximation algorithm 2 (New) // 1 -- approximation algorithm 2 (New).
// nMaxStepTemperature: the iterative steps of temperature. // nMaxStepTemperature: the iterative steps of temperature.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs.
// veTemperatureMinModified: Modified on the minimum of Tve for Cvvs // 0 -- not used.
// 0 -- not used // 1 -- used.
// 1 -- used // nDiagonalModified: Modified on Diagonal.
// 0 -- not used.
// nDiagonalModified: Modified on Diagonal // 1 -- new.
// 0 -- not used // nDiagonalModifiedTurb: Modified on Diagonal for turbulence.
// 1 -- Ori. // 0 -- not used.
// 2 -- new // 1 -- new.
// nGradPrimtiveMethod: // nGradPrimtiveMethod:
// 0 -- Ori. // 0 -- Ori.
// 1 -- new // 1 -- new.
// nAblation: // nAblation:
// 0 -- The wall ablation is not computed. // 0 -- The wall ablation is not computed.
// 1 -- The wall ablation is computed. // 1 -- The wall ablation is computed.
@ -1017,8 +1033,8 @@ int monitorNegativeConstant = 0;
// "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas. // "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas.
// "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions. // "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions.
// "Gas-Mixture" -- indicates the process of mixing gas without reacting. // "Gas-Mixture" -- indicates the process of mixing gas without reacting.
// for struct solver mixing two species£¨SpeciesA, SpeciesB£©. // for struct solver mixing two species<65><73>SpeciesA, SpeciesB<73><42>.
// for unstruct solver mixing multi-species£¨O2 NO CO CO2 H2 N2 Air CH4£©. // for unstruct solver mixing multi-species<65><73>O2 NO CO CO2 H2 N2 Air CH4<48><34>.
// For self-definition model, the gasfile is used to indicate the file path of the new gas model. // For self-definition model, the gasfile is used to indicate the file path of the new gas model.
// speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma. // speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma.
// initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName. // initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName.
@ -1040,13 +1056,16 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting : Setting for HyFLOW GUI.
// 0 -- PHengLEI
// 1 -- HyFLOW
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no // 0 -- no.
// 1 -- yes // 1 -- yes.
// nTvChange: Judge whether the Tv equals Ttr.
// 0 -- yes.
// 1 -- no.
// isMoleFractionType: 1 indicates the mass fractions, or else the mole fractions.
// nFraction: the initial fractions type of species.
// 0 -- mass fraction.
// 1 -- mole fraction.
int dg_high_order = 0; int dg_high_order = 0;
int iapplication = 0; int iapplication = 0;
int isAdaptiveSolver = 0; int isAdaptiveSolver = 0;
@ -1114,6 +1133,7 @@ double densityMin = 1.0e-8;
double densityMinFactor = 0.1; double densityMinFactor = 0.1;
double tAdjustmentFactor = 10.0; double tAdjustmentFactor = 10.0;
double iniSpeedCoef = 1.0; double iniSpeedCoef = 1.0;
int iniSpeedMode = 0;
int nDebug = 0; int nDebug = 0;
int nSpeciesLimit = 1; int nSpeciesLimit = 1;
@ -1125,18 +1145,21 @@ int nChemcalSourceEsMethod = 1;
int nMaxStepTemperature = 5; int nMaxStepTemperature = 5;
int veTemperatureMinModified = 1; int veTemperatureMinModified = 1;
int nDiagonalModified = 0; int nDiagonalModified = 0;
int nDiagonalModifiedTurb = 0;
int nGradPrimtiveMethod = 1; int nGradPrimtiveMethod = 1;
int nInviscidFluxModify = 1; int nInviscidFluxModify = 1;
int nQlLimitMethod = 2; int nQlLimitMethod = 2;
int nSpeciesForWallMethod = 1; int nSpeciesForWallMethod = 1;
int nDensityForWallMethod = 0; int nDensityForWallMethod = 0;
int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
int nMarsModel = 0; int nMarsModel = 0;
int nTvChange = 0;
int isMoleFractionType = 0;
string gasfile = "DK5"; string gasfile = "DK5";
//string gasfile = "./chemical/Dunn-Kang_air5s11r.dat"; //string gasfile = "./chemical/Dunn-Kang_air5s11r.dat";
string speciesName = "O, O2, NO, N, N2"; string speciesName = "O, O2, NO, N, N2";
@ -1173,9 +1196,17 @@ double molecularWeightSpeciesB = 30.0;
//string speciesName = "O2, N2"; //string speciesName = "O2, N2";
//string initMassFraction = "1.0, 0.0"; //string initMassFraction = "1.0, 0.0";
int nFraction = 0;
int nContinueModel = 0; int nContinueModel = 0;
int nChemicalFlowStep = 0; int nChemicalFlowStep = 0;
int ifStartFromPerfectGasResults = 0; int ifStartFromPerfectGasResults = 0;
int isUseNoneqCond = 0;
double frozenCondition = 0.01;
int nLeakageMonitor = 0;
double totalLeakageVolume = 1000.0;
double monitorThresholdValue = 0.05;
double sprayFactor = 0.0;
######################################################################### #########################################################################
// Multi-Grid parameters. // Multi-Grid parameters.
@ -1196,7 +1227,6 @@ int ifStartFromPerfectGasResults = 0;
// 1 -- zero order. // 1 -- zero order.
// 2 -- first-order. (default) // 2 -- first-order. (default)
// mgCorrectionLimit: Multi-grid correction limit. // mgCorrectionLimit: Multi-grid correction limit.
int nMGLevel = 1; int nMGLevel = 1;
