FCA/src
freeneuro 85e5e798a8 update 2021-12-07 19:20:39 +08:00
..
car_assets update 116 2021-09-12 22:34:04 +08:00
carassets update 2021-12-07 19:20:39 +08:00
carla_dataset update 2021-12-07 19:20:39 +08:00
data update 116 2021-09-12 22:34:04 +08:00
models update 2021-12-07 19:20:39 +08:00
textures update 116 2021-09-12 22:34:04 +08:00
utils update 2021-12-07 19:20:39 +08:00
weights update 2021-12-07 19:20:39 +08:00
.gitattributes update 2021-12-07 19:20:39 +08:00
.gitignore update 2021-12-07 19:20:39 +08:00
2.4.1' update 2021-12-07 19:20:39 +08:00
LICENSE update 2021-12-07 19:20:39 +08:00
data_loader.py update 116 2021-09-12 22:34:04 +08:00
detect.py update 2021-12-07 19:20:39 +08:00
generated_and_test.py update 2021-12-07 19:20:39 +08:00
hubconf.py update 2021-12-07 19:20:39 +08:00
nmr_test.py update 116 2021-09-12 22:34:04 +08:00
readme.md update 2021-12-07 19:20:39 +08:00
requirements.txt update 2021-12-07 19:20:39 +08:00
test.py update 2021-12-07 19:20:39 +08:00
train.py update 2021-12-07 19:20:39 +08:00
train_camouflage_yolov3.py update 2021-12-07 19:20:39 +08:00

readme.md

The official implementation for AAAI2022 paper "FCA Learning a 3D Full-coverage Vehicle Camouflage for Multi view Physical Adversarial Attack"

Install the following python package before run the code.

neural_renderer

before you running the code, you must install the neural renderer python package. You can pull our implementation here, which is slight different to daniilidis.

If there is any question, please contact us without hesitate.

Note that, you code is based on Yolo-V3 implementation

After train the adversarial camouflage, you can see how camouflage like with the code in src folder.

carasset folder contains some necessary file.

carla_dataset folder contains the dataset, you can reference the carla_dataset/readme.md for detail.