forked from PHengLEI/PHengLEI-TestCases
348 lines
13 KiB
Python
348 lines
13 KiB
Python
|
"""
|
||
|
Copyright (R) @huawei.com, all rights reserved
|
||
|
-*- coding:utf-8 -*-
|
||
|
CREATED: 2020-6-04 20:12:13
|
||
|
MODIFIED: 2020-6-28 14:04:45
|
||
|
"""
|
||
|
import acl
|
||
|
import struct
|
||
|
import numpy as np
|
||
|
import datetime
|
||
|
import sys
|
||
|
import os
|
||
|
import time
|
||
|
#from tqdm import tqdm
|
||
|
|
||
|
import constants as const
|
||
|
import acllite_utils as utils
|
||
|
from acllite_logger import log_error, log_info, log_warning
|
||
|
from acllite_resource import resource_list, AclLiteResource
|
||
|
|
||
|
class AclLiteModel(object):
|
||
|
"""
|
||
|
wrap acl model inference interface, include input dataset construction,
|
||
|
execute, and output transform to numpy array
|
||
|
Attributes:
|
||
|
model_path: om offline mode file path
|
||
|
"""
|
||
|
|
||
|
def __init__(self, model_path):
|
||
|
self._run_mode, ret = acl.rt.get_run_mode()
|
||
|
utils.check_ret("acl.rt.get_run_mode", ret)
|
||
|
self._copy_policy = const.ACL_MEMCPY_DEVICE_TO_DEVICE
|
||
|
if self._run_mode == const.ACL_HOST:
|
||
|
self._copy_policy = const.ACL_MEMCPY_DEVICE_TO_HOST
|
||
|
|
||
|
self._model_path = model_path # string
|
||
|
self._model_id = None # pointer
|
||
|
self._input_num = 0
|
||
|
self._input_buffer = []
|
||
|
self._input_dataset = None
|
||
|
self._output_dataset = None
|
||
|
self._model_desc = None # pointer when using
|
||
|
self._output_size = 0
|
||
|
self._is_destroyed = False
|
||
|
self._init_resource()
|
||
|
resource_list.register(self)
|
||
|
|
||
|
def _init_resource(self):
|
||
|
log_info("Init model resource start...")
|
||
|
if not os.path.isfile(self._model_path):
|
||
|
log_error(
|
||
|
"model_path failed, please check. model_path=%s" %
|
||
|
self._model_path)
|
||
|
return const.FAILED
|
||
|
|
||
|
self._model_id, ret = acl.mdl.load_from_file(self._model_path)
|
||
|
print(self._model_id, ret)
|
||
|
utils.check_ret("acl.mdl.load_from_file", ret)
|
||
|
self._model_desc = acl.mdl.create_desc()
|
||
|
ret = acl.mdl.get_desc(self._model_desc, self._model_id)
|
||
|
utils.check_ret("acl.mdl.get_desc", ret)
|
||
|
# get outputs num of model
|
||
|
self._output_size = acl.mdl.get_num_outputs(self._model_desc)
|
||
|
# create output dataset
|
||
|
self._gen_output_dataset(self._output_size)
|
||
|
# recode input data address,if need malloc memory,the memory will be
|
||
|
# reuseable
|
||
|
self._init_input_buffer()
|
||
|
|
||
|
log_info("Init model resource success")
|
||
|
|
||
|
return const.SUCCESS
|
||
|
|
||
|
def _gen_output_dataset(self, ouput_num):
|
||
|
log_info("[AclLiteModel] create model output dataset:")
|
||
|
dataset = acl.mdl.create_dataset()
|
||
|
for i in range(ouput_num):
|
||
|
# malloc device memory for output
|
||
|
size = acl.mdl.get_output_size_by_index(self._model_desc, i)
|
||
|
buf, ret = acl.rt.malloc(size, const.ACL_MEM_MALLOC_NORMAL_ONLY)
|
||
|
utils.check_ret("acl.rt.malloc", ret)
|
||
|
# crate oputput data buffer
|
||