int MGCoarsestIteration = 1; int MGCoarsestIteration = 1;
int MGPreIteration = 1; int MGPreIteration = 1;
@ -1226,9 +1256,9 @@ string holeFullFileName = "./grid/holeFullFile.dat";
string linkFileName = "./grid/topology.dat"; string linkFileName = "./grid/topology.dat";
string zoneInverseFileName = "./grid/zoneInverseMapping.inp"; string zoneInverseFileName = "./grid/zoneInverseMapping.inp";
######################################################################### #************************************************************************
# High Order Struct Solver # # High Order Struct Solver *
######################################################################### #************************************************************************
// isFVMOrFDM: // isFVMOrFDM:
// 0 -- NSSolverStruct using Finite Volume Method. // 0 -- NSSolverStruct using Finite Volume Method.
// 1 -- NSSolverStruct using Finite Differ Method. // 1 -- NSSolverStruct using Finite Differ Method.
@ -1273,10 +1303,29 @@ int allReduceStep = 1;
// codeOfOversetGrid: Overlapping(overset) grid or not. // codeOfOversetGrid: Overlapping(overset) grid or not.
// 0 -- NON-overlapping grid. // 0 -- NON-overlapping grid.
// 1 -- Overlapping grid. // 1 -- Overlapping grid.
// oversetInterpolationMethod: the method of overset interpolation while field simulation // oversetInterpolationMethod: the method of overset interpolation while field simulation.
// 0 -- set the acceptor cell value by donor cell value. // 0 -- set the acceptor cell value by donor cell value.
// 1 -- set the acceptor cell value by distance weight of donor cell value. // 1 -- set the acceptor cell value by distance weight of donor cell value.
// readOversetFileOrNo: Whether to read overset-file(.ovs) that has been generated.
// 0 -- no.
// 1 -- yes.
// symetryOrNot: If there exist symetryplanes(XY plane, the coordinate of Z direction is 0) in
// the current overset grid(only for three dimension).
// 0 -- no.
// 1 -- yes.
// readInAuxiliaryInnerGrid: Whether to read auxiliary inner grid.
// 0 -- no.
// 1 -- yes.
// walldistMainZone: The initial value of background grid which does not exist wall boundary condition.
// toleranceForOversetSearch: The tolerance of overset searching zone to judge whether the obtained node is in the current computing cell.
// toleranceForOversetBox: The tolerance of building the minimum box of computing cells in the overlapping region.
// twoOrderInterpolationOrNot: The number of interpolated cell layers in the overlapping boundary.
// 0 -- one layer.
// 1 -- two layers.
// keyEnlargeOfActiveNodes: The number of enlarged overset-boundary layers in the buffer region.
// outTecplotOverset: Whether to dump out the flowfield data after the progress of overset configure.
// 0 -- no.
// 1 -- yes.
int codeOfOversetGrid = 0; int codeOfOversetGrid = 0;
int oversetInterpolationMethod = 0; int oversetInterpolationMethod = 0;
int readOversetFileOrNot = 0; int readOversetFileOrNot = 0;
@ -1295,7 +1344,6 @@ int twoOrderInterpolationOrNot = 0;
int keyEnlargeOfActiveNodes = 0; int keyEnlargeOfActiveNodes = 0;
int outTecplotOverset = 0; int outTecplotOverset = 0;
int outPutOversetVisualization = 0; int outPutOversetVisualization = 0;
int numberOfMovingBodies = 2; int numberOfMovingBodies = 2;
// ----------------- ALE configuration ------------------------------ // ----------------- ALE configuration ------------------------------
@ -1306,34 +1354,40 @@ double referenceLength = 1.0;
double referenceVelocity = 1.0; double referenceVelocity = 1.0;
double referenceDensity = 1.0; double referenceDensity = 1.0;
int strategyForFaceNormalVelocity = 0; //0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd; int strategyForFaceNormalVelocity = 0; // 0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd.
int strategyForGCLSource = 0; //0-present; 1-Ahn; int strategyForGCLSource = 0; // 0-present; 1-Ahn.
//0:1st-Admas-Bashforth; 1:2nd-Admas-Bashforth; 2:1st-Implicit-Euler; 3:2nd-Implicit Euler; 4:2nd-Adams-Moulton; 5:3rd-Adams-Moulton // 0: 1st-Admas-Bashforth; 1: 2nd-Admas-Bashforth; 2: 1st-Implicit-Euler; 3: 2nd-Implicit Euler; 4: 2nd-Adams-Moulton; 5: 3rd-Adams-Moulton.
int methodForKineticEquation = 0; int methodForKineticEquation = 0;
double relaxParameterOfKinetic = 1.0; double relaxParameterOfKinetic = 1.0;
######################################################################### #************************************************************************
# motive information # # motive information *
######################################################################### #************************************************************************
int numberOfMovingBodies = 1; int numberOfMovingBodies = 1;
############################## body0 ############################## ############################## body0 ##############################
//mass of parts // mass of parts.
double mass_0 = 1.0; double mass_0 = 1.0;
//mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz // gravity of parts (along negative direction in Y-axis, eg. 9.8).
double gravity_0 = 0.0;
// mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz.
double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0; double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0;
//initial six DOF position information of parts. xc yc zc // initial six DOF position information of parts. xc yc zc.
double massCenter_0[] = 0.0, 0.0, 0.0; double massCenter_0[] = 0.0, 0.0, 0.0;
//initial six DOF position information of parts. angleX angleY angleZ // if reset mass center while restart.
int resetMassCenter_0 = 0;
// position offset of parts. dx dy dz.
double massCenterDxyz_0[] = 0.0, 0.0, 0.0;
// initial six DOF position information of parts. angleX angleY angleZ.
double attitudeAngle_0[] = 0.0, 0.0, 0.0; double attitudeAngle_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. vc vy vz // initial six DOF move information of parts. vc vy vz.
double massCenterVelocity_0[] = 0.0, 0.0, 0.0; double massCenterVelocity_0[] = 0.0, 0.0, 0.0;
//initial six DOF move information of parts. omigX omigY omigZ // initial six DOF move information of parts. omigX omigY omigZ.
double angularVelocity_0[] = 0.0, 0.0, 0.0; double angularVelocity_0[] = 0.0, 0.0, 0.0;
// the object that the parts belong to. // the object that the parts belong to.
int fartherIndex_0 = -1; int fartherIndex_0 = -1;
//the assembly position of the parts. xc yc zc angleX angleY angleZ // the assembly position of the parts. xc yc zc angleX angleY angleZ.
double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0; double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0;
// the move pattern of the parts. // the move pattern of the parts.
// -1 given motion partten. // -1 given motion partten.
@ -1349,23 +1403,24 @@ double configPamameter_0[] = 0.0 ,0.0 ,0.0 ,0.0 ,0.0
int RBDMethod_0 = 0; int RBDMethod_0 = 0;
double amplitude_0 = 0.0; double amplitude_0 = 0.0;
double reduceFrequency_0 = 0.0; double reduceFrequency_0 = 0.0;
//direction of rotation // direction of rotation.
// 1 -- clockwise from the point of view along the positive x axis. // 1 -- clockwise from the point of view along the positive x axis.
// -1 -- anticlockwise from the point of view along the positive x axis. // -1 -- anticlockwise from the point of view along the positive x axis.
int direction_0 = -1; int direction_0 = -1;
double rotateFrequency_0 = 0.0; double rotateFrequency_0 = 0.0;
//string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter"; //string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter";
//additional force (system axis) fX fY fZ // dimensional physical time for additional force(s).
double addedForceTime_0[] = 0.0;
// additional force(inertia system) fX fY fZ.
double addedForce_0[] = 0.0, 0.0, 0.0; double addedForce_0[] = 0.0, 0.0, 0.0;
//additional moment of Force (system axis) mX mY mZ // additional moment(inertia system) mX mY mZ.
double addedMoment_0[] = 0.0, 0.0, 0.0; double addedMoment_0[] = 0.0, 0.0, 0.0;
// the deformation method of the parts. // the deformation method of the parts.
int morphing_0 = 0; int morphing_0 = 0;
// post indentify // post indentify.
int integralOrder = 4; int integralOrder = 4;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;
@ -1379,18 +1434,34 @@ int integralOrder = 4;
//@string outLetFileName = "./bin/subsonicOutlet.hypara"; //@string outLetFileName = "./bin/subsonicOutlet.hypara";
//@double refDimensionalVelocity = 0; //@double refDimensionalVelocity = 0;
//@double refDimensionalDensity = 0; //@double refDimensionalDensity = 0;
//@string weatherDataFilePath = "./WRFData/";
######################################################################### //@double longitude = 110.95
# Old Parameter # //@double latitude = 19.61;
######################################################################### #************************************************************************
# Old Parameter *
#************************************************************************
int isPlotVolumeField = 0; int isPlotVolumeField = 0;
#************************************************************************
# partial flow field setting Parameter *
#************************************************************************
//int nPartialParameter = 0; // 0/1/2
//int nNumberOfPartialField = 0; //
//int nStartGridIndex[] = [0];
//int nEndGridIndex[] = [0];
######################################################################### //double partialCFL[] = [0.0];
# Incompressible Parameter # //double partialSpeedCoef[] = [0.0];
######################################################################### //double partialSpeed[] = [0.0];
//double partialAttackd[] = [0.0];
//double partialSlide[] = [0.0];
//double partialPressure[] = [0.0];
//double partialTemperature[] = [0.0];
//double partialMassFractions[] = [0.0];
#************************************************************************
# Incompressible Parameter *
#************************************************************************
int isSolveEnergyEquation = 0; int isSolveEnergyEquation = 0;
int isSolveTurbEquation = 0; int isSolveTurbEquation = 0;
int isSolveSpeciesEquation = 0; int isSolveSpeciesEquation = 0;

