feat: 前端支持 reduceMean 及单元测试

Signed-off-by: YdrMaster <ydrml@hotmail.com>
This commit is contained in:
YdrMaster 2023-02-14 15:35:01 +08:00
parent fb9d84dbb7
commit 62ceb78ae3
7 changed files with 42 additions and 9 deletions

View File

@ -59,7 +59,9 @@ class GraphHandlerObj {
Tensor flatten(Tensor s, Tensor y);
Tensor reshape(Tensor data, Tensor reshaped, Shape shape);
Tensor concat(TensorVec inputs, Tensor output, int dim);
Tensor gather(Tensor input, Tensor indices, Tensor output, int axis);
Tensor gather(Tensor data, Tensor indices, Tensor output, int axis);
Tensor reduceMean(Tensor data, Tensor reduced,
const optional<vector<int>> &axes, bool keepdims);
};
} // namespace infini

View File

@ -21,8 +21,7 @@ class ReduceMeanObj : public OperatorObj {
* @param keepDims Keep the reduced dimensions or not.
*/
ReduceMeanObj(GraphObj *graph, Tensor input, Tensor output,
const optional<const vector<int>> &axes,
bool keepDims = true);
const optional<vector<int>> &axes, bool keepDims = true);
OP_CLONE(ReduceMeanObj);
optional<vector<Shape>> inferShape(const TensorVec &inputs) const override;

View File

@ -135,6 +135,14 @@ def from_onnx(model: onnx.ModelProto):
tensors.get(node.output[0]),
next((attr.i for attr in node.attribute if attr.name == "axis")),
)
elif node.op_type == "ReduceMean":
tensors[node.output[0]] = handler.reduceMean(
tensors[node.input[0]],
tensors.get(node.output[0]),
tensors[node.input[1]] if len(node.input) > 1 else None,
next((attr.i for attr in node.attribute if attr.name == "keepdims"))
!= 0,
)
else:
raise Exception('Unsupported operator "{}"'.format(node.op_type))

View File

@ -171,6 +171,14 @@ class TestStringMethods(unittest.TestCase):
)
make_and_import_model(make_graph([gather], "gather", [data, indices], [output]))
def test_reduce_mean(self):
data = make_tensor_value_info("data", TensorProto.FLOAT, [2, 3, 3, 4])
reduced = make_tensor_value_info("reduced", TensorProto.FLOAT, [1, 1, 1, 1])
reduceMean = make_node(
"ReduceMean", ["data"], ["reduced"], keepdims=1, name="reduceMean"
)
make_and_import_model(make_graph([reduceMean], "reduceMean", [data], [reduced]))
# see <https://onnx.ai/onnx/intro/python.html#a-simple-example-a-linear-regression>
def test_linear(self):
x = make_tensor_value_info("x", TensorProto.FLOAT, [1, 2, 3])

View File

@ -4,9 +4,9 @@
#include "operators/element_wise.h"
#include "operators/gather.h"
#include "operators/matmul.h"
#include "operators/reduce_mean.h"
#include "operators/reshape.h"
#include "operators/unary.h"
namespace infini {
static DataType dtype_repr_convert(int);
@ -104,20 +104,33 @@ Tensor GraphHandlerObj::concat(TensorVec inputs, Tensor output, int dim) {
}
}
Tensor GraphHandlerObj::gather(Tensor input, Tensor indices, Tensor output,
Tensor GraphHandlerObj::gather(Tensor data, Tensor indices, Tensor output,
int axis) {
if (output) {
g->addOpWithOutputs<GatherObj>(std::move(input), std::move(indices),
g->addOpWithOutputs<GatherObj>(std::move(data), std::move(indices),
output, axis);
return output;
} else {
return g
->addOp<GatherObj>(std::move(input), std::move(indices), output,
->addOp<GatherObj>(std::move(data), std::move(indices), output,
axis)
->getOutput();
}
}
Tensor GraphHandlerObj::reduceMean(Tensor data, Tensor reduced,
const optional<vector<int>> &axes,
bool keepdims) {
if (reduced) {
g->addOpWithOutputs<ReduceMeanObj>(std::move(data), reduced, axes,
keepdims);
return reduced;
} else {
return g->addOp<ReduceMeanObj>(std::move(data), reduced, axes, keepdims)
->getOutput();
}
}
static DataType dtype_repr_convert(int dtype) {
switch ((OnnxDType)dtype) {
case OnnxDType::FLOAT:

View File

@ -82,6 +82,10 @@ void init_graph_builder(py::module &m) {
policy::move)
.def("gather",
py::overload_cast<Tensor, Tensor, Tensor, int>(&Handler::gather),
policy::move)
.def("reduceMean",
py::overload_cast<Tensor, Tensor, const optional<vector<int>> &,
bool>(&Handler::reduceMean),
policy::move);
}

View File

@ -2,8 +2,7 @@
namespace infini {
ReduceMeanObj::ReduceMeanObj(GraphObj *graph, Tensor input, Tensor output,
const optional<const vector<int>> &_axes,
bool keepDims)
const optional<vector<int>> &_axes, bool keepDims)
: OperatorObj(OpType::ReduceMean, {input}, {output}), keepDims(keepDims) {
const auto size = input->getDims().size();
if (_axes) {