|
dataset_buffer = acl.create_data_buffer(buf, size)
|
||
|
_, ret = acl.mdl.add_dataset_buffer(dataset, dataset_buffer)
|
||
|
log_info("malloc output %d, size %d" % (i, size))
|
||
|
if ret:
|
||
|
acl.rt.free(buf)
|
||
|
acl.destroy_data_buffer(dataset_buffer)
|
||
|
utils.check_ret("acl.destroy_data_buffer", ret)
|
||
|
self._output_dataset = dataset
|
||
|
log_info("Create model output dataset success")
|
||
|
|
||
|
def _init_input_buffer(self):
|
||
|
self._input_num = acl.mdl.get_num_inputs(self._model_desc)
|
||
|
for i in range(self._input_num):
|
||
|
item = {"addr": None, "size": 0}
|
||
|
self._input_buffer.append(item)
|
||
|
|
||
|
def _gen_input_dataset(self, input_list):
|
||
|
ret = const.SUCCESS
|
||
|
if len(input_list) != self._input_num:
|
||
|
log_error("Current input data num %d unequal to model "
|
||
|
"input num %d" % (len(input_list), self._input_num))
|
||
|
return const.FAILED
|
||
|
|
||
|
self._input_dataset = acl.mdl.create_dataset()
|
||
|
for i in range(self._input_num):
|
||
|
item = input_list[i]
|
||
|
data, size = self._parse_input_data(item, i)
|
||
|
if (data is None) or (size == 0):
|
||
|
ret = const.FAILED
|
||
|
log_error("The %d input is invalid" % (i))
|
||
|
break
|
||
|
|
||
|
model_size = acl.mdl.get_input_size_by_index(self._model_desc, i)
|
||
|
if size != model_size:
|
||
|
log_warning(" Input[%d] size: %d not equal om size: %d" % (i, size, model_size) +\
|
||
|
", may cause inference result error, please check model input")
|
||
|
|
||
|
|
||
|
dataset_buffer = acl.create_data_buffer(data, size)
|
||
|
_, ret = acl.mdl.add_dataset_buffer(self._input_dataset,
|
||
|
dataset_buffer)
|
||
|
if ret:
|
||
|
log_error("Add input dataset buffer failed")
|
||
|
acl.destroy_data_buffer(self._input_dataset)
|
||
|
ret = const.FAILED
|
||
|
break
|
||
|
if ret == const.FAILED:
|
||
|
self._release_dataset(self._input_dataset)
|
||
|
self._input_dataset = None
|
||
|
|
||
|
return ret
|
||
|
|
||
|
def _parse_input_data(self, input_data, index):
|
||
|
data = None
|
||
|
size = 0
|
||
|
if isinstance(input_data, np.ndarray):
|
||
|
ptr = acl.util.numpy_to_ptr(input_data)
|
||
|
size = input_data.size * input_data.itemsize
|
||
|
data = self._copy_input_to_device(ptr, size, index)
|
||
|
if data is None:
|
||
|
size = 0
|
||
|
log_error("Copy input to device failed")
|
||
|
elif (isinstance(input_data, dict) and
|
||
|
('data' in input_data.keys()) and ('size' in input_data.keys())):
|
||
|
size = input_data['size']
|
||
|
data = input_data['data']
|
||
|
else:
|
||
|
log_error("Unsupport input")
|
||
|
|
||
|
return data, size
|
||
|
|
||
|
def _copy_input_to_device(self, input_ptr, size, index):
|
||
|
buffer_item = self._input_buffer[index]
|
||
|
data = None
|
||
|
if buffer_item['addr'] is None:
|
||
|
if self._run_mode == const.ACL_HOST:
|
||
|
data = utils.copy_data_host_to_device(input_ptr, size)
|
||
|
else:
|
||
|
data = utils.copy_data_device_to_device(input_ptr, size)
|
||
|
if data is None:
|
||
|
log_error("Malloc memory and copy model %dth "
|
||
|
