InfiniTensor/src/core/graph_match.cc

466 lines
16 KiB
C++

#include "core/graph_match.h"
namespace infini {
Ref<GraphMatchObj> GraphMatchObj::clone() {
auto newObj = make_ref<GraphMatchObj>(pattern);
newObj->ops = ops;
newObj->opMap = opMap;
newObj->opMapRevese = opMapRevese;
newObj->tensorMap = tensorMap;
return newObj;
}
void GraphMatchObj::addOp(const Operator &anchorOp, const Operator &patternOp) {
ops.emplace(anchorOp);
opMap.emplace(anchorOp, patternOp);
opMapRevese.emplace(patternOp, anchorOp);
recordOutsideTensorMap(patternOp, anchorOp);
}
TensorVec GraphMatchObj::getInputs() const {
TensorVec ret;
for (auto t : pattern->getInputsFromOutside()) {
IT_ASSERT(tensorMap.count(t) > 0);
ret.push_back(tensorMap.at(t));
}
return ret;
}
TensorVec GraphMatchObj::getOutputs() const {
TensorVec ret;
for (auto t : pattern->getOutputs2Outside()) {
IT_ASSERT(tensorMap.count(t) > 0);
ret.push_back(tensorMap.at(t));
}
return ret;
}
std::string GraphMatchObj::toString() const {
std::ostringstream oss;
oss << "MatchGraph operators:\n";
for (const auto &op : ops) {
vector<UidBaseType> preds, succs;
for (auto &o : op->getPredecessors())
preds.emplace_back(o->getGuid());
for (auto &o : op->getSuccessors())
succs.emplace_back(o->getGuid());
oss << "OP " << op->getGuid();
oss << ", pred " << vecToString(preds);
oss << ", succ " << vecToString(succs);
oss << ", " << op << "\n";
}
return oss.str();
}
// if the input pattern tensor is from outside,find the
// corresponding input anchor tensor,and record.
void GraphMatchObj::recordOutsideTensorMap(const Operator &patternOp,
const Operator &anchorOp) {
for (size_t i = 0; i < patternOp->getInputs().size(); ++i) {
if (pattern->isInputFromOutside(patternOp->getInputs(i)))
tensorMap.emplace(patternOp->getInputs(i), anchorOp->getInputs(i));
}
for (size_t i = 0; i < patternOp->getOutputs().size(); ++i) {
if (pattern->isOutput2Outside(patternOp->getOutput(i)))
tensorMap.emplace(patternOp->getOutput(i), anchorOp->getOutput(i));
}
}
SubGraphObj::SubGraphObj(Runtime runtime, const TensorVec &inputs)
: GraphObj(runtime), ins(inputs) {
for (auto t : ins)
tensors.push_back(t);
}
vector<MatchGraph> SubGraphRewriter::findMatch(const SubGraph &pattern) {
this->pattern = pattern;
vector<MatchGraph> matches;
bool firstHead = true, retStatus = true;
for (auto input : pattern->getInputsFromOutside()) {
auto inputOf = input->getTargets();
for (auto opHead : inputOf) {
if (std::find(pattern->getOperators().begin(),
pattern->getOperators().end(),
opHead) == pattern->getOperators().end())
continue; // not belongs to pattern
if (opHead->getPredecessors().size() > 0) // not a head
continue;
if (firstHead) {
firstHead = false;
if (!findMatch(nullptr, nullptr, opHead, matches)) {
retStatus = false;
break;
}
} else {
if (!findMatch2(nullptr, nullptr, opHead, matches)) {
retStatus = false;
break;
}
}
}
if (!retStatus)
break;
}
vector<MatchGraph> ret;
for (auto match : matches) {
if (checkMatchValid(match))
ret.push_back(match);
}
return ret;
}
bool SubGraphRewriter::findMatch(const MatchGraph &gLastMatch,
const Operator &opLastMatch,
const Operator &opPattern,
vector<MatchGraph> &gMatch) {
OpVec candidates =
opLastMatch ? opLastMatch->getSuccessors() : graph->getOperators();
OpLists nodesMatch =
matchInCandidates(candidates, opPattern, pattern->isHead(opPattern),
pattern->isTail(opPattern));
IT_ASSERT(nodesMatch.size() <= 1 || !opLastMatch);
updateMatchedGraph(gLastMatch, nodesMatch, gMatch, opPattern);
if (nodesMatch.size() == 0) {
return false;
}
// dst is matched, process successors recursively
for (auto successorPattern : opPattern->getSuccessors()) {
bool bRet = false;
if (opLastMatch) {
IT_ASSERT(nodesMatch.size() == 1);
if (gLastMatch->hasMatched(successorPattern))
continue;
bRet = findMatch(gLastMatch, nodesMatch.front(), successorPattern,
gMatch);
} else {
IT_ASSERT(nodesMatch.size() == gMatch.size());
auto tmp1 = gMatch;
auto itr1 = nodesMatch.begin();
auto itr2 = gMatch.begin();
for (; itr1 != nodesMatch.end() && itr2 != gMatch.end(); ++itr2) {
