Compare commits

...

9 Commits

Author SHA1 Message Date
zhangyue a889527aa5 add kunlun layernorm 2024-05-11 16:24:42 +08:00
Zhang Bolun 2acb680c64 fix: format 2024-05-07 09:42:04 +08:00
Zhang Bolun 5862671c0c fix: add comments 2024-05-06 17:01:51 +08:00
Zhang Bolun 917e82e90c feat: 寒武纪上添加 resize 算子,修复 format 2024-05-06 16:45:01 +08:00
zhangyunze d1799b67a3 fix: onnx resize op input is none bug 2024-04-30 10:56:00 +08:00
weijie01 36baae7615 feat: kunlun 上添加LeakyRelu,修复BatchNorm中维度为4的限制,跑通bgan 2024-04-30 10:54:30 +08:00
Zhang Bolun 23b1612192 fix: mlu 上添加 LeakyRelu,修复 BatchNorm 中维度为 4 的限制,跑通 BGAN 2024-04-30 10:54:30 +08:00
zhangyunze 77fd137dcb fix: support batchnorm cudnn 2 dimension input 2024-04-30 10:54:30 +08:00
zhangyunze c6de91ee82 feat: support leaky_relu op 2024-04-30 10:54:30 +08:00
17 changed files with 563 additions and 120 deletions

View File

@ -53,6 +53,7 @@ class GraphHandlerObj {
Tensor max(Tensor a, Tensor b, Tensor c); Tensor max(Tensor a, Tensor b, Tensor c);
Tensor relu(Tensor x, Tensor y); Tensor relu(Tensor x, Tensor y);
Tensor leakyRelu(Tensor x, Tensor y, float alpha);
Tensor silu(Tensor x, Tensor y); Tensor silu(Tensor x, Tensor y);
Tensor gelu(Tensor x, Tensor y); Tensor gelu(Tensor x, Tensor y);
Tensor sigmoid(Tensor x, Tensor y); Tensor sigmoid(Tensor x, Tensor y);

View File

@ -15,6 +15,8 @@ template <typename T> void gelu_kernel(T *input, T *output, size_t num);
template <typename T> void erf_kernel(T *input, T *output, size_t num); template <typename T> void erf_kernel(T *input, T *output, size_t num);
template <typename T> void hard_sigmoid_kernel(T *input, T *output, size_t num); template <typename T> void hard_sigmoid_kernel(T *input, T *output, size_t num);
template <typename T> void hard_swish_kernel(T *input, T *output, size_t num); template <typename T> void hard_swish_kernel(T *input, T *output, size_t num);
template <typename T>
void leaky_relu_kernel(T *input, T *output, size_t num, float alpha);
template <typename INPUT, typename OUTPUT> template <typename INPUT, typename OUTPUT>
void cast_kernel(INPUT *input, OUTPUT *output, size_t num); void cast_kernel(INPUT *input, OUTPUT *output, size_t num);

View File

@ -228,6 +228,23 @@ class PReluObj : public OperatorObj {
vector<int> getOpAttrVector() const override; vector<int> getOpAttrVector() const override;
}; };
class LeakyReluObj : public OperatorObj {
public:
LeakyReluObj(GraphObj *graph, Tensor input, Tensor output, float alpha);
OP_CLONE(LeakyReluObj);
optional<vector<Shape>> inferShape(const TensorVec &inputs) override;
std::string toString() const override;
float getAlpha() const { return alphaValue; }
int numInputs() const override { return 1; }
int numOutputs() const override { return 1; }
private:
float alphaValue;
vector<int> getWorkloadVector() const override;
vector<int> getOpAttrVector() const override;
};
class LogObj : public OperatorObj { class LogObj : public OperatorObj {
public: public:
enum LogType { enum LogType {