"input to device failed" % (index))
|
||
|
return None
|
||
|
buffer_item['addr'] = data
|
||
|
buffer_item['size'] = size
|
||
|
elif size == buffer_item['size']:
|
||
|
if self._run_mode == const.ACL_HOST:
|
||
|
ret = acl.rt.memcpy(buffer_item['addr'], size,
|
||
|
input_ptr, size,
|
||
|
const.ACL_MEMCPY_HOST_TO_DEVICE)
|
||
|
else:
|
||
|
ret = acl.rt.memcpy(buffer_item['addr'], size,
|
||
|
input_ptr, size,
|
||
|
const.ACL_MEMCPY_DEVICE_TO_DEVICE)
|
||
|
if ret != const.ACL_SUCCESS:
|
||
|
log_error("Copy model %dth input to device failed" % (index))
|
||
|
return None
|
||
|
data = buffer_item['addr']
|
||
|
else:
|
||
|
log_error("The model %dth input size %d is change,"
|
||
|
" before is %d" % (index, size, buffer_item['size']))
|
||
|
return None
|
||
|
|
||
|
return data
|
||
|
|
||
|
def execute(self, input_list):
|
||
|
"""
|
||
|
inference input data
|
||
|
Args:
|
||
|
input_list: input data list, support AclLiteImage,
|
||
|
numpy array and {'data': ,'size':} dict
|
||
|
returns:
|
||
|
inference result data, which is a numpy array list,
|
||
|
each corresponse to a model output
|
||
|
"""
|
||
|
ret = self._gen_input_dataset(input_list)
|
||
|
if ret == const.FAILED:
|
||
|
log_error("Gen model input dataset failed")
|
||
|
return None
|
||
|
|
||
|
ret = acl.mdl.execute(self._model_id,
|
||
|
self._input_dataset,
|
||
|
self._output_dataset)
|
||
|
if ret != const.ACL_SUCCESS:
|
||
|
log_error("Execute model failed for acl.mdl.execute error ", ret)
|
||
|
return None
|
||
|
|
||
|
self._release_dataset(self._input_dataset)
|
||
|
self._input_dataset = None
|
||
|
|
||
|
return self._output_dataset_to_numpy()
|
||
|
|
||
|
def _output_dataset_to_numpy(self):
|
||
|
dataset = []
|
||
|
output_tensor_list = self._gen_output_tensor()
|
||
|
num = acl.mdl.get_dataset_num_buffers(self._output_dataset)
|
||
|
|
||
|
for i in range(num):
|
||
|
buf = acl.mdl.get_dataset_buffer(self._output_dataset, i)
|
||
|
data = acl.get_data_buffer_addr(buf)
|
||
|
size = int(acl.get_data_buffer_size(buf))
|
||
|
output_ptr = output_tensor_list[i]["ptr"]
|
||
|
output_tensor = output_tensor_list[i]["tensor"]
|
||
|
ret = acl.rt.memcpy(output_ptr,
|
||
|
output_tensor.size * output_tensor.itemsize,
|
||
|
data, size, self._copy_policy)
|
||
|
if ret != const.ACL_SUCCESS:
|
||
|
log_error("Memcpy inference output to local failed")
|
||
|
return None
|
||
|
|
||
|
dataset.append(output_tensor)
|
||
|
|
||
|
return dataset
|
||
|
|
||
|
def _gen_output_tensor(self):
|
||
|
output_tensor_list = []
|
||
|
for i in range(self._output_size):
|
||
|
dims = acl.mdl.get_output_dims(self._model_desc, i)
|
||
|
shape = tuple(dims[0]["dims"])
|
||
|
datatype = acl.mdl.get_output_data_type(self._model_desc, i)
|
||
|
size = acl.mdl.get_output_size_by_index(self._model_desc, i)
|
||
|
|
||
|
if datatype == const.ACL_FLOAT:
|
||
|
np_type = np.float32
|
||
|
output_tensor = np.zeros(
|
||
|
size // 4, dtype=np_type).reshape(shape)
|
||
|
elif datatype == const.ACL_INT32:
|
||
|
np_type = np.int32
|
||
|
output_tensor = np.zeros(
|