if (findMatch(*itr2, *itr1, successorPattern, tmp1)) {
bRet = true;
++itr1;
} else
itr1 = nodesMatch.erase(itr1);
}
gMatch = tmp1;
}
// not found,return false
if (!bRet) {
return false;
}
}
return true;
}
bool SubGraphRewriter::findMatch2(const MatchGraph &gLastMatch,
const Operator &opLastMatch,
const Operator &opPattern,
vector<MatchGraph> &matches) {
vector<MatchGraph> curMatches;
for (auto match : matches) {
OpVec candidates =
opLastMatch ? opLastMatch->getSuccessors() : graph->getOperators();
// filter candiates in matches
for (auto itr2 = candidates.begin(); itr2 != candidates.end();) {
if (match->hasContained(
*itr2)) // already belonged to the matched sub graph
itr2 = candidates.erase(itr2);
else
++itr2;
}
OpLists nodesMatch = matchInCandidates(
candidates, opPattern, opPattern->getPredecessors().size() == 0,
opPattern->getSuccessors().size() == 0);
// no match nodes found, do not add the match to curMatches, continue
if (nodesMatch.size() == 0) {
continue;
}
for (auto node : nodesMatch) {
auto curMatch = match->clone();
curMatch->addOp(node, opPattern); // anchor and pattern
// add to curMatches
curMatches.push_back(curMatch);
// dst is matched, process successors recursively
for (auto successorPattern : opPattern->getSuccessors()) {
if (match->hasMatched(successorPattern)) // has already matched
continue;
if (!findMatch(curMatch, node, successorPattern, curMatches)) {
// curMatch has been removed from curMatches in
// "findMatch",so just break
break;
}
}
}
}
matches = curMatches;
return true;
}
OpLists SubGraphRewriter::matchInCandidates(const OpVec &ops,
const Operator &opPattern,
bool isHead, bool isTail) {
OpLists ret;
for (auto op : ops) {
if (MatchNode(opPattern, op, isHead, isTail))
ret.push_back(op);
}
return ret;
}
bool SubGraphRewriter::MatchNode(const Operator &a, const Operator &b,
bool isHead, bool isTail) const {
if (a->getOpType() != b->getOpType())
return false;
if (a->hash() != b->hash())
return false;
if (!isHead)
if (a->getPredecessors().size() != b->getPredecessors().size())
return false;
if (!isTail)
if (a->getSuccessors().size() != b->getSuccessors().size())
return false;
return true;
};
void SubGraphRewriter::updateMatchedGraph(const MatchGraph &gLastMatch,
OpLists &opMatch,
vector<MatchGraph> &gMatch,
Operator opPattern) {
if (opMatch.size() == 0) {
if (nullptr != gLastMatch) {
auto pos = std::find(gMatch.begin(), gMatch.end(), gLastMatch);
IT_ASSERT(pos != gMatch.end());
gMatch.erase(pos);
}
} else {
// anchor is a head
if (nullptr == gLastMatch) {
for (auto op : opMatch) {
auto match = make_ref<GraphMatchObj>(pattern);
match->addOp(op, opPattern);
gMatch.push_back(match);
}
} else {
IT_ASSERT(opMatch.size() == 1);
gLastMatch->addOp(opMatch.front(), opPattern);
}
}
}
bool SubGraphRewriter::checkOverlapsWithPreviousMatch(
const MatchGraph &match,
const std::unordered_set<Operator> &nodesToDelete) const {
for (auto op : match->getOps()) {
if (nodesToDelete.count(op) > 0)
return false;
}
return true;
}
bool SubGraphRewriter::checkMatchValid(const MatchGraph &match) const {
for (auto t : pattern->getInputsFromOutside()) {
auto tAnchor = match->getAnchorByPattern(t);
// the corrresponding precessor must not belong to the match
auto preOpAnchor = tAnchor->getSource();
if (preOpAnchor && match->hasContained(preOpAnchor)) {
return false;
}
}
// check connections
for (auto opPattern : pattern->getOperators()) {
auto opAnchor = match->getAnchorByPattern(opPattern);
for (auto prePattern : opPattern->getPredecessors()) {
auto preAnchor = match->getAnchorByPattern(prePattern);
auto ops = opAnchor->getPredecessors();
if (std::find(ops.begin(), ops.end(), preAnchor) == ops.end())
return false;
ops = preAnchor->getSuccessors();
if (std::find(ops.begin(), ops.end(), opAnchor) == ops.end())
return false;
}
}
return true;
}
// replace all sub graphs which matched subA with subB in g
void SubGraphRewriter::replaceSubGraph(const SubGraph &pattern,
const SubGraph &replacement) {
IT_ASSERT(checkReplacement(pattern, replacement));
this->pattern = pattern;
// find matches in graph.
