//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ // PPPPP H H EEEEE N N GGGGG L EEEEE III + // P P H H E NN N G L E I + // PPPPP HHHHH EEEEE N N N G GG L EEEEE I + // P H H E N N N G G L E I + // P H H EEEEE N N GGGGG LLLLL EEEEE III + //------------------------------------------------------------------------+ // Platform for Hybrid Engineering Simulation of Flows + // China Aerodynamics Research and Development Center + // (C) Copyright, Since 2010 + // PHengLEI 2312 + //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ########################################################################### # Default parameters for Grid conversion # ########################################################################### // gridtype: Grid type for generation, conversion, reconstruction, merging. // 0 -- Unstructured grid. // 1 -- Structured grid. // 2 -- Hybrid grid, include both of unstructured and structured grid. // gridobj: Task type of grid treatment. // 0 -- Grid generation of typical case, such as cylinder, flat plate, etc. // 1 -- Grid conversion, from other grid data to PHenglEI, such as Fluent, CGNS. // 2 -- Grid refinement. // 3 -- Grid merging, merge two blocks into one block. // 4 -- Grid deformation, achieve unstructured grid deformation. // 5 -- Grid repairing, repair the original grid in order to remove the negative volume cells. // 6 -- Grid mirroring, mirror a symmetry grid to whole grid. // 7 -- Grid type change, convert structured grid to unstructured grid. // multiblock: Multi-block grid or not, only for structured grid conversion. // 0 -- Not. // 1 -- Yes. // iadapt: Adaptation number for unstructure grid. // SymmetryFaceVector: The vector of symmetry face. // 0 -- X axis. // 1 -- Y axis. // 2 -- Z axis. // gridReorder: Reorder cell and face of grid or not, only for 3D unstructured grid conversion, // which is CGNS type. // 0 -- Not. // 1 -- Yes. // faceReorderMethod: the reorder method face of unstructured grid. // 0 -- BSFCELLFACEORG. // 1 -- BSFCELLFACELEFT. // 2 -- BSFCELLFACERIGHT. int gridtype = 0; int gridobj = 1; int multiblock = 0; int iadapt = 0; int SymmetryFaceVector = 1; int gridReorder = 0; int faceReorderMethod = 0; // nAxisRotateTimes: number of axis rotating times, zero (default) meaning without rotating. // axisRotateOrder : axis rotating order. The size of array "axisRotateOrder" is equal to nAxisRotateTimes. // 1 -- X-axis. // 2 -- Y-axis. // 3 -- Z-axis. // axisRotateAngles: axis rotating angles (degree), which are corresponding to the axis rotating order. int nAxisRotateTimes = 0; int axisRotateOrder[] = [1, 2, 3]; double axisRotateAngles[] = [0.0, 0.0, 0.0]; // omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition". // 0 -- Interface. (default) // 1 -- Physical boundary condition, used in Hybrid solver. int omit_no_bound_bc = 0; int omitRepeatInterface = 1; //----------------------------------------------------------------------- # Grid data type # //----------------------------------------------------------------------- // from_gtype/to_gtype: Type of grid data type in grid conversion process. // -1 -- MULTI_TYPE. // 1 -- PHengLEI, *.fts. // 2 -- CGNS, *.cgns. // 3 -- Plot3D type of structured grid, *.dat/*.grd. // 4 -- Fieldview type of unstructured grid, *.dat/*.inp. // 5 -- Fluent, *.cas/*.msh. // 6 -- Ustar, mgrid.in. // 7 -- Hybrid, include both of unstructured and structured grid, *.fts. // 8 -- GMSH, *.msh. // 9 -- Gridgen type of structured grid, *.dat/*.grd. // dumpOldGrid: If dump out the old grid file. // 0 -- Not. (default) // 1 -- Yes. int from_gtype = 2; int to_gtype = 1; int dumpOldGrid = 0; //----------------------------------------------------------------------- # File path # //----------------------------------------------------------------------- // from_gfile: path of original data file for unstructure grid convert from. // out_gfile: path of target file for grid convert to, *.fts type of file usually. int numberOfGridFile = 1; string from_gfile = "./grid/rae2822_hybrid2d.cas"; string from_gfile1 = ""; string out_gfile = "./grid/flat_laminr_133_85_2d.fts"; // ----------------- some advanced choices ------------------------------ // iunsteady: The Grid is for unsteady simulation or not. int iunsteady = 0; // fileformat: Ustar Grid file format. // 0 -- BINARY. // 1 -- ASCII. int fileformat = 0; // Parameters for hybrid solver. // mixgrid_uns: path of unstructure grid file for hybrid solver, *.fts type. // mixgrid_str: path of structure grid file for hybrid solver, *.fts type. string mixgrid_uns = "./grid/rae2822_uns2d_4.fts"; string mixgrid_str = "./grid/flat_laminr_133_85_2d.fts"; // Some parameters for structured overlapping grid. int codeOfDigHoles = 1; string holeBasicFileName = "./oversetGridView/holeBasicFile.inp"; string holeFullFileName = "./oversetGridView/holeFullFile.dat"; string linkFileName = "./oversetGridView/topology.dat"; string zoneInverseFileName = "./oversetGridView/zoneInverseMapping.inp"; // ----------------- Grid Refine Parameters ----------------------------- // anisoRefine: If refine grid by anisoRefine type. // 0 -- Not. (default) // 1 -- Yes. // geometryUnit: Geometry unit. // 1 -- meter. // 2 -- millimeter. // 3 -- inch. // exclusiveCase: Parallel projection exclusive case. // 0 -- NON case. // 1 -- JSM-C2-NPOFF case. // 2 -- CHNT. // projectOrgPoint: If the original wall points need to be projected or not. int anisoRefine = 0; int geometryUnit = 1; int isProject = 0; int readDist = 0; int isDeform = 0; int exclusiveCase = 0; int projectOrgPoint = 0; string geometryFileName = "./grid/jsm.igs"; // ----------------- Grid Deform Parameters ----------------------------- // deformationMethod: Grid Deform. // 1 -- SPRING. // 2 -- RBF. // stationalGridFile: Original grid file. // visualFileName : The visualization file path of deform grid. // nDeformStep : The max deform step. // flapAngle : The max flap angle. // rotatePostionZ : Rotate postion. // rotatePostionY : Rotate postion. // gridSlice : If dump slice grid. // sliceAxis : Grid slice axis. // slicePosition : Grid slice position. int nDeformStep = 40; double flapAngle = 10.0; double rotatePostionZ = 4.00003; double rotatePostionY = 3.05; int deformationMethod = 2; string stationalGridFile = "./grid/Segment2Brid.fts"; string visualFileName = "./results/deformedGrid.dat" int gridSlice = 1; int sliceAxis = 1; double slicePosition = 13; // ----------------- RBF Parameters ------------------------------------- // numberOfReferenceCP: Number of reference Control Points. // influencePara : The RBF influence radius parameter. int numberOfReferenceCP = 40; double influencePara = 25.0; // ----------------- Periodic Parameters -------------------------------- // Notice: Rotational periodicity only support rotation along the X axis! // periodicType: Which periodic boundary is used. // 0 -- without Periodic Boundary. // 1 -- Translational periodicity. // 2 -- Rotational periodicity. // translationLength[]: The relative distance between two periodic face which only support one direction. // rotationAngle: The relative angle between two periodic face. which is recorded in degrees. int periodicType = 0; double translationLength[] = [0.0, 0.0, 0.0]; double rotationAngle = 0.0; ######################################################################### # Default parameters for Partition # ######################################################################### // pgridtype: The grid type. // 0 -- unstruct grid. // 1 -- struct grid. // 2 -- refine structured grid. // maxproc: The number of partition zones that want to be divided into. // numberOfMultifile: The number of partition grid files that want to be dumped out. int pgridtype = 0; int maxproc = 4; int numberOfMultifile = 1; // traceMark: Trace mark or not, only for structured grid partition. // 0 -- Not. // 1 -- Yes. // blockIndexOfMark: the block index of mark, only for structured grid partition. // cellIndexOfMark : the cell index of mark, only for structured grid partition. int traceMark = 0; int blockIndexOfMark = 0; int cellIndexOfMark[] = [185, 30, 1]; // parallelStrategy: // 0 -- each zone is assigned to the one that defined in grid partition procedure. // 1 -- random assigned for each zone or by some else ways. int parallelStrategy = 1; //----------------------------------------------------------------------- # File path # //----------------------------------------------------------------------- // original_grid_file: Original grid file that want to be divided(PHengLEI type, *.fts). // partition_grid_file: Target partition grid file(PHengLEI type, *.fts). string original_grid_file = "./grid/sphere_mixed.fts"; string partition_grid_file = "./grid/sphere_mixed__4.fts"; // ------------------ Sompe advanced parameters ------------------------- // omit_no_bound_bc: What's boundary condition for the type of "no_boundary_condition". // 0 -- Interface. (default) // 1 -- Physical boundary condition, used in Hybrid solver. // npartmethod: Method of interface reconstruction, default is 1. // parallelPartitionMethod: Method of parallel partition, this is set only when execute parallel partition. It would be skipped when serial partition. // 1 -- Using ParMetis for homogeneous MPI. // 2 -- Using Metis for homogeneous MPI. // 3 -- using METIS partition for homogeneous OpenMP. // parmetisBalance: Used to specify the imbalance tolerance. // 1 -- perfect balance. // maxproc -- perfect imbalance. // 1.05 -- recommended. int omit_no_bound_bc = 0; int npartmethod = 1; int parallelPartitionMethod = 2; double parmetisBalance = 1.05; // numberOfMultigrid: Number of multi-grid levels, ONLY used for structured grid. // 1 -- single level. // 2 -- 2 level. // N -- N level, ..., et al. int numberOfMultigrid = 1; ######################################################################### # Default parameters for CFD simulation # ######################################################################### // maxSimuStep: The max simulation step, don't care simulation is restart or not. // intervalStepFlow: The step intervals for flow variables file 'flow.dat' saved. // intervalStepPlot: The step intervals for tecplot visual file 'tecflow.dat' saved. // intervalStepSample: The step intervals for monitored probes variables file 'sample.dat' saved. // intervalStepForce: The step intervals for aerodynamics coefficients file 'aircoef.dat' saved. // intervalStepRes: The step intervals for residual file 'res.dat' saved. int maxSimuStep = 20000; int intervalStepFlow = 1000; int intervalStepPlot = 1000; int intervalStepSample = 1000; int intervalStepForce = 100; int intervalStepRes = 10; // compressible: // 0 -- incompressible flow. // 1 -- compressible flow. (default) int compressible = 1; // ifLowSpeedPrecon: Precondition process to accelerate convergence for low speed flow. // 0 -- no precondition process. (default, mach > 0.3) // 1 -- carry out precondition process. (mach number <= 0.3) // Kprec: The coefficient K for the cut-off velocity. // 1.0~3.0 is suggested. (default, 3.0) // preconFarfieldBCMethod: The precondition method for farfield boundary condition. // 0 -- precondition far-field boundary based on riemann invariants. // 1 -- Turkel's simplified far-field boundary condition. int ifLowSpeedPrecon = 0; double Kprec = 3.0; int preconFarfieldBCMethod = 1; //----------------------------------------------------------------------- # CFD Control Parameter # //----------------------------------------------------------------------- // refMachNumber: Mach number. // attackd: Angle of attack. // angleSlide: Angle of sideslip. // inflowParaType: The type of inflow parameters. // 0 -- the nondimensional conditions. // 1 -- the flight conditions. // 2 -- the experiment conditions. // 3 -- the subsonic boundary conditions. (Useless!) // 4 -- the condition that the velocity, temperature and density are given. // 5 -- the condition that the velocity, temperature and pressure are given. //flowInitMethod: Flow field initialization method. // 0 -- The entire flow field is initialized according to Infinite velocity. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method. // 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method. // refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // freestream_vibration_temperature: Dimensional freestream vibration temperature. // refDimensionalPressure: Dimensional reference pressure, or the total pressure only for the experiment condition. // height: Fly height, unit of km. // wallTemperature: Temprature of the solid wall, minus value is for adiabatic boundary condition. // gridScaleFactor: The customizable unit of the grid, default value is 1.0 for meter. Common dimensions like: // 1 dm = 0.1 m. // 1 cm = 0.01 m. // 1 mm = 0.001 m. // 1 inch = 0.0254 m. // 1 foot = 12 inches = 0.3048 m. // 1 yard = 3 feet = 0.9144 m. // forceReferenceLength, forceReferenceLengthSpanWise, forceReferenceArea: Reference length, SpanWise length and area, independent of grid unit. // TorqueRefX, TorqueRefY, TorqueRefZ: Reference point, independent of grid unit. // radiationCoef: The radiation coefficient on wall, it is used to compute the radiation heat flux on wall when the boundary // condition is radiation equilibrium temperature, and 0.8 is the default value. // refMolecularWeight: the reference molecular weight of gas used for perfect gas. The unit is g/mol. // Generally, the gas is air. Sometimes, it is experiment gas, such as Nitrogen, Argon, and so on. int directionMethod = 0; double refMachNumber = 0.73; double attackd = 2.79; double angleSlide = 0.00; int flowInitMethod = 0; int inflowParaType = 0; double refReNumber = 6.5e6; double refDimensionalTemperature = 288.15; double freestream_vibration_temperature = 300.00; //int inflowParaType = 1; //double height = 0.001; //int inflowParaType = 2; //double refDimensionalTemperature = 6051.024; // The total temperature, T*(1+(refGama-1)*M*M/2). //double refDimensionalPressure = 4.299696E09; // The total pressure, p*(T0/T)^(refGama/(refGama-1)). // The velocity, temperature and density are fixed. //int inflowParaType = 4; //double refDimensionalVelocity = 1000.0; //double refDimensionalDensity = 1.0e3; // The velocity, temperature and pressure are fixed. //int inflowParaType = 5; //double refDimensionalVelocity = 1000.0; //double refDimensionalPressure = 1.0e5; // The MachNumber, temperature and pressure are fixed. //int inflowParaType = 6; //double refDimensionalTemperature = 293.0; //double refDimensionalPressure = 8886.06; // The velocity, temperature and pressure are read from file. //int inflowParaType = 7; //string weatherDataFilePath = "./WRFData/"; //double longitude = 110.95 //double latitude = 19.61; double wallTemperature = -1.0; double radiationCoef = 0.8; double gridScaleFactor = 1.0; double gridTranslationVector[] = [0.0, 0.0, 0.0]; int numberOfAerodynamicForceComponents = 1; double forceReferenceLengthSpanWise = 1.0; // unit of meter. double forceReferenceLength = 1.0; // unit of meter. double forceReferenceArea = 1.0; // unit of meter^2. double TorqueRefX = 0.0; // unit of meter. double TorqueRefY = 0.0; // unit of meter. double TorqueRefZ = 0.0; // unit of meter. double knudsenLength = 1.0; // unit of meter. double refMolecularWeight = 28.9644; // unit of g/mol. //----------------------------------------------------------------------- # Spatial Discretisation # //----------------------------------------------------------------------- #************************************************************************ # Struct Solver * #************************************************************************ // inviscidSchemeName: Spatial discretisation scheme of struct grid. // Using this when solve