||
|
size // 4, dtype=np_type).reshape(shape)
|
||
|
elif datatype == const.ACL_UINT32:
|
||
|
np_type = np.uint32
|
||
|
output_tensor = np.zeros(
|
||
|
size // 4, dtype=np_type).reshape(shape)
|
||
|
elif datatype == const.ACL_FLOAT16:
|
||
|
np_type = np.float16
|
||
|
output_tensor = np.zeros(
|
||
|
size // 2, dtype=np_type).reshape(shape)
|
||
|
elif datatype == const.ACL_BOOL or datatype == const.ACL_UINT8:
|
||
|
np_type = np.uint8
|
||
|
output_tensor = np.zeros(
|
||
|
size, dtype=np_type).reshape(shape)
|
||
|
else:
|
||
|
print("Unspport model output datatype ", datatype)
|
||
|
return None
|
||
|
|
||
|
if not output_tensor.flags['C_CONTIGUOUS']:
|
||
|
output_tensor = np.ascontiguousarray(output_tensor)
|
||
|
|
||
|
tensor_ptr = acl.util.numpy_to_ptr(output_tensor)
|
||
|
output_tensor_list.append({"ptr": tensor_ptr,
|
||
|
"tensor": output_tensor})
|
||
|
|
||
|
return output_tensor_list
|
||
|
|
||
|
def _release_dataset(self, dataset, free_memory=False):
|
||
|
if not dataset:
|
||
|
return
|
||
|
|
||
|
num = acl.mdl.get_dataset_num_buffers(dataset)
|
||
|
for i in range(num):
|
||
|
data_buf = acl.mdl.get_dataset_buffer(dataset, i)
|
||
|
if data_buf:
|
||
|
self._release_databuffer(data_buf, free_memory)
|
||
|
|
||
|
ret = acl.mdl.destroy_dataset(dataset)
|
||
|
if ret != const.ACL_SUCCESS:
|
||
|
log_error("Destroy data buffer error ", ret)
|
||
|
|
||
|
def _release_databuffer(self, data_buffer, free_memory=False):
|
||
|
if free_memory:
|
||
|
data_addr = acl.get_data_buffer_addr(data_buffer)
|
||
|
if data_addr:
|
||
|
acl.rt.free(data_addr)
|
||
|
|
||
|
ret = acl.destroy_data_buffer(data_buffer)
|
||
|
if ret != const.ACL_SUCCESS:
|
||
|
log_error("Destroy data buffer error ", ret)
|
||
|
|
||
|
def destroy(self):
|
||
|
"""
|
||
|
release resource of model inference
|
||
|
Args:
|
||
|
null
|
||
|
Returns:
|
||
|
null
|
||
|
"""
|
||
|
if self._is_destroyed:
|
||
|
return
|
||
|
|
||
|
self._release_dataset(self._output_dataset, free_memory=True)
|
||
|
if self._model_id:
|
||
|
ret = acl.mdl.unload(self._model_id)
|
||
|
if ret != const.ACL_SUCCESS:
|
||
|
log_info("acl.mdl.unload error:", ret)
|
||
|
|
||
|
if self._model_desc:
|
||
|
ret = acl.mdl.destroy_desc(self._model_desc)
|
||
|
if ret != const.ACL_SUCCESS:
|
||
|
log_info("acl.mdl.destroy_desc error:", ret)
|
||
|
|
||
|
self._is_destroyed = True
|
||
|
resource_list.unregister(self)
|
||
|
log_info("AclLiteModel release source success")
|
||
|
|
||
|
def __del__(self):
|
||
|
self.destroy()
|
||
|
|
||
|
'''
|
||
|
# 初始化模型
|
||
|
model_path = './model/model.om'
|
||
|
acl_resource = AclLiteResource()
|
||
|
acl_resource.init()
|
||
|
model = AclLiteModel(model_path)
|
||
|
data = np.load('./data/data.npy').astype(np.float32)
|
||
|
x = data[:, 0:8].copy()
|
||
|
ptr = acl.util.numpy_to_ptr(x)
|
||
|
y = data[:, -1]
|
||
|
pred = model.execute([x])[0][:, 0]
|
||
|
mse = mean_squared_error(y, pred)
|
||
|
r2 = r2_score(y, pred)
|
||
|
print("---------")
|
||
|
print(f"mse = {mse}")
|
||
|
print(f"r2 = {r2}")
|
||
|
'''
|