View File

@ -85,7 +85,8 @@ class OnnxStub:
while len(sorted_nodes) < len(model.graph.node): while len(sorted_nodes) < len(model.graph.node):
updated = False updated = False
for i, node in enumerate(model.graph.node): for i, node in enumerate(model.graph.node):
if all(t in known_edge for t in node.input): # TODO目前只考虑了resize算子输入为空的情况
if all(t in known_edge or t == "" for t in node.input):
node.name = str(len(sorted_nodes)) + "_" + node.name node.name = str(len(sorted_nodes)) + "_" + node.name
sorted_nodes.append(i) sorted_nodes.append(i)
known_edge.update(node.output) known_edge.update(node.output)
@ -112,7 +113,6 @@ class OnnxStub:
) )
tensors[input.name].set_input() tensors[input.name].set_input()
for node_idx in sorted_nodes: for node_idx in sorted_nodes:
node = model.graph.node[node_idx] node = model.graph.node[node_idx]
if node.op_type == "Conv": if node.op_type == "Conv":
@ -209,8 +209,8 @@ class OnnxStub:
) )
elif node.op_type == "MatMul": elif node.op_type == "MatMul":
tensors[node.output[0]] = self.handler.matmul( tensors[node.output[0]] = self.handler.matmul(
tensors[node.input[0]], # input tensors[node.input[0]], # input
tensors[node.input[1]], # weight tensors[node.input[1]], # weight
tensors.get(node.output[0]), tensors.get(node.output[0]),
False, False,
False, False,
@ -447,6 +447,15 @@ class OnnxStub:
tensors[node.input[0]], tensors[node.input[0]],
tensors.get(node.output[0]), tensors.get(node.output[0]),
) )
elif node.op_type == "LeakyRelu":
tensors[node.output[0]] = self.handler.leakyRelu(
tensors[node.input[0]],
tensors.get(node.output[0]),
next(
(attr.f for attr in node.attribute if attr.name == "alpha"),
0.01,
),
)
elif node.op_type == "Silu": elif node.op_type == "Silu":
tensors[node.output[0]] = self.handler.silu( tensors[node.output[0]] = self.handler.silu(
tensors[node.input[0]], tensors[node.input[0]],
@ -530,12 +539,16 @@ class OnnxStub:
tensors[node.output[0]] = self.handler.clip( tensors[node.output[0]] = self.handler.clip(
tensors[node.input[0]], tensors[node.input[0]],
tensors.get(node.output[0]), tensors.get(node.output[0]),
next(_parse_data(data[node.input[1]]).__iter__(), None) (
if len(node.input) > 1 next(_parse_data(data[node.input[1]]).__iter__(), None)
else None, if len(node.input) > 1
next(_parse_data(data[node.input[2]]).__iter__(), None) else None
if len(node.input) > 2 ),
else None, (
next(_parse_data(data[node.input[2]]).__iter__(), None)
if len(node.input) > 2
else None
),
) )
elif node.op_type == "Transpose": elif node.op_type == "Transpose":
perm = next( perm = next(
@ -601,15 +614,15 @@ class OnnxStub:
"nearest_mode", "nearest_mode",
] ]
) )
if len(node.input) > 1: if len(node.input) > 1 and node.input[1] in data:
roiVal = _parse_data(data[node.input[1]]) roiVal = _parse_data(data[node.input[1]])
else: else:
roiVal = [] roiVal = []
if len(node.input) > 2: if len(node.input) > 2 and node.input[2] in data:
scalesVal = _parse_data(data[node.input[2]]) scalesVal = _parse_data(data[node.input[2]])
else: else:
scalesVal = [] scalesVal = []
if len(node.input) > 3: if len(node.input) > 3 and node.input[3] in data:
sizesVal = _parse_data(data[node.input[3]]) sizesVal = _parse_data(data[node.input[3]])
else: else:
sizesVal = [] sizesVal = []
@ -617,9 +630,21 @@ class OnnxStub:
tensors[node.input[0]], tensors[node.input[0]],
output, output,
axes, axes,
tensors[node.input[3]] if len(node.input) > 3 else None, (
tensors[node.input[2]] if len(node.input) > 2 else None, tensors[node.input[3]]
tensors[node.input[1]] if len(node.input) > 1 else None, if len(node.input) > 3 and node.input[3] != ""
else None
),
(
tensors[node.input[2]]
if len(node.input) > 2 and node.input[2] != ""
else None
),
(
tensors[node.input[1]]
if len(node.input) > 1 and node.input[1] != ""
else None
),
sizesVal, sizesVal,
scalesVal, scalesVal,
roiVal, roiVal,
@ -629,18 +654,10 @@ class OnnxStub:
coordinate_transformation_mode, coordinate_transformation_mode,
) )
elif node.op_type == "Squeeze": elif node.op_type == "Squeeze":
axes = ( axes = _parse_data(data[node.input[1]]) if len(node.input) > 1 else None
_parse_data(data[node.input[1]])
if len(node.input) > 1
else None
)
if axes is None: if axes is None:
axes = next( axes = next(
( (attr.ints for attr in node.attribute if attr.name == "axes"),
attr.ints
for attr in node.attribute
if attr.name == "axes"
),
[], [],
) )
tensors[node.output[0]] = self.handler.squeeze( tensors[node.output[0]] = self.handler.squeeze(
@ -649,18 +666,10 @@ class OnnxStub:
axes, axes,
) )
elif node.op_type == "Unsqueeze": elif node.op_type == "Unsqueeze":
axes = ( axes = _parse_data(data[node.input[1]]) if len(node.input) > 1 else None
_parse_data(data[node.input[1]])
if len(node.input) > 1
else None
)
if axes is None: if axes is None:
axes = next( axes = next(
( (attr.ints for attr in node.attribute if attr.name == "axes")
attr.ints
for attr in node.attribute
if attr.name == "axes"
)
) )
tensors[node.output[0]] = self.handler.unsqueeze( tensors[node.output[0]] = self.handler.unsqueeze(
tensors[node.input[0]], tensors[node.input[0]],
@ -684,24 +693,18 @@ class OnnxStub:
tensors.get(node.output[0]), tensors.get(node.output[0]),
) )
elif node.op_type == "RoPE": elif node.op_type == "RoPE":
tensors[node.output[0]]= self.handler.RoPE( tensors[node.output[0]] = self.handler.RoPE(
tensors[node.input[0]], tensors[node.input[0]],
tensors[node.input[1]], tensors[node.input[1]],
tensors.get(node.output[0]), tensors.get(node.output[0]),
) )
elif node.op_type == "Split": elif node.op_type == "Split":
split = ( split = (
_parse_data(data[node.input[1]]) _parse_data(data[node.input[1]]) if (len(node.input) > 1) else None
if (len(node.input) > 1)
else None
) )
if split is None: if split is None:
split = next( split = next(
( (attr.ints for attr in node.attribute if attr.name == "split"),
attr.ints
for attr in node.attribute
if attr.name == "split"
),
None, None,
) )
for name, tensor in zip( for name, tensor in zip(
@ -710,11 +713,7 @@ class OnnxStub:
tensors[node.input[0]], tensors[node.input[0]],
None, None,
next( next(
( (attr.i for attr in node.attribute if attr.name == "axis"),
attr.i
for attr in node.attribute
if attr.name == "axis"
),
0, 0,
), ),
split if split is not None else len(node.output), split if split is not None else len(node.output),
@ -767,12 +766,16 @@ class OnnxStub:
tensors.get(node.output[0]), tensors.get(node.output[0]),
clamp(_parse_data(data[node.input[1]])), clamp(_parse_data(data[node.input[1]])),
clamp(_parse_data(data[node.input[2]])), clamp(_parse_data(data[node.input[2]])),
clamp(_parse_data(data[node.input[3]])) (
if len(node.input) > 3 clamp(_parse_data(data[node.input[3]]))
else None, if len(node.input) > 3
clamp(_parse_data(data[node.input[4]])) else None
if len(node.input) > 4 ),
else None, (
clamp(_parse_data(data[node.input[4]]))
if len(node.input) > 4
else None
),
) )
elif node.op_type == "Pad": elif node.op_type == "Pad":
tensors[node.output[0]] = self.handler.pad( tensors[node.output[0]] = self.handler.pad(
@ -788,12 +791,16 @@ class OnnxStub:
tensors[node.input[0]], tensors[node.input[0]],
tensors.get(node.output[0]), tensors.get(node.output[0]),
tensors.get(node.output[1]) if len(node.output) > 1 else None, tensors.get(node.output[1]) if len(node.output) > 1 else None,
_parse_data(data[node.input[1]])[0] (
if len(node.input) > 1 _parse_data(data[node.input[1]])[0]
else 0.5, if len(node.input) > 1
_parse_data(data[node.input[2]])[0] else 0.5
if len(node.input) > 2 ),
else False, (
_parse_data(data[node.input[2]])[0]
if len(node.input) > 2
else False
),
), ),
): ):
tensors[name] = tensor tensors[name] = tensor
@ -946,14 +953,21 @@ class OnnxStub:
## TODO: deal with cases where Y is single inf or 0 ## TODO: deal with cases where Y is single inf or 0
if node.input[0] in data and node.input[2] in data: if node.input[0] in data and node.input[2] in data:
where_condition = to_array(data[node.input[0]]) where_condition = to_array(data[node.input[0]])
where_alt = to_array(data[node.input[2]]) where_alt = to_array(data[node.input[2]])
if where_alt.size == 1: if where_alt.size == 1:
if np.isneginf(where_alt) or np.all(where_alt < -3e38): if np.isneginf(where_alt) or np.all(where_alt < -3e38):
node.input[0] = node.input[0] + "_alt" node.input[0] = node.input[0] + "_alt"
if node.input[0] not in data: if node.input[0] not in data:
where_value = np.where(where_condition, 0, -np.inf).astype(where_alt.dtype) where_value = np.where(
data[node.input[0]] = from_array(where_value, node.input[0]) where_condition, 0, -np.inf
tensors[node.input[0]] = self.handler.tensor(list(where_value.shape), data[node.input[0]].data_type) ).astype(where_alt.dtype)
data[node.input[0]] = from_array(
where_value, node.input[0]
)
tensors[node.input[0]] = self.handler.tensor(
list(where_value.shape),
data[node.input[0]].data_type,
)
tensors[node.input[0]].set_weight() tensors[node.input[0]].set_weight()
tensors[node.output[0]] = self.handler.add( tensors[node.output[0]] = self.handler.add(
tensors[node.input[1]], tensors[node.input[1]],
@ -980,8 +994,7 @@ class OnnxStub:
node, {"alpha": 0.0001, "beta": 0.75, "bias": 1.0, "size": 1} node, {"alpha": 0.0001, "beta": 0.75, "bias": 1.0, "size": 1}
) )
(alpha, beta, bias, size) = ( (alpha, beta, bias, size) = (
attributes[name] attributes[name] for name in ["alpha", "beta", "bias", "size"]
for name in ["alpha", "beta", "bias", "size"]
) )
tensors[node.output[0]] = self.handler.lrn( tensors[node.output[0]] = self.handler.lrn(
tensors[node.input[0]], tensors[node.input[0]],