structered grid or hybrid. // -- "vanleer", "steger", "hlle", "lax_f", // -- "roe", "modified_roe", // -- "ausm+", "ausm+w", "ausm+up", "ausmdv", "ausmpw", "ausmpw+". // isWennScheme: If using WENN Scheme of struct grid. // 0 -- NO. (default) // 1 -- Yes. // str_limiter_name: Limiter of struct grid. // -- "vanalbada", "vanleer", "minmod", "smooth", "minvan", "3rdsmooth", "3rd_minmod_smooth", // -- "nolim", no limiter, // -- "vanalbada_clz", clz supersonic version, // -- "weno3_js", "wenn3_prm211", "wenn3_zm", "wenn3_zes2", "wenn3_zes3". string inviscidSchemeName = "roe"; int isWennScheme = 0; string str_limiter_name = "vanalbada"; #************************************************************************ # UnStruct Solver or Common * #************************************************************************ // viscousType: Viscous model. // 0 -- Euler. // 1 -- Laminar. // 2 -- Algebraic. // 3 -- 1eq turbulent. // 4 -- 2eq turbulent. // viscousName: Laminar or tubulent model. // -- "0eq-bl". // -- "1eq-sa". // -- "2eq-kw-menter-sst". // -- "2eq-kw-menter-bsl". // -- "2eq-kw-wilcox-1988". // -- "2eq-kw-wilcox-1998". // -- "2eq-kw-kok-tnt". // -- "2eq-kw-wilcox-2006". // -- "easm-kw-2003". // -- "easm-kw-2005". // DESType: Type of DES. // 0 -- RANS. (default) // 1 -- DES. // 2 -- DDES. // 3 -- IDDES. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // Using this when solve Unstructered grid or hybrid. // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle", // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // uns_limiter_name: Limiter of Unstruct grid. // -- "barth", "vencat", "vanleer", "minmod", // -- "vanalbada", "smooth", "nnd", "lpz", "1st", // -- "nolim", no limiter. // uns_vis_name: Discretisation method of viscous term. // -- "std", "test", "aver", "new1", "new2". // gradientName: Gradient reconstruction method. // -- "default", "ggcell", "ggnode", "lsq". // ivencat: Variation of vencat limiter. // 0 -- org method, it is independent of grid scale. // 1 -- new method, it is dependent of grid scale. // 4 -- Ustar limiter model, without grid size unitary. // 7 -- default used. // venkatCoeff: Cofficient of vencat, when using vencat limter. // limitVariables: Limit model (It is useful only if limitVector is 0). // 0 -- limit only for pressure and denstiny, then get the min value. // 1 -- limit for every variables, then get the min value. // limitVector: // 0 -- Each variable use the same limiter coefficient. // 1 -- Each variable use the respective limiter coefficients. // reconmeth: // 0 -- When reconstruct face value, Q+, Q- use respective limiter coefficients. // 1 -- Q+, Q- use the min limiter coefficients of left and right cell. // skewnessAngle: The skewness angle of grid cells. // roeEntropyFixMethod: Entropy fix (correction) method. // 1 -- direct fix, which limits the minimum eigenvalue directly. // 2 -- multi-dimensional fix, which is derived from structured solver and now is only valid for struct solver. // 3 -- Harten type, which is default used. // roeEntropyScale: Entropy fix (correction) coefficient scale, default is 1.0. // It is used to scale the default Roe entropy fix coefficients. // AusmpwPlusLimiter: A Limiter to make "function w" not change acutely in AusmpwPlus scheme, default is 1.0. //int viscousType = 0; //string viscousName = "Euler"; //int viscousType = 1; //string viscousName = "laminar"; int viscousType = 3; string viscousName = "1eq-sa"; //int viscousType = 4; //string viscousName = "2eq-kw-menter-sst"; int DESType = 0; string uns_scheme_name = "roe"; string uns_limiter_name = "vencat"; string uns_vis_name = "test"; string gradientName = "ggnode"; int ivencat = 7; double venkatCoeff = 5.0; int reconmeth = 1; int limitVariables = 0; int limitVector = 0; double skewnessAngle = 60.0; int roeEntropyFixMethod = 3; double roeEntropyScale = 1.0; double AusmpwPlusLimiter = 1.0; #************************************************************************ # Temporal Discretisation * #************************************************************************ // iunsteady: Steady or unsteady. // 0 -- steady. // 1 -- unsteay. // physicalTimeStep: The nondimensional physical time step. // ifStartFromSteadyResults: The unsteady simulation is start from steady flowfield or not, 0 is for no and else is for yes. // ifStaticsFlowField: Statistical variables for unsteady simulation. // ifStaticsReynoldsStress: Statistical Reynolds stress for unsteady simulation. // startStatisticStep: Outer step when start statistics. // when the value is larger than "maxSimuStep", it is useless. // statisticalTimePeriod: Used as time period of statistic analysis. // when the value is negative, time period is treated as infinite. // statisticMethod: Statistic reynolds stress method. // 0 -- tau = - ^2 // 1 -- tau = // min_sub_iter: The min sub iteration of unsteady simulation. // max_sub_iter: The max sub iteration of unsteady simulation. // tol_sub_iter: The tolerance of sub iteration of unsteady simulation. // tscheme: Temporal Discretisation method. // 1 -- Runge-Kutta Multi-State. // 2 -- Point implicit. // 3 -- Full implicit. // 4 -- LU-SGS. // 5 -- Block LU-SGS. // 6 -- Jacobian iteration. // 7 -- Line LU-SGS. // 8 -- Matrix LU-SGS. // 9 -- GMRES. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // CFLStart: Started cfl number. // CFLEnd: End cfl number. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration. // OriginalTscheme : Used for LUSGS and GMres hybrid computing. // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // LUSGSTolerance: Sub iter tolerance of LU-SGS or Block LU-SGS. // ifLocalTimeStep: Time step method. // 0 --Local. // 1 --Global. // isUseLocalCFL: use variable number of CFL or not. // 0 -- global unified CFL number. // 1 -- local CFL number. // isUsePreTwall: use the previous temperatures on wall. 1 indicates yes, and 0 indicates no. // visl_min: Minimum value of laminar viscosity coefficient. // turbCFLScale: Turbulence model cfl number factor. // codeOfAleModel: Arbitrary Lagrangian-Eulerian method. // 0 -- no ALE method. // 1 -- ALE method for non-moving grids. // 2 -- ALE method for moving grids. // 3 -- ALE method for deforming grids. // wallFunctionType: The type of wall function to implement. // 0 -- no wall function. (default) // 1 -- standard wall function. // 2 -- Pab3D wall function. // RKStage: The number of Runge-Kutta step. // lamda: Cofficient of Runge-Kutta step. int iunsteady = 0; double physicalTimeStep = 0.01; double physicalTimeStepDimensional = -0.001; int ifStartFromSteadyResults = 0; int ifStaticsFlowField = 0; int ifStaticsReynoldsStress = 0; int startStatisticStep = 800000; double statisticalTimePeriod = -1.0; int statisticMethod = 0; int linearTwoStepMethods = 1; // 1--BDF1; 2--C-N; 3--BDF2. int methodOfDualTime = 3; int min_sub_iter = 50; int max_sub_iter = 50; double tol_sub_iter = 0.01; int tscheme = 4; int iSimplifyViscousTerm = 1; int ifLocalTimeStep = 0; int isUseLocalCFL = 0; int isUsePreTwall = 0; double CFLStart = 0.01; double CFLEnd = 10.0; int CFLVaryStep = 500; double GMRESCFLScale = 1.0; int OriginalTscheme = 0; double pMaxForCFL = 0.2; double pMinForCFL = 0.1; double deltaMaxForCFL = 0.2; double magnifyFactorForCFL = 1.1; double reduceFactorForCFL = 0.5; double ktmax = 1.0e10; int swapDq = 1; int nLUSGSSweeps = 1; double LUSGSTolerance = 0.01; int order = 2; double visl_min = 0.01; double turbCFLScale = 1.0; double csrv = 1.0; double timemax = 1.0e10; double dtsave = -1.0; int maxale = 10; double dtau = 0.001; int wallFunctionType = 0; int RKStage = 2; double lamda[] = [0.5, 1.0]; //int RKStage = 1; //double lamda[] = 1.0; //int RKStage = 4; //double lamda[] = [0.25, 0.33333333333, 0.5, 1.0]; #************************************************************************ # File In or Out * #************************************************************************ // numberOfGridGroups: The number of grid groups. // gridfile: The partitioned Grid file path, using relative path, // which is relative to the working directory. // IMPORTANT WARNING: The file index should be ignored, // e.g. if the partitioned grid is rae2822_hybrid2d__4_0.fts, // please use 'rae2822_hybrid2d__4.fts' here! // plotFieldType: If dump out the field results to visulization. // walldistMethod: The method to compute wall distance. // 0 -- accurate but not fast enough. // 1 -- fast but not accurate enough. // 2 -- super fast but more non-accurate! // resSaveFile: The file path to save the residual convergence process, write data for every default (intervalStepRes) steps. // turbresfile: The file path to save the residual convergence process of turbulence, write data for every default (intervalStepRes) steps. // aircoeffile: The file path to save the aerodynamic force coefficients convergence process, write data for every default (intervalStepForce) steps. // restartNSFile: The file path to write restart flowfield variables, write data for every default (intervalStepFlow) steps. // turbfile: The file path to write restart flowfield variables of turbulence , write data for every default(intervalStepFlow) steps. // visualfile: The visualization file path of flowfield, write data for every default (intervalStepPlot) steps. // wall_aircoefile: The file path to save flowfield variables of wall, write data for every default steps. // nDumpSurfaceInfo = 0 the "wall_varfile" write the informations including heat flux. // nDumpSurfaceInfo = 1 the "wall_varfile" write the informations without heat flux. // nIsComputeWallDist: Whether to compute the wall distance. // 0 -- Compute wall distance. // 1 -- Not compute. // protectionFile0 and protectionFile1: Two continuation file of the data protection mechanism. // wall_heatfluxfile: The file to output the MaxHeatFlux of wall. int numberOfGridGroups = 1; string gridfile = "./grid/rae2822_hybrid2d__4.fts"; string wallTemperaturefile = ""; int nIsComputeWallDist = 0; int walldistMethod = 1; int cellMethodOrNodeMethod = 0; string resSaveFile = "results/res.dat"; string turbresfile = "results/turbres.dat"; string transitionResFile = "results/transitionRes.dat"; string aircoeffile = "results/aircoef.dat"; string restartNSFile = "results/flow.dat"; string turbfile = "results/turb.dat"; string transitionFile = "results/transition.dat"; string visualfile = "results/tecflow.plt"; string wall_aircoefile = "results/wall_aircoef.dat"; string samplefile = "results/sample.dat"; string protectionFile0 = "results/flow0.dat"; string protectionFile1 = "results/flow1.dat"; string wall_heatfluxfile = "results/wall_heatflux.dat"; string protectionTurbFile0 = "results/turb0.dat"; string protectionTurbFile1 = "results/turb1.dat"; string protectionTransitionFile0 = "results/transition0.dat"; string protectionTransitionFile1 = "results/transition1.dat"; int nDumpSurfaceInfo = 0; string wall_varfile = ""; string sixDofFileName = "results/sixDofInfo.dat"; string derivativeFileName = "results/identify.dat"; string hysteresisFileName = "results/force_beta.plt"; int plotFieldType = 0; // visualfileType: The file type of visualfile. // 0 -- Tecplot binary. // 1 -- Tecplot ASCII. // 2 -- Ensight binary. // 3 -- Ensight ASCII. int visualfileType = 1; // samplefileMode: The dump mode of sample file. // 0 -- dump out every probe/line/surface data for all step intervals. // 1 -- dump out all probe/line/surface data for every step intervals. int samplefileMode = 0; // visualSlice: The slice of tecflow. // 0 -- Do not save slice data. // 1 -- comput and save it to sliceFile. // sliceAxis: Normal vector of slice. // 1 -- X_DIR. // 2 -- Y_DIR. // 3 -- Z_DIR. // slicePostion: Coordinate of slice. int visualSlice = 0; int sliceAxis = 1; double slicePostion = -0.5; string sliceFile = "results/Slice.plt"; int dumpWallFaceCenter = 0; // min-max box of the visual block. double lowerPlotFieldBox[] = [0.0 0.0 0.0]; double upperPlotFieldBox[] = [1.0 1.0 1.0]; //-----------the optional parameters list for the flow field output---------------- // nVisualVariables: Number of variables want to be dumped for tecplot visualization. // visualVariables : Variable types dumped, listed as following: // -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6), // -- viscosityLaminar(7), viscosityTurbulent(8), // -- vorticity_x(9), vorticity_y(10), vorticity_z(11), vorticityMagnitude(12), // -- strain_rate(13), Q_criteria(14), Cp(15), timeStep(16), volume(17), // -- modeledTKE(18), modeleddissipationrate(19), SSTF1(20), SSTF2(21), // -- vibration temperature(Tv, 33), electron temperature(Te, 34), vibrational energy(Ev, 35), electric energy(Ee, 36), // -- number density of electron(Ne, 37), dimensioanl density(rho, 38), dimensioanl pressure(p, 39), dimensioanl temperature(T, 40), // -- gradientUx(41), gradientUy(42), gradientVx(43), gradientVy(44), streamline_u(45), streamline_v(46), streamline_w(47), // -- transition intermittency(intermittency, 51), transition momentum thickness reynolds(MomentumThicknessReynolds, 52), // -- local CFL Number(localCFL, 57), minimal CFL Number(minCFL, 58), // -- overlap iblank(iblank, 81), // -- specific heat ratio(gama, 56), Knudsen number(kn, 60), Damkohler number(Da, 61), vibrational nonequilibrium number(Vi, 62). // Important Warning: Array size of visualVariables MUST be equal to nVisualVariables!!! // Variables order must from small to big. //-----------the optional parameters list for the wall boundary condition---------------- // nVisualWallVariables: The number of visual variables on wall. // visualWallVariables : dumped variable types, listed as following: // -- coefficient of pressure(cp, 0), coefficient of friction(cf, 1), yplus(2), non-dimensional heat flux(Q_NonDim, 3), dimensional heat flux(Q_Dim, 4), // -- pressure on wall(pw, 5), temperature on wall(Tw, 6), density on wall(rhow, 7), heat flux of translational-rotational temperature term(Qtr, 8), // -- heat flux of species diffusion term(Qs, 9), heat flux of vibrational temperature term(Qv, 10), heat flux of electron temperature term(Qe, 11), // -- species mass fractions(Ns, 12), x component of wall velocity(Vx, 13), y component of wall velocity(Vy, 14), z component of wall velocity(Vz, 15), // -- slip translational-rotational temperature(Tts, 16), slip vibrational temperature(Tvs, 17), slip electron temperature(Tes, 18), absolute wall velocity(Vs, 19), // -- Stanton number(St, 20), coefficient of heat rate(Ch, 21), temperature jump(deltaT, 22), Grid Reynolds number on wall(Re_w, 23), Knudsen number(Kn_wall, 24). int nVisualVariables = 8; int visualVariables[] = [0, 1, 2, 3, 4, 5, 6, 15]; int nVisualWallVariables = 9; int visualWallVariables[] = [0, 1, 2, 3, 4, 5, 9, 10, 11]; // dumpStandardModel: Dump many standard model data. // 1 -- Turbulent flat plate. int dumpStandardModel = 0; // ifSetDataMonitor: Whether to set the data monitor. // 0 -- No. // 1 -- Yes. // dataMonitorType: The type of data Monitor. // 0 -- Probes data monitor. // 1 -- Lines data monitor. // 2 -- Surfaces data monitor. // probesDefineFile: Probes location information file. // nLines: The number of lines need to be monitored. // linesDefineFile: Lines location information file. // nSurfaces: The number of surfaces need to be monitored. // surfacesDefineFile: Surfaces location information file. // searchCellsMethod: method to search the cell of each probe. // 0 -- Nearest cell to the probe. // 1 -- Real cell where the probe is located. // nProbeVariables: Number of variables want to be dumped for probes monitered. // probeVariables : Variable types dumped, listed as following: // -- density(0), u(1), v(2), w(3), pressure(4), temperature(5), mach(6), // -- dimensioanl_density(7), dimensioanl_u(8), dimensioanl_v(9), // -- dimensioanl_w(10), dimensioanl_pressure(11), dimensioanl_temperature(12). // Important