默认参数文件cfd_para.hypara更新

This commit is contained in:
hechao 2024-07-01 12:34:30 +08:00
parent 6cd9da73a0
commit 25aa6e302f
108 changed files with 4752 additions and 1080 deletions

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

View File

@ -295,6 +295,8 @@ int preconFarfieldBCMethod = 1;
//flowInitMethod: Flow field initialization method. //flowInitMethod: Flow field initialization method.
// 0 -- The entire flow field is initialized according to Infinite velocity. // 0 -- The entire flow field is initialized according to Infinite velocity.
// 1 -- The velocity near the wall is initialized according to the boundary layer of the plate. // 1 -- The velocity near the wall is initialized according to the boundary layer of the plate.
// 2 -- The entire flow field is initialized by flowInitStep iterations of FirstOrder method.
// 3 -- The entire flow field is initialized by flowInitStep iterations of LUSGS method.
// refReNumber: Reynolds number, which is based unit length, unit of 1/m. // refReNumber: Reynolds number, which is based unit length, unit of 1/m.
// refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition. // refDimensionalTemperature: Dimensional reference temperature, or the total temperature only for the experiment condition.
// freestream_vibration_temperature: Dimensional freestream vibration temperature. // freestream_vibration_temperature: Dimensional freestream vibration temperature.
@ -419,7 +421,7 @@ string str_limiter_name = "vanalbada";
// 3 -- IDDES. // 3 -- IDDES.
// uns_scheme_name: Spatial discretisation scheme of Unstruct grid. // uns_scheme_name: Spatial discretisation scheme of Unstruct grid.
// Using this when solve Unstructered grid or hybrid. // Using this when solve Unstructered grid or hybrid.
// -- "vanleer", "roe", "steger", "kfvs", "lax_f", "hlle", // -- "vanleer", "roe", "GMRESRoe", "GMRESSteger", "steger", "kfvs", "lax_f", "hlle",
// -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+". // -- "ausm+", "ausmdv", "ausm+w", "ausmpw", "ausmpw+".
// uns_limiter_name: Limiter of Unstruct grid. // uns_limiter_name: Limiter of Unstruct grid.
// -- "barth", "vencat", "vanleer", "minmod", // -- "barth", "vencat", "vanleer", "minmod",
@ -513,6 +515,7 @@ double AusmpwPlusLimiter = 1.0;
// 6 -- Jacobian iteration. // 6 -- Jacobian iteration.
// 7 -- Line LU-SGS. // 7 -- Line LU-SGS.
// 8 -- Matrix LU-SGS. // 8 -- Matrix LU-SGS.
// 9 -- GMRES.
// iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation. // iSimplifyViscousTerm: Simplify the computation of viscous term in the Block LU-SGS method. The default value assigns 1 that could speed up the computation.
// Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method. // Otherwise, the viscous Jacobian matrix Mv should be computed that will increase the memory and time in iteration of the BLUSGS method.
// CFLMethod: The method to compute cfl number. // CFLMethod: The method to compute cfl number.
@ -521,6 +524,8 @@ double AusmpwPlusLimiter = 1.0;
// CFLStart: Started cfl number. // CFLStart: Started cfl number.
// CFLEnd: End cfl number. // CFLEnd: End cfl number.
// CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd. // CFLVaryStep: The number of step when cfl increase from CFLStart to CFLEnd.
// GMRESCFLScale : CFL = CFLStart * GMRESCFLScal^iteration.
// OriginalTscheme : Used for LUSGS and GMres hybrid computing.
// ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i]) // ktmax: Dtratio. dt[i] = MIN(dt[i], ktmax * dtmin / vol[i])
// swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0. // swapDq: Communication dq between forward/backward sweep of LUSGS or not, default is 0.
// nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS. // nLUSGSSweeps: Sub iteration of LU-SGS or Block LU-SGS.
@ -569,7 +574,8 @@ int isUsePreTwall = 0;
double CFLStart = 0.01; double CFLStart = 0.01;
double CFLEnd = 10.0; double CFLEnd = 10.0;
int CFLVaryStep = 500; int CFLVaryStep = 500;
double GMRESCFLScale = 1.0;
int OriginalTscheme = 0;
double pMaxForCFL = 0.2; double pMaxForCFL = 0.2;
double pMinForCFL = 0.1; double pMinForCFL = 0.1;