View File

@ -222,6 +222,15 @@ Tensor GraphHandlerObj::pRelu(Tensor x, Tensor slope, Tensor y) {
} }
} }
Tensor GraphHandlerObj::leakyRelu(Tensor x, Tensor y, float alpha) {
if (y) {
g->addOpWithOutputs<LeakyReluObj>(std::move(x), y, alpha);
return y;
} else {
return g->addOp<LeakyReluObj>(std::move(x), y, alpha)->getOutput();
}
}
Tensor GraphHandlerObj::clip(Tensor x, Tensor y, std::optional<float> min, Tensor GraphHandlerObj::clip(Tensor x, Tensor y, std::optional<float> min,
std::optional<float> max) { std::optional<float> max) {
if (y) { if (y) {

View File

@ -562,6 +562,7 @@ void init_graph_builder(py::module &m) {
.def("expand", &Handler::expand, policy::move) .def("expand", &Handler::expand, policy::move)
.def("erf", &Handler::erf, policy::move) .def("erf", &Handler::erf, policy::move)
.def("where", &Handler::where, policy::move) .def("where", &Handler::where, policy::move)
.def("leakyRelu", &Handler::leakyRelu, policy::move)
.def("lrn", &Handler::lrn, policy::move) .def("lrn", &Handler::lrn, policy::move)
.def("topo_sort", &Handler::topo_sort, policy::automatic) .def("topo_sort", &Handler::topo_sort, policy::automatic)
.def("optimize", &Handler::optimize, policy::automatic) .def("optimize", &Handler::optimize, policy::automatic)

View File

@ -241,8 +241,50 @@ class HardSigmoidCnnl : public UnaryCnnl {
float getScale() const override { return 0.5f; } float getScale() const override { return 0.5f; }
}; };
class LeakyReluCnnl : public BangKernelWithoutConfig {
void compute(const Operator &_op,
const RuntimeObj *_context) const override {
auto op = as<LeakyReluObj>(_op);
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
cnnlTensorDescriptor_t aDesc, cDesc;
auto aDim = op->getInputs(0)->getDims();
auto cDim = op->getOutput()->getDims();
auto coef = op->getAlpha();
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
checkCnnlError(cnnlSetTensorDescriptor(
aDesc, CNNL_LAYOUT_NCHW, cnnlDataTypeConvert(op->getDType()),
aDim.size(), aDim.data()));
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
checkCnnlError(cnnlSetTensorDescriptor(
cDesc, CNNL_LAYOUT_NCHW, cnnlDataTypeConvert(op->getDType()),
cDim.size(), cDim.data()));
cnnlActivationDescriptor_t opDesc;
checkCnnlError(cnnlCreateActivationDescriptor(&opDesc));
checkCnnlError(cnnlSetActivationDescriptor_v5(
opDesc, CNNL_ACTIVATION_LEAKYRELU, CNNL_ACTIVATION_HIGH_PRECISION,
CNNL_NOT_PROPAGATE_NAN, coef, 0.0, 0.0, 0.0, true));
float alpha = 1.f, beta = 0.f;
cnnlStatus_t stat =
cnnlActivationForward(context->cnnlHandle(), opDesc, &alpha, aDesc,
aData, &beta, cDesc, cData);
if (stat != CNNL_STATUS_SUCCESS)
return;
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
checkCnnlError(cnnlDestroyActivationDescriptor(opDesc));
}
};
REGISTER_KERNEL(Device::BANG, OpType::Relu, ReluCnnl, "Relu_cnnl_BANG"); REGISTER_KERNEL(Device::BANG, OpType::Relu, ReluCnnl, "Relu_cnnl_BANG");
REGISTER_KERNEL(Device::BANG, OpType::PRelu, PReluCnnl, "PRelu_cnnl_BANG"); REGISTER_KERNEL(Device::BANG, OpType::PRelu, PReluCnnl, "PRelu_cnnl_BANG");
REGISTER_KERNEL(Device::BANG, OpType::LeakyRelu, LeakyReluCnnl,
"LeakyRelu_cnnl_BANG");
REGISTER_KERNEL(Device::BANG, OpType::Sigmoid, SigmoidCnnl, REGISTER_KERNEL(Device::BANG, OpType::Sigmoid, SigmoidCnnl,
"Sigmoid_cnnl_BANG"); "Sigmoid_cnnl_BANG");
REGISTER_KERNEL(Device::BANG, OpType::Round, RoundCnnl, "Round_cnnl_BANG"); REGISTER_KERNEL(Device::BANG, OpType::Round, RoundCnnl, "Round_cnnl_BANG");