View File

@ -7,7 +7,7 @@
// intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved. // intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved.
// intervalStepRes: The step intervals for residual 'res.dat' saved. // intervalStepRes: The step intervals for residual 'res.dat' saved.
int maxSimuStep = 30000; int maxSimuStep = 10000;
int intervalStepFlow = 1000; int intervalStepFlow = 1000;
int intervalStepPlot = 1000; int intervalStepPlot = 1000;
int intervalStepForce = 100; int intervalStepForce = 100;
@ -71,7 +71,7 @@ double freestream_vibration_temperature = 300.0;
//The velocity, temperature and pressure are fixed. //The velocity, temperature and pressure are fixed.
int inflowParaType = 5; int inflowParaType = 5;
double refDimensionalVelocity = 9.2; double refDimensionalVelocity = 340.5;
double refDimensionalPressure = 101325.0; double refDimensionalPressure = 101325.0;
double gridScaleFactor = 0.001; double gridScaleFactor = 0.001;
@ -146,7 +146,7 @@ string str_limiter_name = "minmod";
// venkatCoeff: Coefficient of vencat limiter, when uns_limiter_name = 'vencat'. // venkatCoeff: Coefficient of vencat limiter, when uns_limiter_name = 'vencat'.
// The smaller the value, the more robust it is. // The smaller the value, the more robust it is.
string uns_scheme_name = "steger"; string uns_scheme_name = "roe";
string uns_limiter_name = "vencat"; string uns_limiter_name = "vencat";
double venkatCoeff = 0.5; double venkatCoeff = 0.5;
@ -163,7 +163,7 @@ double venkatCoeff = 0.5;
// 1-3 -- is recommended for unstructured solver. // 1-3 -- is recommended for unstructured solver.
int iunsteady = 0; int iunsteady = 0;
double CFLEnd = 50.0; double CFLEnd = 10.0;
int nLUSGSSweeps = 1; int nLUSGSSweeps = 1;
@ -190,7 +190,7 @@ int flowInitStep = 100;
// Please use 'rae2822_hybrid2d__4.fts' here! // Please use 'rae2822_hybrid2d__4.fts' here!
// plotFieldType: If dump out the whole field results to tecplot or not, 0 / 1. // plotFieldType: If dump out the whole field results to tecplot or not, 0 / 1.
string gridfile = "./grid/multi-species.fts"; string gridfile = "../grid/multi-species.fts";
int plotFieldType = 0; int plotFieldType = 0;
// ----------------- Advanced Parameters, DO NOT care it ---------------- // ----------------- Advanced Parameters, DO NOT care it ----------------

View File

@ -4,9 +4,12 @@
// gridtype: Grid type for generation, conversion, reconstruction, merging. // gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid. // 0 -- Unstructured grid.
// 1 -- Structured grid. // 1 -- Structured grid.
// axisup: Type of Cartisien coordinates system, used in grid conversion. // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// 1 -- Y upward. (default) // axisRotateOrder : axis rotating order.
// 2 -- Z upward. // 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
// from_gtype: Type of grid data type in grid conversion process. // from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE. // -1 -- MULTI_TYPE.
// 1 -- PHengLEI, *.fts. // 1 -- PHengLEI, *.fts.
@ -18,7 +21,9 @@
// 7 -- Hybrid, include both of unstructured and structured grid, *.fts. // 7 -- Hybrid, include both of unstructured and structured grid, *.fts.
// 8 -- GMSH, *.msh. // 8 -- GMSH, *.msh.
int gridtype = 0; int gridtype = 0;
int axisup = 1; int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
int from_gtype = 2; int from_gtype = 2;
######################################################################### #########################################################################