auto matches = findMatch(pattern);
std::unordered_set<Operator> nodesToDelete;
map<Tensor, Tensor> replaceMap;
map<Tensor, Tensor> replaceMapReverse;
for (auto match : matches) {
// matches may overlap with eachother. if some operator has been in
// another folded match,we must skip this one
if (!checkOverlapsWithPreviousMatch(match, nodesToDelete))
continue;
auto inputs = match->getInputs();
for (auto &input : inputs) {
if (replaceMap.count(input) > 0)
input = replaceMap[input];
}
auto outputs = match->getOutputs();
// first, remove old successors for input
for (auto input : inputs) {
for (auto op : input->getTargets()) {
if (match->hasContained(op)) {
graph->deleteConnection(input, op);
}
}
}
// second, insert replacement sub graph to graph.
auto newOutputs = addSubGraph(replacement, inputs);
// check replaced outputs and record
IT_ASSERT(outputs.size() == newOutputs.size());
for (size_t i = 0; i < outputs.size(); ++i) {
IT_ASSERT(isReplacable(outputs[i], newOutputs[i]));
replaceMap.emplace(outputs[i], newOutputs[i]);
replaceMapReverse.emplace(newOutputs[i], outputs[i]);
}
// third, change connections for new output
for (auto output : outputs) {
auto successors = output->getTargets();
for (auto successor : successors) {
auto newOutput = replaceMap[output];
graph->replaceConnection(output, newOutput, successor);
}
}
// record ops need to delete
for (auto op : match->getOps())
nodesToDelete.insert(op);
// remove match from graph
for (auto op : match->getOps()) {
for (auto tensor : op->getInputs()) {
if (replaceMapReverse.count(tensor) > 0)
tensor = replaceMapReverse[tensor];
if (std::find(inputs.begin(), inputs.end(), tensor) ==
inputs.end()) {
graph->removeTensor(tensor);
}
}
for (auto tensor : op->getOutputs()) {
graph->removeTensor(tensor);
}
graph->removeOperator(op);
}
IT_ASSERT(graph->checkValid());
}
}
// "inputs" must be tensors in original graph
TensorVec SubGraphRewriter::addSubGraph(const SubGraph &g,
const TensorVec &inputs) {
// check inputs
for (auto input : inputs) {
auto tensors = graph->getTensors();
IT_ASSERT(std::find(tensors.begin(), tensors.end(), input) !=
tensors.end());
}
// check compatible with sub graph
auto ins = g->getInputsFromOutside();
IT_ASSERT(checkReplacement(ins, inputs));
std::map<Tensor, Tensor> tensorMap;
for (size_t i = 0; i < ins.size(); ++i) {
tensorMap.emplace(ins[i], inputs[i]);
}
for (auto t : g->getTensors()) {
if (tensorMap.find(t) == tensorMap.end()) {
auto tClone = graph->addTensor(t->getDims(), t->getDType());
tensorMap.emplace(t, tClone);
}
}
for (auto op : g->getOperators()) {
TensorVec inputs, outputs;
for (auto t : op->getInputs()) {
inputs.push_back(tensorMap.at(t));
}
for (auto t : op->getOutputs()) {
outputs.push_back(tensorMap.at(t));
}
graph->cloneOperator(op, inputs, outputs);
}
TensorVec out;
for (auto t : g->getOutputs2Outside()) {
out.push_back(tensorMap[t]);
}
return out;
}
void SubGraphRewriter::removeSubGraph(MatchGraph match) {
TensorVec inputs = match->getInputs();
for (auto op : match->getOps()) {
for (auto tensor : op->getInputs()) {
if (std::find(inputs.begin(), inputs.end(), tensor) ==
inputs.end()) {
graph->removeTensor(tensor);
}
}
for (auto tensor : op->getOutputs()) {
graph->removeTensor(tensor);
}
graph->removeOperator(op);
}
}
// inputs and outputs must be appointed.
bool SubGraphRewriter::checkReplacement(const SubGraph &pattern,
const SubGraph &other) const {
return checkReplacement(pattern->getInputsFromOutside(),
other->getInputsFromOutside()) &&
checkReplacement(pattern->getOutputs2Outside(),
other->getOutputs2Outside()) &&
pattern->getInputsFromOutside().size() != 0 &&
pattern->getOutputs2Outside().size() != 0;
}
bool SubGraphRewriter::checkReplacement(const TensorVec &left,
const TensorVec &right) const {
if (left.size() != right.size())
return false;
for (size_t i = 0; i < left.size(); ++i) {
if (!isReplacable(left[i], right[i]))
return false;
}
return true;
}
bool SubGraphRewriter::isReplacable(const Tensor &l, const Tensor &r) const {
return (l->getDType() == r->getDType() && l->getDims() == r->getDims());
}
} // namespace infini