View File

@ -16,10 +16,14 @@ class BatchNormCnnl : public BangKernelWithoutConfig {
void *const bias = (op->getInputs(4)->getRawDataPtr<void *>()); void *const bias = (op->getInputs(4)->getRawDataPtr<void *>());
void *const output = (op->getOutput()->getRawDataPtr<void *>()); void *const output = (op->getOutput()->getRawDataPtr<void *>());
auto dims = op->getInputs(0)->getDims(); auto padDims = [](Shape shape) {
auto outDims = op->getOutput()->getDims(); for (size_t i = shape.size(); i < 4; ++i) {
if (dims.size() != 4) shape.push_back(1);
IT_TODO_HALT(); }
return shape;
};
auto dims = padDims(op->getInputs(0)->getDims());
auto outDims = padDims(op->getOutput()->getDims());
int dimsTrans[4] = {dims[0], dims[2], dims[3], dims[1]}; int dimsTrans[4] = {dims[0], dims[2], dims[3], dims[1]};
int dimsOutTrans[4] = {outDims[0], outDims[2], outDims[3], outDims[1]}; int dimsOutTrans[4] = {outDims[0], outDims[2], outDims[3], outDims[1]};

144
src/kernels/bang/resize.cc Normal file
View File

@ -0,0 +1,144 @@
#include "operators/resize.h"
#include "bang/bang_kernel_without_config.h"
#include "bang/bang_runtime.h"
#include <iostream>
namespace infini {
class ResizeCnnl : public BangKernelWithoutConfig {
void compute(const Operator &_op,
const RuntimeObj *_context) const override {
auto op = as<ResizeObj>(_op);
IT_ASSERT(op->getDType() == DataType::Float32);
auto context = dynamic_cast<const BangRuntimeObj *>(_context);
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
auto nDims = op->getInputs(0)->getRank();
if (nDims != 4) {
IT_TODO_HALT();
}
auto aDim = op->getInputs(0)->getDims();
auto cDim = op->getOutput()->getDims();
std::vector<int> aTransDim = {aDim[0], aDim[2], aDim[3], aDim[1]};
std::vector<int> cTransDim = {cDim[0], cDim[2], cDim[3], cDim[1]};
cnnlTensorDescriptor_t aDesc, cDesc, aTransDesc, cTransDesc;
// input
checkCnnlError(cnnlCreateTensorDescriptor(&aDesc));
checkCnnlError(cnnlSetTensorDescriptor(
aDesc, CNNL_LAYOUT_NCHW, cnnlDataTypeConvert(op->getDType()),
aDim.size(), aDim.data()));
checkCnnlError(cnnlCreateTensorDescriptor(&aTransDesc));
checkCnnlError(cnnlSetTensorDescriptor(
aTransDesc, CNNL_LAYOUT_NHWC, cnnlDataTypeConvert(op->getDType()),
aTransDim.size(), aTransDim.data()));
// output
checkCnnlError(cnnlCreateTensorDescriptor(&cDesc));
checkCnnlError(cnnlSetTensorDescriptor(
cDesc, CNNL_LAYOUT_NCHW, cnnlDataTypeConvert(op->getDType()),
cDim.size(), cDim.data()));
checkCnnlError(cnnlCreateTensorDescriptor(&cTransDesc));
checkCnnlError(cnnlSetTensorDescriptor(
cTransDesc, CNNL_LAYOUT_NHWC, cnnlDataTypeConvert(op->getDType()),
cTransDim.size(), cTransDim.data()));
// transpose
BangPtr aTransData = context->getWorkspace(
cnnlGetTensorElementNum(aTransDesc) * op->getDType().getSize());
BangPtr cTransData = context->getWorkspace(
cnnlGetTensorElementNum(cTransDesc) * op->getDType().getSize());
int permuteIn[4] = {0, 2, 3, 1};
cnnlTransposeDescriptor_t inDesc;
checkCnnlError(cnnlCreateTransposeDescriptor(&inDesc));
checkCnnlError(cnnlSetTransposeDescriptor(inDesc, 4, permuteIn));
size_t wsSizeIn;
cnnlGetTransposeWorkspaceSize(context->cnnlHandle(), aDesc, inDesc,
&wsSizeIn);
BangPtr wsDataIn = context->getWorkspace(wsSizeIn);
checkCnnlError(cnnlTranspose_v2(context->cnnlHandle(), inDesc, aDesc,
aData, aTransDesc, aTransData, wsDataIn,
wsSizeIn));
cnnlTensorDescriptor_t boxesDesc, boxesIndexDesc;
checkCnnlError(cnnlCreateTensorDescriptor(&boxesDesc));
auto nBatch = aDim[0];
std::vector<int> boxesDim = {nBatch, 4};
checkCnnlError(cnnlSetTensorDescriptor(
boxesDesc, CNNL_LAYOUT_ARRAY, cnnlDataTypeConvert(op->getDType()),
boxesDim.size(), boxesDim.data()));
checkCnnlError(cnnlCreateTensorDescriptor(&boxesIndexDesc));
std::vector<int> boxesIndexDim = {nBatch};
checkCnnlError(cnnlSetTensorDescriptor(
boxesIndexDesc, CNNL_LAYOUT_ARRAY, CNNL_DTYPE_INT32,
boxesIndexDim.size(), boxesIndexDim.data()));
std::vector<int32_t> boxesIndex(nBatch);
std::iota(boxesIndex.begin(), boxesIndex.end(), 0);
BangPtr boxesIndexData =
context->getWorkspace(nBatch * sizeof(int32_t));
context->copyBlobFromCPU(boxesIndexData, boxesIndex.data(),
nBatch * sizeof(int32_t));
cnnlCropAndResizeMode_t mode;
auto coefMode = op->getMode();
if (coefMode == ResizeObj::ECoeffMode::nearest) {
// CNNL uses round by default and
// does not support other nearest modes
mode = CNNL_CROP_AND_RESIZE_NEAREST;
} else if (coefMode == ResizeObj::ECoeffMode::linear) {
mode = CNNL_CROP_AND_RESIZE_BILINEAR;
} else {
IT_TODO_HALT();
}
std::vector<float> box;
auto transMode = op->getCoordinateTransMode();
if (transMode ==
enum_to_underlying(
ResizeObj::ECoordinateTransMode::tfCropAndResize)) {
box = {op->getRoi(2), op->getRoi(3), op->getRoi(6), op->getRoi(7)};
} else {
box = {0, 0, 1.0, 1.0};
}
BangPtr boxesData =
context->getWorkspace(nBatch * box.size() * sizeof(float));
for (auto i = 0; i < nBatch; i++) {
context->copyBlobFromCPU(boxesData + i * box.size() * sizeof(float),
box.data(), box.size() * sizeof(float));
}
checkCnnlError(cnnlCropAndResize(
context->cnnlHandle(), aTransDesc, aTransData, boxesDesc, boxesData,
boxesIndexDesc, boxesIndexData, mode, 0.0, cTransDesc, cTransData));
// transpose
int permuteOut[4] = {0, 3, 1, 2};
cnnlTransposeDescriptor_t outDesc;
checkCnnlError(cnnlCreateTransposeDescriptor(&outDesc));
checkCnnlError(cnnlSetTransposeDescriptor(outDesc, 4, permuteOut));
size_t wsSizeOut;
cnnlGetTransposeWorkspaceSize(context->cnnlHandle(), cTransDesc,
outDesc, &wsSizeOut);
BangPtr wsDataOut = context->getWorkspace(wsSizeOut);
checkCnnlError(cnnlTranspose_v2(context->cnnlHandle(), outDesc,
cTransDesc, cTransData, cDesc, cData,
wsDataOut, wsSizeOut));
checkCnnlError(cnnlDestroyTensorDescriptor(aDesc));
checkCnnlError(cnnlDestroyTensorDescriptor(cDesc));
checkCnnlError(cnnlDestroyTensorDescriptor(aTransDesc));
checkCnnlError(cnnlDestroyTensorDescriptor(cTransDesc));
checkCnnlError(cnnlDestroyTensorDescriptor(boxesDesc));
checkCnnlError(cnnlDestroyTensorDescriptor(boxesIndexDesc));
checkCnnlError(cnnlDestroyTransposeDescriptor(inDesc));
checkCnnlError(cnnlDestroyTransposeDescriptor(outDesc));
}
};
REGISTER_KERNEL(Device::BANG, OpType::Resize, ResizeCnnl, "Resize_cnnl_BANG");
}; // namespace infini