View File

@ -0,0 +1,35 @@
int nBoundaryConditions = 4;
string bcName = "farinlet";
{
int bcType = 5;
int inflowParaType = 5;
double angleSlide = 0;
double attackd = 0;
int directionMethod = 0;
double initMassFraction[] = [1.0,0.0,0.0,0.0];
double refDimensionalPressure = 101325;
double refDimensionalTemperature = 308.15;
double refDimensionalVelocity = 2;
string speciesName = "Air,CH4,H2S,CO2";
}
string bcName = "outlet";
{
int bcType = 6;
}
string bcName = "wall";
{
int bcType = 2;
int dumpHingeMoment = 0;
int twall_control_select = 0;
double wallTemperature = -1.0;
}
string bcName = "ycinlet";
{
int bcType = 52;
int directionMethod = 1;
double direction_inlet[] = [0,1,0];
double initMassFraction[] = [0.0,0.75,0.16,0.09];
string speciesName = "Air,CH4,H2S,CO2";
double totalPressure = 8.3e6;
double totalTemperature = 308.15;
}

File diff suppressed because it is too large Load Diff

View File

@ -7,11 +7,12 @@
// intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved. // intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved.
// intervalStepRes: The step intervals for residual 'res.dat' saved. // intervalStepRes: The step intervals for residual 'res.dat' saved.
int maxSimuStep = 1; int maxSimuStep = 5000;
int intervalStepFlow = 1; int intervalStepFlow = 100;
int intervalStepPlot = 1; int intervalStepPlot = 10;
int intervalStepForce = 1; int intervalStepSample = 1;
int intervalStepForce = 100;
int intervalStepRes = 1; int intervalStepRes = 1;
######################################################################### #########################################################################
@ -20,13 +21,17 @@ int intervalStepRes = 1;
// refMachNumber: Mach number. // refMachNumber: Mach number.
// attackd: Angle of attack. // attackd: Angle of attack.
// angleSlide: Angle of sideslip. // angleSlide: Angle of sideslip.
// wallTemperature: Temprature of the solid wall, minus value is for adiabatic boundary condition.
// inflowParaType: The type of inflow parameters. // inflowParaType: The type of inflow parameters.
// 0 -- the nondimensional conditions. // 0 -- the nondimensional conditions.
// 1 -- the flight conditions. // 1 -- the flight conditions.
// 2 -- the experiment conditions. // 2 -- the experiment conditions.
// 3 -- the subsonic boundary conditions. // 3 -- the subsonic boundary conditions.
// 4 -- the condition that the velocity, temperature and density are given.
// 5 -- the condition that the velocity, temperature and pressure are given.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature.
// refDimensionalPressure: Dimensional reference pressure, or the total pressure only for the experiment condition. // refDimensionalPressure: Dimensional reference pressure, or the total pressure only for the experiment condition.
// height: Fly height, unit of km. // height: Fly height, unit of km.
// gridScaleFactor: The customizable unit of the grid, default value is 1.0 for meter.Common dimensions like: // gridScaleFactor: The customizable unit of the grid, default value is 1.0 for meter.Common dimensions like:
@ -36,23 +41,21 @@ int intervalStepRes = 1;
// 1 inch = 0.0254m. // 1 inch = 0.0254m.
// 1 foot = 12 inches = 0.3048m. // 1 foot = 12 inches = 0.3048m.
// 1 yard = 3 feet = 0.9144m. // 1 yard = 3 feet = 0.9144m.
// forceRefenenceLength, forceRefenenceLengthSpanWise, forceRefenenceArea: Reference length, SpanWise length and area, independent of grid unit. // forceReferenceLength, forceReferenceLengthSpanWise, forceReferenceArea: Reference length, SpanWise length and area, independent of grid unit.
// TorqueRefX, TorqueRefY, TorqueRefZ: Reference point, independent of grid unit. // TorqueRefX, TorqueRefY, TorqueRefZ: Reference point, independent of grid unit.
double refMachNumber = 0.95; double refMachNumber = 0.20;
double attackd = 2.79; double attackd = 0.00;
double angleSlide = 0.00; double angleSlide = 0.00;
int inflowParaType = 0; double wallTemperature = -1.0;
double refReNumber = 6.5e6; double freestream_vibration_temperature = 300.0;
double refDimensionalTemperature = 288.15;
//int inflowParaType = 1; //The velocity, temperature and pressure are fixed.
//double height = 0.001; int inflowParaType = 5;
double refDimensionalVelocity = 2.0;