double deltaMaxForCFL = 0.2; double deltaMaxForCFL = 0.2;
@ -875,10 +881,7 @@ int monitorNegativeConstant = 0;
// iapplication: // iapplication:
// 0 -- gas model is fixed in the codes. // 0 -- gas model is fixed in the codes.
// 1 -- gas model is imported from library files. // 1 -- gas model is imported from library files.
// isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver, // isAdaptiveSolver: isAdaptiveSolver = 0 indicates the generic Navier-Stokes solver.
// isAdaptiveSolver > 0 indicates the HyFlow self-adaptive solver.
// 1 -- using HyFlow self-adaptive solver where the switch is controlled by the total iteration steps.
// 2 -- using HyFlow self-adaptive solver where the switch is controlled by variation of the key residual.
// nm: Equation number of the physics, but is out of commision now. // nm: Equation number of the physics, but is out of commision now.
// 4 -- for 2D. // 4 -- for 2D.
// 5 -- for 3D. // 5 -- for 3D.
@ -1054,9 +1057,6 @@ int monitorNegativeConstant = 0;
// firstStepError : the residual error of the first step iteration for the self-adaptive calculation. // firstStepError : the residual error of the first step iteration for the self-adaptive calculation.
// secondStepError : the residual error of the second step iteration for the self-adaptive calculation. // secondStepError : the residual error of the second step iteration for the self-adaptive calculation.
// thirdStepError : the residual error of the third step iteration for the self-adaptive calculation. // thirdStepError : the residual error of the third step iteration for the self-adaptive calculation.
// useHyflowSetting: Setting for HyFLOW GUI.
// 0 -- PHengLEI.
// 1 -- HyFLOW.
// nProtectData: Use the continuation file data protection mechanism. // nProtectData: Use the continuation file data protection mechanism.
// 0 -- no. // 0 -- no.
// 1 -- yes. // 1 -- yes.
@ -1155,7 +1155,6 @@ int nDensityForWallMethod = 0;
int wallMultiTemperature = 0; int wallMultiTemperature = 0;
int nProtectData = 0; int nProtectData = 0;
int useHyflowSetting = 0;
int nAblation = 0; int nAblation = 0;
int isInjection = 0; int isInjection = 0;
int nViscosityModel = 0; int nViscosityModel = 0;
@ -1424,6 +1423,41 @@ int morphing_0 = 0;
// post indentify. // post indentify.
int integralOrder = 4; int integralOrder = 4;
#************************************************************************
# TurboMachinery Parameter *
#************************************************************************
// ----------------- Rotating Frame --------------------------------
// referenceFrame: whether rotating reference frame used.
// 0 -- Stationary Frame.
// 1 -- Translational Frame.
// 2 -- Rotational Frame.
int referenceFrame = 0;
// nTurboZone: number of rows of TurboMachinery.
int nTurboZone = 0;
// Periodic_Name: a list of periodic boundary name, the number of name equals to 2*nZone
// "Periodic_up, Periodic_down" means a pair of name of one zone
string Periodic_Name[] = "Periodic_up, Periodic_down";
// PeriodicRotationAngle means rotating angle for each zone.
// PeriodicRotationAngle[] = [theta1, theta2...]
// theta1, theta2 means rotating angle for zone1,zone2.
double PeriodicRotationAngle[] = [16.363636363636];
// MixingPlane: a list of mixing plane name, the number of name equals to 2*nZone-2
// "MixOut, MixIn" the first is upstream zone outlet, the second is downstream zone inlet.
string MixingPlane[] = "";
// Omega: angular velocity(rad/s) of each zone.
double Omega[] = [-1680.0];
// shroud: define turbomachinery shroud of each zone, because shroud do not rotate.
string shroud[] = "shroud";
// nSpanSection: number of spanwise section used for mixing plane.
int nSpanSection = 0;
// ---------------- ATP read -------------------------------------------- // ---------------- ATP read --------------------------------------------
//@int inflowParaType = 0; //@int inflowParaType = 0;
//@double refReNumber = 6.5e6; //@double refReNumber = 6.5e6;

Some files were not shown because too many files have changed in this diff Show More