View File

@ -18,9 +18,16 @@ class BatchNormCudnn : public CudaKernelWithoutConfig {
void *const scaleData = (op->getInputs(3)->getRawDataPtr<void *>()); void *const scaleData = (op->getInputs(3)->getRawDataPtr<void *>());
void *const biasData = (op->getInputs(4)->getRawDataPtr<void *>()); void *const biasData = (op->getInputs(4)->getRawDataPtr<void *>());
auto dims = op->getInputs(0)->getDims();
// Only 4D and 5D tensors are supported by // Only 4D and 5D tensors are supported by
// cudnnBatchNormalizationForwardInference // cudnnBatchNormalizationForwardInference
if (auto dims = op->getInputs(0)->getDims(); dims.size() < 4) {
auto dims_t = dims;
for (size_t i = dims_t.size(); i < 4; ++i) {
dims_t.push_back(1);
}
op->getInputs(0)->setShape(dims_t);
}
auto dims = op->getInputs(0)->getDims();
IT_ASSERT(dims.size() == 4); IT_ASSERT(dims.size() == 4);
int dimArray[4], strideArray[4], dimPArray[4], stridePArray[4]; int dimArray[4], strideArray[4], dimPArray[4], stridePArray[4];

View File

@ -173,6 +173,25 @@ class TanhCudnn : public ActivationCudnn {
} }
}; };
class LeakyReluCuda : public CudaKernelWithoutConfig {
void compute(const Operator &_op,
const RuntimeObj *_context) const override {
auto op = as<LeakyReluObj>(_op);
auto alpha = op->getAlpha();
size_t num = op->getOutput()->size();
void *const inputData = (op->getInputs(0)->getRawDataPtr<void *>());
void *const outputData = (op->getOutput()->getRawDataPtr<void *>());
if (op->getDType() == DataType::Float32) {
leaky_relu_kernel<float>((float *)inputData, (float *)outputData,
num, alpha);
} else {
IT_TODO_HALT();
}
}
};
REGISTER_KERNEL(Device::CUDA, OpType::Relu, ReluCudnn, "Relu_CUDA"); REGISTER_KERNEL(Device::CUDA, OpType::Relu, ReluCudnn, "Relu_CUDA");
REGISTER_KERNEL(Device::CUDA, OpType::Sigmoid, SigmoidCudnn, "Sigmoid_CUDA"); REGISTER_KERNEL(Device::CUDA, OpType::Sigmoid, SigmoidCudnn, "Sigmoid_CUDA");
REGISTER_KERNEL(Device::CUDA, OpType::HardSigmoid, UnaryCuda, REGISTER_KERNEL(Device::CUDA, OpType::HardSigmoid, UnaryCuda,
@ -185,11 +204,14 @@ REGISTER_KERNEL(Device::CUDA, OpType::Gelu, UnaryCuda, "Gelu_CUDA");
REGISTER_KERNEL(Device::CUDA, OpType::Silu, UnaryCuda, "Silu_CUDA"); REGISTER_KERNEL(Device::CUDA, OpType::Silu, UnaryCuda, "Silu_CUDA");
REGISTER_KERNEL(Device::CUDA, OpType::Neg, UnaryCuda, "Neg_CUDA"); REGISTER_KERNEL(Device::CUDA, OpType::Neg, UnaryCuda, "Neg_CUDA");
REGISTER_KERNEL(Device::CUDA, OpType::Erf, UnaryCuda, "Erf_CUDA"); REGISTER_KERNEL(Device::CUDA, OpType::Erf, UnaryCuda, "Erf_CUDA");
REGISTER_KERNEL(Device::CUDA, OpType::LeakyRelu, LeakyReluCuda,
"LeakyRelu_CUDA");
REGISTER_KERNEL(Device::CUDA, OpType::Cast, CastCuda, "Cast_CUDA"); REGISTER_KERNEL(Device::CUDA, OpType::Cast, CastCuda, "Cast_CUDA");
// REGISTER_KERNEL(Device::CUDA, OpType::Softmax, UnaryCuda, "Softmax_CUDA"); // REGISTER_KERNEL(Device::CUDA, OpType::Softmax, UnaryCuda,
// REGISTER_KERNEL(Device::CUDA, OpType::Relu, UnaryCuda, // "Softmax_CUDA"); REGISTER_KERNEL(Device::CUDA, OpType::Relu,
// UnaryCuda,
// "Relu_CUDA"); // "Relu_CUDA");
// REGISTER_KERNEL(Device::CUDA, OpType::Sigmoid, UnaryCuda, // REGISTER_KERNEL(Device::CUDA, OpType::Sigmoid, UnaryCuda,
// "Sigmoid_CUDA"); // "Sigmoid_CUDA");