//int inflowParaType = 2; double refDimensionalPressure = 101325;
//double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2). double refDimensionalTemperature = 308.15;
//double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)).
double gridScaleFactor = 1.0; double gridScaleFactor = 1.0;
@ -62,6 +65,7 @@ double forceReferenceArea = 1.0; // unit of meter^2.
double TorqueRefX = 0.0; // unit of meter. double TorqueRefX = 0.0; // unit of meter.
double TorqueRefY = 0.0; // unit of meter. double TorqueRefY = 0.0; // unit of meter.
double TorqueRefZ = 0.0; // unit of meter. double TorqueRefZ = 0.0; // unit of meter.
double knudsenLength = 1.0; // unit of meter.
######################################################################### #########################################################################
# Physical models # # Physical models #
@ -83,11 +87,11 @@ double TorqueRefZ = 0.0; // unit of meter.
//int viscousType = 0; //int viscousType = 0;
//string viscousName = "Euler"; //string viscousName = "Euler";
//int viscousType = 1; int viscousType = 1;
//string viscousName = "laminar"; string viscousName = "laminar";
int viscousType = 3; //int viscousType = 3;
string viscousName = "1eq-sa"; //string viscousName = "1eq-sa";
//int viscousType = 4; //int viscousType = 4;
//string viscousName = "2eq-kw-menter-sst"; //string viscousName = "2eq-kw-menter-sst";
@ -104,13 +108,12 @@ double roeEntropyScale = 1.0;
#******************************************************************* #*******************************************************************
// inviscidSchemeName: Spatial discretisation scheme of struct grid. // inviscidSchemeName: Spatial discretisation scheme of struct grid.
// Using this when solve structered grid or hybrid. // Using this when solve structered grid or hybrid.
// -- "roe", "vanleer", "ausm+up", "ausmpw". // -- "vanleer", "steger", "ausmpw", "ausmpw+".
// str_limiter_name: Limiter of struct grid. // str_limiter_name: Limiter of struct grid.
// -- "3rdsmooth", "smooth". // -- "minmod", "3rd_minmod_smooth", "vanalbada".
// -- "nolim", no limiter.
string inviscidSchemeName = "roe"; string inviscidSchemeName = "steger";
string str_limiter_name = "smooth"; string str_limiter_name = "minmod";
#******************************************************************* #*******************************************************************
# UnStruct Solver * # UnStruct Solver *
@ -126,9 +129,9 @@ string str_limiter_name = "smooth";
// venkatCoeff: Coefficient of vencat limiter, when uns_limiter_name = 'vencat'. // venkatCoeff: Coefficient of vencat limiter, when uns_limiter_name = 'vencat'.
// The smaller the value, the more robust it is. // The smaller the value, the more robust it is.
string uns_scheme_name = "roe"; string uns_scheme_name = "vanleer";
string uns_limiter_name = "vencat"; string uns_limiter_name = "1st";
double venkatCoeff = 5.0; double venkatCoeff = 0.5;
######################################################################### #########################################################################
# Temporal Discretisation # # Temporal Discretisation #
@ -138,28 +141,14 @@ double venkatCoeff = 5.0;
// 1 -- unsteay. // 1 -- unsteay.
// CFLEnd: The CFL number, [0.1, 100]. // CFLEnd: The CFL number, [0.1, 100].
// The bigger the value, the convergence faster but lower robustness. // The bigger the value, the convergence faster but lower robustness.
// nLUSGSSweeps: Number of Sub-iteration of LU-SGS.
// 1 -- is recommended for structured solver.
// 1-3 -- is recommended for unstructured solver.
int iunsteady = 0; int iunsteady = 1;
double physicalTimeStep = 0.2;
int min_sub_iter = 50;
int max_sub_iter = 50;
double tol_sub_iter = 0.001;
double CFLEnd = 10.0; double CFLEnd = 50.0;
int nLUSGSSweeps = 1;
#########################################################################
# Multi-Grid parameters #
#########################################################################
// nMGLevel: The number of Multi-Grid level.
// = 1 -- single-level.
// > 1 -- multi-level.
// flowInitStep: Flow initialization step, 0 - 500 is suggested.
// Multi-Grid : Number of steps computing on coarse grid, during flow initialization.
// Single-Grid: Number of steps computing using first-order with vanleer, during flow initialization.