Warning: Array size of probeVariables MUST be equal to nProbeVariables!!! // probeVariables order must from small to big. // probeVariablesInterpolationMethod: Interpolation method used to compute the probe variables. // 0 -- Take the value of probe's cell as probe real value. // 1 -- Interpolation from probe's and neighbouring cell to probe. // 2 -- Interpolation from probe's cell nodes to probe. int ifSetDataMonitor = 0; int dataMonitorType = 0; string probesDefineFile = "bin/probes_XYZ.dat"; //int dataMonitorType = 1; //int nLines = 1; //string linesDefineFile = "bin/lines_XYZ.dat"; //int dataMonitorType = 2; //int nSurfaces = 4; //string surfacesDefineFile = "bin/surfaces_XYZ.dat"; int searchCellsMethod = 0; int nProbeVariables = 14; int probeVariables[] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]; int probeVariablesInterpolationMethod = 0; #************************************************************************ # Turbulence Parameter * #************************************************************************ // turbInterval: Iteration number of turbulence. // kindOfTurbSource: Kinds of turbulent source. // 0 -- Original. // mod_turb_res: If modify the residuals for the cells next to the wall or not, default is 0. // transitionType: transition model type // 0 -- none. // 2 -- gama-re-theta. // turbIntensity: (valid while greater than 0.0 ) turbulent intensity of free stream(*100) in transition. // freeturbIntensitySRModify: to use SR modify in free stream turbulent intensity decay or not. int turbInterval = 1; int turbOrderStruct = 2; int kindOfTurbSource = 0; int mod_turb_res = 0; double freeStreamViscosity = 1.0e-3; double muoo = 3.0; double kwoo = 5.0; int transitionType = 0; double turbIntensity = -1.0; int freeturbIntensitySRModify = 0; double freeDecayXLocation = 0.0; int compressibleCorrection = 0; int transitionMaFix = 1; // maximum eddy viscosity (myt/my) max. double eddyViscosityLimit = 1.0e10; int monitor_vistmax = 0; #************************************************************************ # LES Parameter * #************************************************************************ // iLES: Create LESSolver or not. // = 1 -- Create LESSolver; // != 1 -- not. // amplitudeofDisturb: Amplitude of adding disturb. // disturbstep: Unsteady time step or steady iteration of adding random disturb. // iterdisturb: Add random disturb in every sub-iter or only first sub-iter. // = 0 -- in only first sub-iter; // != 0 -- in every sub-iter. // ipraddisturb: Add density and pressure disturb or not. // ibodyforce: Add body force in source flux of NS equations or not. // = 0 -- not; // != 0 -- Add body force. // bodyforce: Body force in source flux of NS equations or not. // utau: friction velocity, using in DNSDisturb. // sgsmodel: subgrid scale model. // = "smagorinsky"; // = "dsmCom"; // = "wale"; // = "sigma". // deltaFunctionType: = 1 -- MAX(deltai, deltaj, deltak); // = 2 -- pow(deltai * deltaj *deltak, 1/3); // = 3 -- Devloped by Scotti. // wallDampingFunctionType: = 0 -- no wall function; // = 1 -- van Driest; // = 2 -- developed by Dr. Deng Xiaobing; // = 3 -- developed by Piomelli. // turbViscousCutType: turbulent viscosity cut type. // = 0 -- mu_total = mut + mul; // = 1 -- mu_total = max(mut-mul, 0) + mul; // = 2 -- mu_total = max(mut , 0) + mul. // smagConstant: constant of smagorinsky model. // waleConstant: constant of wale model. // filterDirection [3]: filter variables in i, j, k direction or not. // averageDirection[3]: average variables in i, j, k direction or not. // isotropicConstant: constant of isotropic part of SGS stress. int iLES = 0; string sgsmodel = "smagorinsky"; int deltaFunctionType = 2; int wallDampingFunctionType = 1; int turbViscousCutType = 2; double smagConstant = 0.1; double isotropicConstant = 0.0; double waleConstant = 0.6; double sigmaConstant = 1.35; int filterDirection[] = [1, 1, 0]; int averageDirection[] = [0, 0, 0]; double testFilterScale = 2.0; int averageWidth = 1; int monitorNegativeConstant = 0; #************************************************************************ # Other Parameters for Hypersonic Non-equilibrium Gas * #************************************************************************ // dg_high_order: // 0 -- generic order accuracy. // 1 -- high order accuracy. // iapplication: // 0 -- gas model is fixed in the codes. // 1 -- gas model is imported from library files. // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver. // nm: Equation number of the physics, but is out of commision now. // 4 -- for 2D. // 5 -- for 3D. // nGasModel: The type of gas. less than and equal to 1 represents the mixture gas. // Otherwise, the pure gas with one component is used for perfect gas. // 0 -- Earth gas. // 1 -- Mars gas. // 2 -- Argon. // 3 -- Nitrogen. // nEnergyRecycle: The type of EnergyModel Recycle. // 0 -- not used. // 1 -- used. // nDensityModify: The type of densitymodify. // 0 -- not used. // 1 -- used. // nchem: // 0 -- without chemical reaction flow. // 1 -- the chemical reaction flow is considered. // nEquilibriumGas: the variable is valid when the condition of nchem = 0 is satisfied. // 0 -- perfect gas. // 5, 7, 11 -- equilibrium gas, meanwhile, its value denotes the number of gas component. // nPCWCycleStep: The maximum step number of iteration in the module of computing species mass fractions with the partial catalytic wall(PCW) condition. // The value equals to or is greater than 1, and 3 is for default value. // nRETCycleStep: The maximum step number of iteration in the module of computing radiation equilibrium temperature on wall. // The value equals to or is greater than 1, and 3 is for default value. // nSLIPCycleStep:The maximum step number of iteration in the module of computing slip temperature, slip velocity and slip species mass fraction. // The value equals to or is greater than 1, and 3 is for default value. // nSlipBCModel: The computational model of slip boundary conditions. // 0 -- no slip. // 1 -- the conventional Maxwell slip conditions. // 2 -- the Gokcen slip conditions. // 3 -- the Knudsen-layer correction of the standard slip conditions proposed by Lockerby, et al. // 4 -- the Kogan simplified slip conditions. // nMeanFreePathType: the method to the mean free-path for the slip conditions. For the mixture, 0 is suggested. // 0 -- the equivalent mean free-path is calculated by the simple hard sphere model(HS). // 1 -- calculated by the definition that includes the variables of the number density and the molecule diameter. // 2 -- the equivalent mean free-path is calculated by the variable hard sphere model(VHS). // nchemsrc: // 0 -- the source terms are not computed. // 1 -- the source terms are computed. // nchemrad: // 0 -- compute the spectrum radius without considering chemical reaction flow. // 1 -- compute the spectrum radius that need to count the contribution from chemical reaction flow. // ntmodel: The thermodynamic temperature model. // 1 -- One-temperature model. // 2 -- Two-temperature model. // 3 -- Three-temperature model. // isUseNoneqCond: // 0 -- compute the source terms without any conditions. // 1 -- compute the source terms using the non-equilibrium condition. // frozenCondition: the threshold value of frozen chemical flow condition, 0.1 is the default value. // nIdealState: whether take all gas species as ideal gas for gas-mixture process. // 0 -- No. // 1 -- Yes. // nTEnergyModel: the method to computing temperature energy model. // 0 -- the energy term is computed using the conventional method. // 1 -- the energy term is computed using the polynomial fitting method. // 2 -- the energy term is computed using the piecewise polynomial fitting method. // parkVDPower: the power of translational-rotational temperature in the Park