View File

@ -110,7 +110,8 @@ __global__ void _silu_kernel(T *input, T *output, size_t n) {
int stride = blockDim.x * gridDim.x; int stride = blockDim.x * gridDim.x;
for (int i = index; i < n; i += stride) { for (int i = index; i < n; i += stride) {
float x = input[i]; float x = input[i];
output[i] = x / (1.0 + expf(-x));; output[i] = x / (1.0 + expf(-x));
;
} }
} }
@ -143,33 +144,40 @@ __global__ void _cast_kernel(INPUT *input, OUTPUT *output, size_t n) {
} }
} }
template <typename T>
__global__ void _leaky_relu_kernel(T *input, T *output, size_t n, float alpha) {
size_t index = threadIdx.x + blockIdx.x * blockDim.x;
size_t stride = blockDim.x * gridDim.x;
for (size_t i = index; i < n; i += stride) {
output[i] = input[i] > 0 ? input[i] : alpha * input[i];
}
}
namespace infini { namespace infini {
template <typename T> void softmax_kernel(T *input, T *output, size_t num) { template <typename T> void softmax_kernel(T *input, T *output, size_t num) {
int blocksize = block_work_size(); int blocksize = block_work_size();
int gridsize = (num + block_work_size() - 1) / block_work_size(); int gridsize = (num + block_work_size() - 1) / block_work_size();
_softmax_kernel1<T> _softmax_kernel1<T>
<<<1, 1, 0, CUDAStream::getCurrentStream()>>> <<<1, 1, 0, CUDAStream::getCurrentStream()>>>(input, output, num);
(input, output, num);
_softmax_kernel2<T> _softmax_kernel2<T>
<<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>> <<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>>(
(input, output, num); input, output, num);
} }
template <typename T> void relu_kernel(T *input, T *output, size_t num) { template <typename T> void relu_kernel(T *input, T *output, size_t num) {
int blocksize = block_work_size(); int blocksize = block_work_size();
int gridsize = (num + block_work_size() - 1) / block_work_size(); int gridsize = (num + block_work_size() - 1) / block_work_size();
_relu_kernel<T> _relu_kernel<T><<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>>(
<<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>> input, output, num);
(input, output, num);
} }
template <typename T> void sigmoid_kernel(T *input, T *output, size_t num) { template <typename T> void sigmoid_kernel(T *input, T *output, size_t num) {
int blocksize = block_work_size(); int blocksize = block_work_size();
int gridsize = (num + block_work_size() - 1) / block_work_size(); int gridsize = (num + block_work_size() - 1) / block_work_size();
_sigmoid_kernel<T> _sigmoid_kernel<T>
<<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>> <<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>>(
(input, output, num); input, output, num);
} }
template <typename T> template <typename T>
void hard_sigmoid_kernel(T *input, T *output, size_t num) { void hard_sigmoid_kernel(T *input, T *output, size_t num) {
@ -177,75 +185,78 @@ void hard_sigmoid_kernel(T *input, T *output, size_t num) {
int blocksize = block_work_size(); int blocksize = block_work_size();
int gridsize = (num + block_work_size() - 1) / block_work_size(); int gridsize = (num + block_work_size() - 1) / block_work_size();
_hard_sigmoid_kernel<T> _hard_sigmoid_kernel<T>
<<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>> <<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>>(
(input, output, num); input, output, num);
} }
template <typename T> void hard_swish_kernel(T *input, T *output, size_t num) { template <typename T> void hard_swish_kernel(T *input, T *output, size_t num) {
int blocksize = block_work_size(); int blocksize = block_work_size();
int gridsize = (num + block_work_size() - 1) / block_work_size(); int gridsize = (num + block_work_size() - 1) / block_work_size();
_hard_swish_kernel<T> _hard_swish_kernel<T>
<<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>> <<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>>(
(input, output, num); input, output, num);
} }
template <typename T> void tanh_kernel(T *input, T *output, size_t num) { template <typename T> void tanh_kernel(T *input, T *output, size_t num) {
int blocksize = block_work_size(); int blocksize = block_work_size();
int gridsize = (num + block_work_size() - 1) / block_work_size(); int gridsize = (num + block_work_size() - 1) / block_work_size();
_tanh_kernel<T> _tanh_kernel<T><<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>>(
<<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>> input, output, num);
(input, output, num);
} }
template <typename T> void abs_kernel(T *input, T *output, size_t num) { template <typename T> void abs_kernel(T *input, T *output, size_t num) {
int blocksize = block_work_size(); int blocksize = block_work_size();
int gridsize = (num + block_work_size() - 1) / block_work_size(); int gridsize = (num + block_work_size() - 1) / block_work_size();
_abs_kernel<T> _abs_kernel<T><<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>>(
<<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>> input, output, num);
(input, output, num);
} }
template <typename T> void sqrt_kernel(T *input, T *output, size_t num) { template <typename T> void sqrt_kernel(T *input, T *output, size_t num) {
int blocksize = block_work_size(); int blocksize = block_work_size();
int gridsize = (num + block_work_size() - 1) / block_work_size(); int gridsize = (num + block_work_size() - 1) / block_work_size();
_sqrt_kernel _sqrt_kernel<<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>>(
<<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>> (T *)input, (T *)output, num);
((T *)input, (T *)output, num);
} }
template <typename T> void gelu_kernel(T *input, T *output, size_t num) { template <typename T> void gelu_kernel(T *input, T *output, size_t num) {
int blocksize = block_work_size(); int blocksize = block_work_size();
int gridsize = (num + block_work_size() - 1) / block_work_size(); int gridsize = (num + block_work_size() - 1) / block_work_size();
_gelu_kernel<T> _gelu_kernel<T><<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>>(
<<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>> input, output, num);
(input, output, num);
} }
template <typename T> void silu_kernel(T *input, T *output, size_t num) { template <typename T> void silu_kernel(T *input, T *output, size_t num) {
int blocksize = block_work_size(); int blocksize = block_work_size();
int gridsize = (num + block_work_size() - 1) / block_work_size(); int gridsize = (num + block_work_size() - 1) / block_work_size();
_silu_kernel<T> _silu_kernel<T><<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>>(
<<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>> input, output, num);
(input, output, num);
} }
template <typename T> void erf_kernel(T *input, T *output, size_t num) { template <typename T> void erf_kernel(T *input, T *output, size_t num) {
int blocksize = block_work_size(); int blocksize = block_work_size();
int gridsize = (num + block_work_size() - 1) / block_work_size(); int gridsize = (num + block_work_size() - 1) / block_work_size();
_erf_kernel<T> _erf_kernel<T><<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>>(
<<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>> input, output, num);
(input, output, num);
} }
template <typename T> void neg_kernel(T *input, T *output, size_t num) { template <typename T> void neg_kernel(T *input, T *output, size_t num) {
int blocksize = block_work_size(); int blocksize = block_work_size();
int gridsize = (num + block_work_size() - 1) / block_work_size(); int gridsize = (num + block_work_size() - 1) / block_work_size();
_neg_kernel<T> _neg_kernel<T><<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>>(
<<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>> input, output, num);
(input, output, num); }
template <typename T>
void leaky_relu_kernel(T *input, T *output, size_t num, float alpha) {
int blocksize = block_work_size();
int gridsize = (num + block_work_size() - 1) / block_work_size();
_leaky_relu_kernel<T>
<<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>>(
input, output, num, alpha);
} }
void unary_kernel(const Operator &_op) { void unary_kernel(const Operator &_op) {
@ -315,7 +326,7 @@ void unary_kernel(const Operator &_op) {
} else if (op->getOpType() == OpType::Silu) { } else if (op->getOpType() == OpType::Silu) {
if (_op->getDType() == DataType::Float32) { if (_op->getDType() == DataType::Float32) {
silu_kernel<float>((float *)inputData, (float *)outputData, num); silu_kernel<float>((float *)inputData, (float *)outputData, num);
} else if (_op->getDType() == DataType::Float16){ } else if (_op->getDType() == DataType::Float16) {
silu_kernel<half>((half *)inputData, (half *)outputData, num); silu_kernel<half>((half *)inputData, (half *)outputData, num);
} else { } else {
IT_TODO_HALT(); IT_TODO_HALT();
@ -346,8 +357,8 @@ void cast_kernel(INPUT *input, OUTPUT *output, size_t num) {
int blocksize = block_work_size(); int blocksize = block_work_size();
int gridsize = (num + block_work_size() - 1) / block_work_size(); int gridsize = (num + block_work_size() - 1) / block_work_size();
_cast_kernel<INPUT, OUTPUT> _cast_kernel<INPUT, OUTPUT>
<<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>> <<<gridsize, blocksize, 0, CUDAStream::getCurrentStream()>>>(
(input, output, num); input, output, num);
} }
template void cast_kernel<float, half>(float *input, half *output, size_t num); template void cast_kernel<float, half>(float *input, half *output, size_t num);
@ -359,4 +370,6 @@ template void cast_kernel<float, int8_t>(float *input, int8_t *output,
template void cast_kernel<int8_t, float>(int8_t *input, float *output, template void cast_kernel<int8_t, float>(int8_t *input, float *output,
size_t num); size_t num);
template void leaky_relu_kernel<float>(float *input, float *output, size_t num,
float alpha);
}; // namespace infini }; // namespace infini