int nMGLevel = 1;
int flowInitStep = 100;
######################################################################### #########################################################################
# File In or Out # # File In or Out #
@ -171,8 +160,8 @@ int flowInitStep = 100;
// Please use 'rae2822_hybrid2d__4.fts' here! // Please use 'rae2822_hybrid2d__4.fts' here!
// plotFieldType: If dump out the whole field results to tecplot or not, 0 / 1. // plotFieldType: If dump out the whole field results to tecplot or not, 0 / 1.
string gridfile = "./grid/updatedgrid.fts"; string gridfile = "./grid/yanchongCase14__4.fts";
int plotFieldType = 1; int plotFieldType = 0;
// ----------------- Advanced Parameters, DO NOT care it ---------------- // ----------------- Advanced Parameters, DO NOT care it ----------------
// nVisualVariables: Number of variables want to be dumped for tecplot visualization. // nVisualVariables: Number of variables want to be dumped for tecplot visualization.
@ -181,12 +170,30 @@ int plotFieldType = 1;
// -- viscosityLaminar(7), viscosityTurbulent(8), // -- viscosityLaminar(7), viscosityTurbulent(8),
// -- vorticity_x(9), vorticity_y(10), vorticity_z(11), vorticityMagnitude(12), // -- vorticity_x(9), vorticity_y(10), vorticity_z(11), vorticityMagnitude(12),
// -- strain_rate(13), Q_criteria(14), Cp(15), timeStep(16), volume(17), // -- strain_rate(13), Q_criteria(14), Cp(15), timeStep(16), volume(17),
// -- modeledTKE(18), modeleddissipationrate(19), SSTF1(20), SSTF2(21), iblank(81). // -- modeledTKE(18), modeleddissipationrate(19), SSTF1(20), SSTF2(21),
// -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36),
// -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40).
// -- Knudsen number(kn, 60), Damkohler number(Da, 61), vibrational nonequilibrium number(Vi, 62)
// Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!! // Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!!
// Variables order must from small to big. // Variables order must from small to big.
int nVisualVariables = 1; int nVisualVariables = 13;
int visualVariables[] = [81]; int visualVariables[] = [0,1,2,3,4,5,6,38,39,40,53,54,55];
int ifSetDataMonitor = 1;
//-----------the optional parameters list for the wall boundary condition----------------
// nVisualWallVariables: The number of visual variables on wall.
// visualWallVariables : dumped variable types, listed as following:
// -coefficient of pressure(cp, 0), -coefficient of friction(cf, 1), yplus(2), -non-dimensional heat flux(Q_NonDim, 3), -dimensional heat flux(Q_Dim, 4),
// -pressure on wall(pw, 5), -temperature on wall(Tw, 6), -density on wall(rhow, 7), -heat flux of translational-rotational temperature term(Qtr, 8),
// -heat flux of species diffusion term(Qs, 9), -heat flux of vibrational temperature term(Qv, 10), -heat flux of electron temperature term(Qe, 11),
// -species mass fractions(Ns, 12), -x component of wall velocity(Vx, 13), -y component of wall velocity(Vy, 14), -z component of wall velocity(Vz, 15)
// -slip translational-rotational temperature(Tts, 16), -slip vibrational temperature(Tvs, 17), -slip electron temperature(Tes, 18), -absolute wall velocity(Vs, 19)
// -Stanton number(St, 20), -coefficient of heat rate(Ch, 21), -temperature jump(deltaT, 22), -Grid Reynolds number on wall(Re_w, 23) , -Knudsen number(Kn_wall, 24)
int nVisualWallVariables = 6;
int visualWallVariables[] = [0, 1, 2, 3, 4, 5];
// limitVariables: Limit model (It is useful only if limitVector is 0). // limitVariables: Limit model (It is useful only if limitVector is 0).
// 0 -- limit only for pressure and denstiny, then get the min value. // 0 -- limit only for pressure and denstiny, then get the min value.
@ -201,3 +208,18 @@ int visualVariables[] = [81];
int reconmeth = 1; int reconmeth = 1;
int limitVariables = 0; int limitVariables = 0;
int limitVector = 0; int limitVector = 0;
int nchem = 1;
int nchemsrc = 0;
int nchemrad = 0;
int ntmodel = 1;
int nIdealState = 1;
string gasfile = "Gas-Mixture";
string speciesName = "Air,CH4,H2S,CO2";
string initMassFraction = "1.0,0.0,0.0,0.0";
int nFraction = 1;
int nLeakageMonitor = 1;
double totalLeakageVolume = 1000.0;
double monitorThresholdValue = 0.05;