V-D(vibration-dissociation) coupling model. // The value is in range of [0.0, 1.0], DPLR suggests 0.5, LAURA suggests 0.7, while 0.6 is given as default value. // catalyticCoef: // 0.0 -- full non-catalytic wall boundary condition. // 1.0 -- full catalytic wall boundary condition. // in range of (0.0, 1.0) -- partial catalytic condition, the value indicates the catalytic coefficient. // nIsSuperCatalytic: the super catalytic condition for the fully catalytic wall, and assigned with the value of 1. // 0 -- equilibrium condition for the fully catalytic wall where the mass fractions are assigned with the values of the free stream. // 1 -- super catalytic condition for the fully catalytic wall where all the atomic components combine into molecular components. // nTemperatureJump: the method to calculate the temperature jump. // 0 -- calculated by the variables of heat conductivity and constant volume specific heat for each energy mode. // 1 -- the general method where the iteration is calculated with the translation-rotation temperature. // nSurfGradMethod: the method to compute the surface heating ratio. // 0 -- the gradient of variable is computed with the first-order difference method. // 1 -- the gradient of variable is computed with the Green-Guass integral method. // nRapidFlowfield: initialize the flowfield using the rapid engineering method when it is greater than zero. // nSurfHeatMonitor: To exam the surface heating change or not. 0 is no, 1 is yes. // nInitPressureStep: the steps to initialize the boundary variables when the rapid method is used. 100 is the default value. // nDumpCFLNumber: 1 indicates dumping the CFL number to file, 0 denotes no dumping. // sigmaVelocity: the coordination coefficient of tangential momentum for computation of slip velocity. The value is in range of (0.0, 2.0]. // sigmaTemperature: the heat coordination coefficient for computation of slip temperature. The value is in range of (0.0, 2.0]. // sigmaMassFraction: the species coordination coefficient for computation of slip mass fractions. The value is in range of (0.0, 2.0]. // velocitySlipCorrectConstant: the correction constant to the velocity slip condition. For the diffuse reflection, 1.0 is used. // 1.0 -- proposed by Maxwell. // sqrt(2/PI)~0.8 -- used for "micro-slip", namely the actual velocity slip at the wall. // 1.146 -- proposed for an additional "fictitious" velocity slip. // chemicalRelaxCorf: The value is in range of [0.001, 1.0]. // spectrumRadiusCoef: The value is in range of [0.0, 2.0]. // staticPressureRelaxCorf: The value is in range of [0.1, 1.0]. // nIsChemicalFreeze: the flag to freeze the chemical reactions. // 0 -- not freeze, the chemical reaction sources will be calculated. // 1 -- freezes the chemical reactions, the chemical reaction sources will not be calculated. // veTemperatureMin: The minimum of Tv and Te. // maxViscous: the maximum of Viscous. // trTemperatureMin: the minimum value of trTemperature. // veTemperatureMin: the minimum value of veTemperature. // densityMin: the minimum value of density. // tAdjustmentFactor: magnification of temperature, this value is in range of (1.0, 10.0]. // nDebug: cout the Wrong place and abort // 0 -- not used. // 1 -- used. // nSpeciesLimit: limitter of gas species // 0 -- not used. // 1 -- used. // nTurblenceForChemical: the coupled mode of Turblence and Chemical reaction. // 0 -- method 0. // 1 -- method 1. // nViscosityFluxSublevelModified: Modified for ViscosityFlux on Sublevel grid. // 0 -- not used. // 1 -- used. // nViscosityPeModified: Pe Modified for ViscosityCoef. // 0 -- not used. // 1 -- used. // nChemcalSourceModified: Modified on ChemcalSource. // 0 -- not used. // 1 -- used. // nChemcalSourceEsMethod: Modified on ChemcalSource. // 0 -- approximation algorithm 1 (Ori). // 1 -- approximation algorithm 2 (New). // nMaxStepTemperature: the iterative steps of temperature. // veTemperatureMinModified: Modified on the minimum of Tve for Cvvs. // 0 -- not used. // 1 -- used. // nDiagonalModified: Modified on Diagonal. // 0 -- not used. // 1 -- new. // nDiagonalModifiedTurb: Modified on Diagonal for turbulence. // 0 -- not used. // 1 -- new. // nGradPrimtiveMethod: // 0 -- Ori. // 1 -- new. // nAblation: // 0 -- The wall ablation is not computed. // 1 -- The wall ablation is computed. // isInjection: // 0 -- The injection velocity of ablation wall is not computed. // 1 -- The injection velocity of ablation wall is computed. // nViscosityModel: // 0 -- Blottner fitting method(N89). // 1 -- Gupta fitting method(N90). // nContinueModel: The new continue model can switch different computation model. // 0 -- Not use the new continue model. // 1 -- use the new continue model. // nSutherland: // 0 -- stands for selecting the Blotter curve fits mode. // 1 -- stands for Sutherland relation. // gasfile: Indicates the gas model, 9 models are provided, namely "Gu5", "Gu7", "Gu11", "Pa5", "Pa7", "Pa11", "DK5", "DK7", "DK11". // "Gu" -- indicates the Gupta Model, three-Type Models are embeded in the library, namely, the 5-species-6-reactions, the 7-species-9-reactions, the 11-species-20-reactions. // "Pa" -- indicates the Park Model, three-Type Models are embeded in the library, namely, the 5-species-17-reactions, the 7-species-22-reactions, the 11-species-48-reactions. // "DK" -- indicates the Dunn-Kang Model, three-Type Models are embeded in the library, namely, the 5-species-11-reactions, the 7-species-15-reactions, the 11-species-26-reactions. // "Mars-Pa8" is for Park model of Mars gas, "Mars-Mc8" for McKenzie model of Mars gas. // "Combustion-12" -- indicates the Combustion Chamber Gas Model which includes 12-species-20-reactions. // "Gas-Mixture" -- indicates the process of mixing gas without reacting. // for struct solver mixing two species "SpeciesA, SpeciesB". // for unstruct solver mixing multi-species "O2 NO CO CO2 H2 N2 Air CH4". // For self-definition model, the gasfile is used to indicate the file path of the new gas model. // speciesName: Used to list the names of each species, while each species name is separated by the symbol of comma. // initMassFraction: Used to list the initial mass fractions of species in accordance with the sequence of names in the parameter speciesName. // ifStartFromPerfectGasResults: The chemical reaction simulation is start from perfect gas flowfield or not, 0 is for no and else is for yes. // nIterFirstStep : the maximum number of iteration in the first step for the self-adaptive calculation. // nIterSecondStep: the maximum number of iteration in the second step for the self-adaptive calculation. // nIterThirdStep : the maximum number of iteration in the third step for the self-adaptive calculation. // nEnergyAssembly: the vibration energy is computed with combined method which includes the fitting method and the molecular kinetic theory. // 0 -- no, // 1 -- yes. // nControlVariable: the variable to computing the residual error that determines the convergence is meet or not in the one-temperature model. // 0 -- the density. // 1 -- the translation temperature. // 2 -- the vibration temperature. // 3 -- the electron temperature. // 4 -- the pressure. // 5 -- the mass fraction of oxygen. // 6 -- the mass fraction of nitrogen. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // nProtectData: Use the continuation file data protection mechanism. // 0 -- no. // 1 -- yes. // nTvChange: Judge whether the Tv equals Ttr. // 0 -- yes. // 1 -- no. // isMoleFractionType: 1 indicates the mass fractions, or else the mole fractions. // nFraction: the initial fractions type of species. // 0 -- mass fraction. // 1 -- mole fraction. int dg_high_order = 0; int iapplication = 0; int isAdaptiveSolver = 0; int nm = 5; int nEquilibriumGas = 0; int nPCWCycleStep = 3; int nRETCycleStep = 3; int nSLIPCycleStep = 3; int nIterFirstStep = 1000; int nIterSecondStep= 2000; int nIterThirdStep = 2000; int nEnergyAssembly = 0; int nControlVariable = 1; double firstStepError = 0.01; double secondStepError = 0.001; double thirdStepError = 0.001; double predictCFLError = 0.1; double refGama = 1.4; double prl = 0.72; double prt = 0.90; double sc_l = 0.5; double sc_t = 0.5; int nGasModel = 0; int nchem = 0; int nchemsrc = 1; int nchemrad = 1; int ntmodel = 1; int nIdealState = 0; int nEnergyRecycle = 1; int nSlipBCModel = 0; int nDensityModify = 1; int nTEnergyModel = 0; int nMeanFreePathType = 0; int nIsChemicalFreeze = 0; int nIsSuperCatalytic = 1; int nTemperatureJump = 0; int nSurfGradMethod = 0; int nRapidFlowfield = 0; int nSurfHeatMonitor = 0; int nInitPressureStep = 100; int nDumpCFLNumber = 0; double parkVDPower = 0.6; double catalyticCoef = 0.0; double sigmaVelocity = 1.0; double sigmaTemperature = 1.0; double sigmaMassFraction = 1.0; double velocitySlipCorrectConstant = 1.0; double chemicalRelaxCorf = 1.0; double chemicalSpectrumRadiusCoef = 1.0; double viscousSpectrumRadiusCoef = 1.5; double inviscidSpectrumRadiusCoef = 1.5; double spectrumRadiusCoef = 0.5; double staticPressureRelaxCorf = 0.2; double maxViscous = 10000.0; double trTemperatureMin = 10.0; double veTemperatureMin = 30.0; double maxTemperature = 50000.0; double densityMin = 1.0e-8; double densityMinFactor = 0.1; double tAdjustmentFactor = 10.0; double iniSpeedCoef = 1.0; int iniSpeedMode = 0; int nDebug = 0; int nSpeciesLimit = 1; int nTurblenceForChemical = 0; int nViscosityFluxSublevelModified = 1; int nViscosityPeModified = 0; int nChemcalSourceModified = 2; int nChemcalSourceEsMethod = 1; int nMaxStepTemperature = 5; int veTemperatureMinModified = 1; int nDiagonalModified = 0; int nDiagonalModifiedTurb = 0; int nGradPrimtiveMethod = 1; int nInviscidFluxModify = 1; int nQlLimitMethod = 2; int nSpeciesForWallMethod = 1; int nDensityForWallMethod = 0; int wallMultiTemperature = 0; int nProtectData = 0; int nAblation = 0; int isInjection = 0; int nViscosityModel = 0; int nMarsModel = 0; int nTvChange = 0; int isMoleFractionType = 0; string gasfile = "DK5"; //string gasfile = "./chemical/Dunn-Kang_air5s11r.dat"; string speciesName = "O, O2, NO, N, N2"; string initMassFraction = "0.0, 0.233, 0.0, 0.0, 0.767"; //string speciesName = "O, O2, NO, N, NO+, N2, e-"; //string initMassFraction = "0.0, 0.233, 0.0, 0.0, 0.0, 0.767, 0.0"; //string speciesName = "O, O2, NO, N, O+, O2+, NO+, N+, N2+, N2, e-"; //string initMassFraction = "0.0, 0.233, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.767, 0.0"; //string gasfile = "Mars-Pa8"; //string speciesName = "O, O2, NO, N, N2, C, CO, CO2"; //string initMassFraction = "0.0015, 0.0429, 0.0, 0.0, 0.0, 0.0, 0.0777, 0.8779"; //string gasfile = "Pa"; //string speciesName = "O, O2, NO, N, NO+, C, C2, CO, CO2, CN, N2, e-"; //string initMassFraction = "0.0, 0.233, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.767, 0.0"; //string gasfile = "Combustion-12"; //string speciesName = "O, O2, NO, N, C, CO, CO2, H, H2, OH, H2O, N2"; //string initMassFraction = "0.0, 0.233, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.767"; //string gasfile = "Gas-Mixture"; //string speciesName = "SpeciesA, SpeciesB"; //string initMassFraction = "1.0, 0.0"; int nSutherland = 0; double gamaSpeciesA = 1.4; double gamaSpeciesB = 1.3; double molecularWeightSpeciesA = 29.0; double molecularWeightSpeciesB = 30.0; //string gasfile = "Gas-Mixture"; //string speciesName = "O2, N2"; //string initMassFraction = "1.0, 0.0"; int nFraction = 0; int nContinueModel = 0; int nChemicalFlowStep = 0; int ifStartFromPerfectGasResults = 0; int isUseNoneqCond = 0; double frozenCondition = 0.01; int nLeakageMonitor = 0; double totalLeakageVolume = 1000.0; double monitorThresholdValue = 0.05; double sprayFactor = 0.0; ######################################################################### // Multi-Grid parameters. // nMGLevel: The number of level of Multi-Grid. // <= 1 -- Single-level. // > 1 -- multi-level. // MGPreIteration: For each grid, the number of pre-smoothing steps. // n_post: For each grid, the number of post-smoothing steps. // MGCoarsestIteration: For the coarest grid the number of smoothing steps. // MGFasType: V-multi cycle or W-multi cycle. // 1 -- V-multi cycle. // 2 -- W-multi cycle. // flowInitStep: Flow initialization step, 0 - 500 is suggested. // Multi-Grid : Number of steps computing on coarse grid, during flow initialization. // Single-Grid: Number of steps computing using first-order with vanleer, during flow initialization. // mgCFLScale: CFL number enlarge times for coarse grid. // mprol: Multi-grid interpolation method, interpolation from coarse cell to fine grid. // 1 -- zero order. // 2 -- first-order. (default) // mgCorrectionLimit: Multi-grid correction limit. int nMGLevel = 1; int MGCoarsestIteration = 1; int MGPreIteration = 1; int MGFasType = 1; int n_post = 0; int flowInitStep = 100; int mprol = 2; double mgCFLScale = 1.0; double mgCorrectionLimit = 0.01; //--------------- Some parameter for turbulent model -------------------- // neasm: The variation of kw turbulent model. // ismooth_turb: Residual smooth for turb or not. // SSTProductType: The type of product term based on vorticity for SST. // SAProductType: The type of product term based on vorticity for SA. int neasm = -3; int SSTProductType = 0; int ismooth_turb = 0; int SAProductType = 2; // ----------------- Overset Grid parameter ----------------------------- int codeOfDigHoles = 1; int codeOfTurbulentModel = 0; string masterFileName = "./grid/searchFile.inp"; string holeBasicFileName = "./grid/holeBasicFile.inp"; string holeFullFileName = "./grid/holeFullFile.dat"; string linkFileName = "./grid/topology.dat"; string zoneInverseFileName = "./grid/zoneInverseMapping.inp"; #************************************************************************ # High Order Struct Solver * #************************************************************************ // isFVMOrFDM: // 0 -- NSSolverStruct using Finite Volume Method. // 1 -- NSSolverStruct using Finite Differ Method. // SolverStructOrder: Spatial discretisation order of NS equations with struct grid. // <= 2 -- finite volume method. // >= 3 -- finite difference order. (to be completed) // 0 -- default. // str_highorder_interpolation_epsilon: Epsilon in weighted interpolation, bigger epsilon, better convergence, // smaller epsilon, robuster for shock-detecting. // str_highorder_interpolation_type: // -- "classical", "test". // str_highorder_flux_name: // -- "roe", "steger". // structhighordergradient: // -- "conservation", "chain_rule". int isFVMOrFDM = 0; string str_highorder_solver = "WCNS"; int SolverStructOrder = 0; double str_highorder_interpolation_epsilon = 1.0e-6; string str_highorder_interpolation_type = "test"; string str_highorder_flux_name = "steger"; string structhighordergradient = "conservation"; double coefofstrflux = 0.5; double limitcoefofinterface = 0.0; // ----------------- Advanced choices ----------------------------------- // outtimesc: Time stepping scheme for the outer loop. // MUSCLCoefXk: The parameter of MUSCL interpolations, belongs to [-1, 1]. // -1 -- seconde-order fully-upwind differencing. // 0 -- seconde-order upwind-biased differencing. // 0.333333 -- third-order upwind-biased differencing. // 1 -- seconde-order central differencing. // MUSCLCoefXb: The limiter parameter. // 0 -- the effect of the limiter is cancelled, means the first-order interpolations. // allReduceStep: Iteration intervals for MPI AllReduce operation, default is 1. string outtimesc = "impbd2"; double MUSCLCoefXk = -1; double MUSCLCoefXb = 1.0; int allReduceStep = 1; // ----------------- overlap configuration ------------------------------ // codeOfOversetGrid: Overlapping(overset) grid or not. // 0 -- NON-overlapping grid. // 1 -- Overlapping grid. // oversetInterpolationMethod: the method of overset interpolation while field simulation. // 0 -- set the acceptor cell value by donor cell value. // 1 -- set the acceptor cell value by distance weight of donor cell value. // readOversetFileOrNo: Whether to read overset-file(.ovs) that has been generated. // 0 -- no. // 1 -- yes. // symetryOrNot: If there exist symetryplanes(XY plane, the coordinate of Z direction is 0) in // the current overset grid(only for three dimension). // 0 -- no. // 1 -- yes. // readInAuxiliaryInnerGrid: Whether to read auxiliary inner grid. // 0 -- no. // 1 -- yes. // walldistMainZone: The initial value of background grid which does not exist wall boundary condition. // toleranceForOversetSearch: The tolerance of overset searching zone to judge whether the obtained node is in the current computing cell. // toleranceForOversetBox: The tolerance of building the minimum box of computing cells in the overlapping region. // twoOrderInterpolationOrNot: The number of interpolated cell layers in the overlapping boundary. // 0 -- one layer. // 1 -- two layers. // keyEnlargeOfActiveNodes: The number of enlarged overset-boundary layers in the buffer region. // outTecplotOverset: Whether to dump out the flowfield data after the progress of overset configure. // 0 -- no. // 1 -- yes. int codeOfOversetGrid = 0; int oversetInterpolationMethod = 0; int readOversetFileOrNot = 0; int symetryOrNot = 0; int readInAuxiliaryInnerGrid = 0; int readInAuxiliaryOuterGrid = 0; int readInSklFileOrNot = 0; string auxiliaryInnerGrid0 = "./grid/aux-upper.fts"; string auxiliaryInnerGrid1 = "./grid/aux-lower.fts"; string auxiliaryInnerGrid2 = ""; string oversetGridFileName = "./grid/iblank.ovs"; double walldistMainZone = 1.0 double toleranceForOversetSearch = 1.0e-3; double toleranceForOversetBox = 1.0e-3; int twoOrderInterpolationOrNot = 0; int keyEnlargeOfActiveNodes = 0; int outTecplotOverset = 0; int outPutOversetVisualization = 0; int numberOfMovingBodies = 2; // ----------------- ALE configuration ------------------------------ int codeOfAleModel = 0; int aleStartStrategy = -1; double referenceLength = 1.0; double referenceVelocity = 1.0; double referenceDensity = 1.0; int strategyForFaceNormalVelocity = 0; // 0-By Sweeping volume; 1-By face center 1st; 2-By face center 2nd. int strategyForGCLSource = 0; // 0-present; 1-Ahn. // 0: 1st-Admas-Bashforth; 1: 2nd-Admas-Bashforth; 2: 1st-Implicit-Euler; 3: 2nd-Implicit Euler; 4: 2nd-Adams-Moulton; 5: 3rd-Adams-Moulton. int methodForKineticEquation = 0; double relaxParameterOfKinetic = 1.0; #************************************************************************ # motive information * #************************************************************************ int numberOfMovingBodies = 1; ############################## body0 ############################## // mass of parts. double mass_0 = 1.0; // gravity of parts (along negative direction in Y-axis, eg. 9.8). double gravity_0 = 0.0; // mass matrix of parts Ixx Iyy Izz Ixy Ixz Iyz. double massMatrix_0[] = 1e-7, 1e-6, 1e-6, 0.0, 0.0, 0.0; // initial six DOF position information of parts. xc yc zc. double massCenter_0[] = 0.0, 0.0, 0.0; // if reset mass center while restart. int resetMassCenter_0 = 0; // position offset of parts. dx dy dz. double massCenterDxyz_0[] = 0.0, 0.0, 0.0; // initial six DOF position information of parts. angleX angleY angleZ. double attitudeAngle_0[] = 0.0, 0.0, 0.0; // initial six DOF move information of parts. vc vy vz. double massCenterVelocity_0[] = 0.0, 0.0, 0.0; // initial six DOF move information of parts. omigX omigY omigZ. double angularVelocity_0[] = 0.0, 0.0, 0.0; // the object that the parts belong to. int fartherIndex_0 = -1; // the assembly position of the parts. xc yc zc angleX angleY angleZ. double configPamameter_0[] = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0; // the move pattern of the parts. // -1 given motion partten. // 0 still. // 1 six DOF motion. // 2 three DOF motion. // 11 X-axis forced motion. // 12 Y-axis forced motion. // 13 Z-axis forced motion. // 14 forced pitch motion. // 15 forced yaw motion. // 16 forced roll motion. int RBDMethod_0 = 0; double amplitude_0 = 0.0; double reduceFrequency_0 = 0.0; // direction of rotation. // 1 -- clockwise from the point of view along the positive x axis. // -1 -- anticlockwise from the point of view along the positive x axis. int direction_0 = -1; double rotateFrequency_0 = 0.0; //string uDFSixDofFileName_0 = "./Bin/UDFSixDof.Parameter"; // dimensional physical time for additional force(s). double addedForceTime_0[] = 0.0; // additional force(inertia system) fX fY fZ. double addedForce_0[] = 0.0, 0.0, 0.0; // additional moment(inertia system) mX mY mZ. double addedMoment_0[] = 0.0, 0.0, 0.0; // the deformation method of the parts. int morphing_0 = 0; // post indentify. int integralOrder = 4; #************************************************************************ # TurboMachinery Parameter * #************************************************************************ // ----------------- Rotating Frame -------------------------------- // referenceFrame: whether rotating reference frame used. // 0 -- Stationary Frame. // 1 -- Translational Frame. // 2 -- Rotational Frame. int referenceFrame = 0; // nTurboZone: number of rows of TurboMachinery. int nTurboZone = 0; // Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone // "Periodic_up, Periodic_down" means a pair of name of one zone string Periodic_Name[] = "Periodic_up, Periodic_down"; // PeriodicRotationAngle means rotating angle for each zone. // PeriodicRotationAngle[] = [theta1, theta2...] // theta1, theta2 means rotating angle for zone1,zone2. double PeriodicRotationAngle[] = [16.363636363636]; // MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2 // "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet. string MixingPlane[] = ""; // Omega: angular velocity(rad/s) of each zone. double Omega[] = [-1680.0]; // shroud: define turbomachinery shroud of each zone, because shroud do not rotate. string shroud[] = "shroud"; // nSpanSection: number of spanwise section used for mixing plane. int nSpanSection = 0; // ---------------- ATP read -------------------------------------------- //@int inflowParaType = 0; //@double refReNumber = 6.5e6; //@double refDimensionalTemperature = 288.15; //@double freestream_vibration_temperature = 300.00; //@double refDimensionalPressure = 0; //@double height = 0; //@int nsubsonicInlet = 0; //@int nsubsonicOutlet = 0; //@string inLetFileName = "./bin/subsonicInlet.hypara"; //@string outLetFileName = "./bin/subsonicOutlet.hypara"; //@double refDimensionalVelocity = 0; //@double refDimensionalDensity = 0; //@string weatherDataFilePath = "./WRFData/"; //@double longitude = 110.95 //@double latitude = 19.61; #************************************************************************ # Old Parameter * #************************************************************************ int isPlotVolumeField = 0; #************************************************************************ # partial flow field setting Parameter * #************************************************************************ //int nPartialParameter = 0; // 0/1/2 //int nNumberOfPartialField = 0; // //int nStartGridIndex[] = [0]; //int nEndGridIndex[] = [0]; //double partialCFL[] = [0.0]; //double partialSpeedCoef[] = [0.0]; //double partialSpeed[] = [0.0]; //double partialAttackd[] = [0.0]; //double partialSlide[] = [0.0]; //double partialPressure[] = [0.0]; //double partialTemperature[] = [0.0]; //double partialMassFractions[] = [0.0]; #************************************************************************ # Incompressible Parameter * #************************************************************************ int isSolveEnergyEquation = 0; int isSolveTurbEquation = 0; int isSolveSpeciesEquation = 0;