View File

@ -19,13 +19,17 @@ class BatchNormXdnn : public KUNLUNKernelWithoutConfig {
auto dims = op->getInputs(0)->getDims(); auto dims = op->getInputs(0)->getDims();
if (dims.size() != 4) int n, c, h, w;
IT_TODO_HALT(); if (dims.size() != 4) {
h = 1;
w = 1;
}
w = dims[3];
h = dims[2];
c = dims[1];
n = dims[0];
int w = dims[3];
int h = dims[2];
int c = dims[1];
int n = dims[0];
auto ret = xdnn::batch_norm_infer<float>( auto ret = xdnn::batch_norm_infer<float>(
context->KUNLUNHandle(), (float *)input, (float *)output, n, c, h, context->KUNLUNHandle(), (float *)input, (float *)output, n, c, h,
w, op->getEps(), (float *)scale, (float *)bias, (float *)mean, w, op->getEps(), (float *)scale, (float *)bias, (float *)mean,

View File

@ -0,0 +1,45 @@
#include "operators/layer_norm.h"
#include "kunlun/kunlun_kernel_without_config.h"
#include "kunlun/kunlun_runtime.h"
namespace infini {
class LayerNormXdnn : public KUNLUNKernelWithoutConfig {
void compute(const Operator &_op,
const RuntimeObj *_context) const override {
auto op = as<LayerNormObj>(_op);
auto context = static_cast<const KUNLUNRuntimeObj *>(_context);
void *const inputData = (op->getInputs(0)->getRawDataPtr<void *>());
void *const scaleData = (op->getInputs(1)->getRawDataPtr<void *>());
void *const outputData = (op->getOutput()->getRawDataPtr<void *>());
float eps = op->getEps();
// int axis = op->getAxis();
const auto &opInputShape = op->getInputs(0)->getDims();
const auto &opOutputShape = op->getOutput()->getDims();
IT_ASSERT(opInputShape.size() == 2);
int ret;
if (op->numInputs() == 3) {
// with bias
void *const biasData = op->getInputs(2)->getRawDataPtr<void *>();
ret = xdnn::layer_norm<float, float>(
context->KUNLUNHandle(), (float const *)inputData,
(float *)outputData, opInputShape[0], opInputShape[1], eps,
(float *)scaleData, (float *)biasData, nullptr, nullptr);
} else {
// without bias
ret = xdnn::layer_norm<float, float>(
context->KUNLUNHandle(), (float const *)inputData,
(float *)outputData, opInputShape[0], opInputShape[1], eps,
(float *)scaleData, nullptr, nullptr, nullptr);
}
assert(ret == 0);
}
};
REGISTER_KERNEL(Device::KUNLUN, OpType::LayerNormalization, LayerNormXdnn,
"LayerNorm_xdnn_KUNLUN");
}; // namespace infini