View File

@ -0,0 +1,36 @@
#########################################################################
# Grid data type #
#########################################################################
// gridtype: Grid type for generation, conversion, reconstruction, merging.
// 0 -- Unstructured grid.
// 1 -- Structured grid.
// nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating.
// axisRotateOrder : axis rotating order.
// 1 -- X-axis.
// 2 -- Y-axis.
// 3 -- Z-axis.
// axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order.
// from_gtype: Type of grid data type in grid conversion process.
// -1 -- MULTI_TYPE.
// 1 -- PHengLEI, *.fts.
// 2 -- CGNS, *.cgns.
// 3 -- Plot3D type of structured grid, *.dat/*.grd.
// 4 -- Fieldview type of unstructured grid, *.dat/*.inp.
// 5 -- Fluent, *.cas/*.msh.
// 6 -- Ustar, mgrid.in.
// 7 -- Hybrid, include both of unstructured and structured grid, *.fts.
// 8 -- GMSH, *.msh.
// 9 -- Gridgen type of structured grid, *.dat/*.grd.
int gridtype = 0;
int nAxisRotateTimes = 0;
int axisRotateOrder[] = [1, 2, 3];
double axisRotateAngles[] = [0.0, 0.0, 0.0];
int from_gtype = 5;
#########################################################################
# File path #
#########################################################################
// from_gfile: path of original data file for unstructure grid convert from.
// out_gfile: path of target file for grid convert to, *.fts type of file usually.
string from_gfile = "./grid/yanchongCase14.cas";
string out_gfile = "./grid/yanchongCase14.fts";

View File

@ -0,0 +1,58 @@
string title = "PHengLEI Main Parameter Control File";
// IMPORTANT NOTICE: DON NOT MODIFY THE FOWLLOWING LINE.
string defaultParaFile = "./bin/cfd_para.hypara";
// ndim: Dimensional of the grid, 2 or 3.
// nparafile: the number of parameter files.
// nsimutask: simulation task type.
// 0 -- CFD Solver of NS or Turbulation.
// 1 -- Grid generation: for special typical cases, such as cylinder, flat plate, etc.
// Grid conversion: from other format to PHengLEI format (.fts).
// Grid reconstruction: such as grid adaptation.
// Grid merging: merge two blocks into one block.
// Grid repairing: repair the original grid in order to remove the negative volume cells.
// 2 -- Wall distance computation for turb-solver.
// 3 -- Grid partition.
int ndim = 2;
int nparafile = 1;
int nsimutask = 0;
//string parafilename = "./bin/cfd_para_subsonic.hypara";
//string parafilename = "./bin/cfd_para_transonic.hypara";
//string parafilename = "./bin/cfd_para_supersonic.hypara";
string parafilename = "./bin/cfd_para_hypersonic.hypara";
//string parafilename = "./bin/cfd_para_incompressible.hypara";
//int nsimutask = 1;
//string parafilename = "./bin/grid_para.hypara";
//int nsimutask = 2;
//string parafilename = "./bin/cfd_para.hypara";
//int nsimutask = 3;
//string parafilename = "./bin/partition.hypara";
//int nsimutask = 1;
//string parafilename = "./bin/grid_deform_para.hypara";
//int nsimutask = 1;
//string parafilename = "./bin/grid_refine_para.hypara";
//int nsimutask = 5;
//string parafilename = "./bin/overset_grid_view.hypara";
//int nsimutask = 13;
//string parafilename = "./bin/lbm_para.hypara";
//int nsimutask = 14;
//string parafilename = "./bin/integrative_solver.hypara";
//int nsimutask = 99;
//string parafilename = "./bin/post_processing.hypara";
// ---------------- Advanced Parameters, DO NOT care it ----------------
int numberOfGridProcessor = 0;
// ATP read
//@string parafilename1 = ""
//@string parafilename2 = "";

View File

@ -0,0 +1,24 @@
// pgridtype: The grid type.
// 0 -- unstruct grid.
// 1 -- struct grid.
// maxproc: The number of partition zones that want to be divided into,
// which is equal to the number of CPU processors you want.
// Usually, 50~100 thousands structured cells per CPU-Core is suggested.
// 30~70 thousands unstructured cells per CPU-Core is suggested.
// original_grid_file: Original grid file that want to be divided(PHengLEI type, *.fts).
// partition_grid_file: Target partition grid file(PHengLEI type, *.fts).
// numberOfMultifile: The number of partition grid files that want to be dumped out.
int pgridtype = 0;
int maxproc = 4;
string original_grid_file = "./grid/yanchongCase14.fts";
string partition_grid_file = "./grid/yanchongCase14__4.fts";
int numberOfMultifile = 1;
// numberOfMultigrid: Number of multi-grid levels, ONLY used for structured grid.
// 1 -- single level.
// 2 -- 2 level.
// N -- N level,..., et al.
int numberOfMultigrid = 1;

View File

@ -0,0 +1,5 @@
4
28.678 55.643 0
80.785 116.821 0
125.335 158.357 0
162.272 308.038 0

View File

@ -0,0 +1,5 @@
红山开源风雷算例库原始网格获取百度网盘链接:
链接http://pan.baidu.com/s/1aZ9cdkp6CkT9il4fEpnTcA
提取码w47m
plot3D格式网格需同时下载.grd和.inp文件