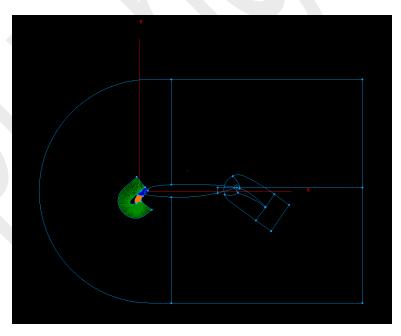
三维 30p30n 结构重叠网格算例

1 算例概述


三维 30p30n 翼型,结构网格,重叠网格。

测试环境: Windows 7, 4核并行。

2 计算条件

马赫数	单位长度雷诺数	攻角	侧滑角	来流温度
0.2	9e6	19.00	0.00	288.0
壁温	参考展长	参考长度	参考面积	参考点
-1.0	1.0	1.0	1.0	(0.0,0.0,0.0)

3 计算网格

148366 网格单元, 35 个 block, 重叠区域边界的边界条件 bctype

4 参数设置

4.1 重叠网格串行分区+转换

注意:选择任务类型nsimutask=22 直接进行转换分区一步到位。

网格分区+转换: key.hypara + grid_para.hypara+overset.txt, 依次修改。结构重叠功能因 Lobachevsky 库设计, 将分区与转换过程合并, 只需执行一次即可完成, 如生成 updatedgrid.fts 则证明此步骤正常完成

命令:在可执行程序位置 shift+鼠标右键点击"在此处打开命令窗口" 输入 PHengLEIv3d0.exe 进行网格分区+转换

文件	参 数	值	备注
key.hypara	ndim	3	空间维数
	nsimutask	22	任务类型
	string parafilename =	"./bin/grid_para.hypara"	相应参数文件路径
grid_para.h ypara	int gridtype	1	网格类型
	axisup	1	坐标方向
	int from_gtype	3	输入网格类型
	string from_gfile	"./grid/updatedgrid.grd"	指定输入网格路径
	string out_gfile	"./grid/updatedgrid.fts"	指定输出格路径
overset.txt	int taskSelector	0	重叠功能选择
	int numberOfProcessors	4	分区数
	string originalGridFile	"./grid/30p30n_str_3D.	输入网格类型
		grd"	
	string originalBoundaryFile	"./grid/30p30n_str_3D.i	指定输入网格路径
		np"	
	int numberOfGridGroups	4	网格部件数

int zoneSpan[numberOfGridGr oups]	3,4,4,5	各部件内网格 block 数
int solidBcSize	2	固面类型数
int solidColorList[solidBcSize]	2,4	固面边界 bctype
int outerBcSize	3	重叠边界数
int outerColorList[outerBcSize]	16,17,18	重叠边界 bctype

4.2 重叠并行装配

CFD 计算:

key.hypara+cfd_para_subsonic.hypara+overset.txt+boundary_condition.h ypara, 依次修改。注:overset 文件中只需修改第一个参数 taskSelector, boundary_condition.hypara 文件中将 Wall_x 字样的 bcname 中的 bctype 修改为与 x 一样的值,如 Wall_8 的 bcType=8,如果计算完毕并生成 tecpflow0_0 文件表明过程顺利进行

命令: 在可执行程序位置 shift+鼠标右键点击"在此处打开命令窗口" 输入 mpiexec –n 4 ./ PHengLEIv3d0.exe 进行计算

文件	参 数	值	备注
	ndim	3	空间维数
	nsimutask	0	参数类型
key.hypara		"./bin/cfd_par	
	string parafilename =	a_subsonic.hy	相应参数文件路径
		para"	
	maxSimuStep	1	迭代计算步数
cfd_para_****	intervalStepFlow	1	流场文件步数
**.hypara	intervalStepPlot	1	可视化输出步数
	intervalStepForce	1	气动力输出步数

	intervalStepRes	1	残差输出步数
	refMachNumber	0.2	来流马赫数
	attackd	19.0	来流攻角
	angleSlide	0.0	侧滑角
	refReNumber	9e6	来流单位雷诺数
	refDimensionalTemperature	288.0	来流温度
	gridScaleFactor	1.0	网格缩放比
	forceRefenenceLengthSpanWise	1.0	参考展长
	forceRefenenceLength	1.0	参考长度
	forceRefenenceArea	1.0	参考面积
	TorqueRefX		
	TorqueRefY	(0.0,0.0,0.0)	参考坐标
	TorqueRefZ		
	viscousType	3	NS 方程类型
	viscousName	"leq-sa"	粘性类型
	string str_scheme_name	Roe smooth	结构网格:
	string str_limiter_name		空间离散格式
			限制器类型
	string uns_scheme_name		非结构网格:
	string uns_limiter_name		空间离散格式
	double venkatCoeff		限制器类型
	string uns_vis_name		限制器系数
	string uns_gradient_name	0.04	梯度重构方法
	CFLStart	0.01	CFL 起始步
	CFLEnd	10.0	CFL 终止步
	nLUSGSSweeps	1	LUSGS 扫描步
	nMGLevel	1	多重网格数
overset.txt	int taskSelector	1	重叠功能选择
boundary_condi tion.hypara	string bcName = "Wall_16" string bcName = "Wall_17" string bcName = "Wall_18"	int bcType = 16 int bcType = 17 int bcType = 18	重叠边界条件设置

5 装配结果

打开 tecflow0_0.plt 文件查看装配结果,图内绿色部分 iblank=1 为重叠边界,红色部分 iblank=2 为计算单元,蓝色 iblank=0 的无效单元已挖去。

6 结论

本算例成功生成分区文件,成功生成风雷所用 fts 文件,成功完成 网格并行装配,表明当前结构重叠功能可以正常使用。