22
src/kernels/kunlun/unary.cc Normal file → Executable file
View File

@ -21,6 +21,26 @@ class ReluXdnn : public KUNLUNKernelWithoutConfig {
} }
}; };
class LeakyReluXdnn : public KUNLUNKernelWithoutConfig {
void compute(const Operator &_op,
const RuntimeObj *_context) const override {
auto op = as<LeakyReluObj>(_op);
IT_ASSERT(op->getDType() == DataType::Float32);
auto context = dynamic_cast<const KUNLUNRuntimeObj *>(_context);
void *const aData = (op->getInputs(0)->getRawDataPtr<void *>());
void *const cData = (op->getOutput()->getRawDataPtr<void *>());
auto len = op->getInputs(0)->size();
auto alpha = op->getAlpha();
auto ret = xdnn::leaky_relu<float>(context->KUNLUNHandle(),
(float *const)aData, (float *)cData,
len, alpha);
assert(ret == 0);
return;
}
};
class SigmoidXdnn : public KUNLUNKernelWithoutConfig { class SigmoidXdnn : public KUNLUNKernelWithoutConfig {
void compute(const Operator &_op, void compute(const Operator &_op,
const RuntimeObj *_context) const override { const RuntimeObj *_context) const override {
@ -552,6 +572,8 @@ class ATanhXdnn : public KUNLUNKernelWithoutConfig {
}; };
REGISTER_KERNEL(Device::KUNLUN, OpType::Relu, ReluXdnn, "Relu_xdnn_KUNLUN"); REGISTER_KERNEL(Device::KUNLUN, OpType::Relu, ReluXdnn, "Relu_xdnn_KUNLUN");
REGISTER_KERNEL(Device::KUNLUN, OpType::LeakyRelu, LeakyReluXdnn,
"LeakyRelu_xdnn_KUNLUN");
REGISTER_KERNEL(Device::KUNLUN, OpType::Sigmoid, SigmoidXdnn, REGISTER_KERNEL(Device::KUNLUN, OpType::Sigmoid, SigmoidXdnn,
"Sigmoid_xdnn_KUNLUN"); "Sigmoid_xdnn_KUNLUN");
REGISTER_KERNEL(Device::KUNLUN, OpType::Tanh, TanhXdnn, "Tanh_xdnn_KUNLUN"); REGISTER_KERNEL(Device::KUNLUN, OpType::Tanh, TanhXdnn, "Tanh_xdnn_KUNLUN");

View File

@ -283,6 +283,38 @@ vector<int> PReluObj::getWorkloadVector() const {
vector<int> PReluObj::getOpAttrVector() const { return {type.underlying()}; } vector<int> PReluObj::getOpAttrVector() const { return {type.underlying()}; }
LeakyReluObj::LeakyReluObj(GraphObj *graph, Tensor input, Tensor output,
float alpha)
: OperatorObj(OpType::LeakyRelu, {input}, {output}), alphaValue(alpha) {
IT_ASSERT(checkValid(graph));
}
optional<vector<Shape>> LeakyReluObj::inferShape(const TensorVec &inputs) {
const auto A = inputs[0];
return {{A->getDims()}};
}
std::string LeakyReluObj::toString() const {
std::ostringstream os;
os << type.toString() << "[" << getGuid() << "]";
os << "(";
os << vecToString(inputs[0]->getDims()) << ",";
os << "input=" << inputs[0]->getGuid() << ",";
os << "output=" << outputs[0]->getGuid() << ")";
return os.str();
}
vector<int> LeakyReluObj::getWorkloadVector() const {
vector<int> ret{type.underlying()};
const Shape shape = outputs[0]->getDims();
ret.insert(ret.end(), shape.begin(), shape.end());
return ret;
}
vector<int> LeakyReluObj::getOpAttrVector() const {
return {type.underlying()};
}
LogObj::LogObj(GraphObj *graph, Tensor input, Tensor output, LogType type) LogObj::LogObj(GraphObj *graph, Tensor input, Tensor output, LogType type)
: OperatorObj(OpType::Log, {input}, {output}), logType(type) { : OperatorObj(OpType::Log, {input}, {output}), logType(type) {
IT_ASSERT(checkValid(graph)); IT_ASSERT(checkValid(graph));

View File

@ -0,0 +1,65 @@
#include "bang/bang_runtime.h"
#include "cmath"
#include "core/graph.h"
#include "core/runtime.h"
#include "operators/resize.h"
#include "test.h"
namespace infini {
TEST(Resize, Bang_downsample_sizes_nearest) {
Runtime runtime = NativeCpuRuntimeObj::getInstance();
Graph gCpu = make_ref<GraphObj>(runtime);
auto input = gCpu->addTensor({1, 1, 2, 4}, DataType::Float32);
auto scales = gCpu->addTensor({4}, DataType::Float32);
gCpu->dataMalloc();
input->copyin(vector<float>{1, 2, 3, 4, 5, 6, 7, 8});
scales->copyin(vector<float>{1, 1, 0.6, 0.6});
auto bangRuntime = make_ref<BangRuntimeObj>();
Graph gMlu = make_ref<GraphObj>(bangRuntime);
auto inputMlu = gMlu->cloneTensor(input);
auto scalesMlu = gMlu->cloneTensor(scales);
auto op = gMlu->addOp<ResizeObj>(inputMlu, nullptr, std::nullopt, nullptr,
scalesMlu, nullptr);
gMlu->dataMalloc();
inputMlu->copyin(vector<float>{1, 2, 3, 4, 5, 6, 7, 8});
scalesMlu->copyin(vector<float>{1, 1, 0.6, 0.6});
bangRuntime->run(gMlu);
// copy output from CUDA to CPU
auto oCpu = gCpu->cloneTensor(op->getOutput(0));
EXPECT_TRUE(oCpu->equalData(vector<float>{5, 8}));
}
TEST(Resize, Bang_upsample_sizes_nearest) {
Runtime runtime = NativeCpuRuntimeObj::getInstance();
Graph gCpu = make_ref<GraphObj>(runtime);
auto input = gCpu->addTensor({1, 1, 2, 2}, DataType::Float32);
auto scales = gCpu->addTensor({4}, DataType::Float32);
gCpu->dataMalloc();
input->copyin(vector<float>{1, 2, 3, 4});
scales->copyin(vector<float>{1, 1, 2, 3});
auto bangRuntime = make_ref<BangRuntimeObj>();
Graph gMlu = make_ref<GraphObj>(bangRuntime);
auto inputMlu = gMlu->cloneTensor(input);
auto scalesMlu = gMlu->cloneTensor(scales);
auto op = gMlu->addOp<ResizeObj>(inputMlu, nullptr, std::nullopt, nullptr,
scalesMlu, nullptr);
gMlu->dataMalloc();
inputMlu->copyin(vector<float>{1, 2, 3, 4});
scalesMlu->copyin(vector<float>{1, 1, 2, 3});
bangRuntime->run(gMlu);
// copy output from CUDA to CPU
auto oCpu = gCpu->cloneTensor(op->getOutput(0));
EXPECT_TRUE(
oCpu->equalData(vector<float>{1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2,
3, 3, 3, 4, 4, 4, 3, 3, 3, 4, 4, 4}));
}
} // namespace infini