InfiniTensor/test/core/test_graph.cc

153 lines
5.5 KiB
C++

#include "core/blob.h"
#include "core/graph.h"
#include "core/runtime.h"
#include "operators/element_wise.h"
#include "operators/matmul.h"
#include "operators/unary.h"
#include "test.h"
namespace infini {
TEST(Graph, build_and_run) {
Runtime runtime = NativeCpuRuntimeObj::getInstance();
Graph g = make_ref<GraphObj>(runtime);
Tensor i0 = g->addTensor({1, 2, 3}, DataType::UInt32);
Tensor w0 = g->addTensor({1, 3, 4}, DataType::UInt32);
Tensor o0 = g->addTensor({1, 2, 4}, DataType::UInt32);
g->dataMalloc();
i0->copyin(vector<uint32_t>{1, 2, 3, 4, 5, 6});
w0->copyin(vector<uint32_t>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12});
auto matmul = g->addOpWithOutputs<MatmulObj>(i0, w0, o0);
g->print();
// check targets and source for tensor
EXPECT_EQ(i0->getTargets().size(), 1u);
EXPECT_EQ(w0->getTargets().size(), 1u);
EXPECT_EQ(o0->getTargets().size(), 0u);
EXPECT_EQ(i0->getSource(), nullptr);
EXPECT_EQ(w0->getSource(), nullptr);
EXPECT_NE(o0->getSource(), nullptr);
EXPECT_EQ(matmul->getPredecessors().size(), 0u);
EXPECT_EQ(matmul->getSuccessors().size(), 0u);
runtime->run(g);
// check execution results
auto ans = make_ref<TensorObj>(Shape{1, 2, 4}, DataType::UInt32, runtime);
ans->dataMalloc();
ans->copyin(vector<uint32_t>{38, 44, 50, 56, 83, 98, 113, 128});
EXPECT_TRUE(o0->equalData(ans));
}
TEST(Graph, topological) {
Runtime runtime = NativeCpuRuntimeObj::getInstance();
Graph g = make_ref<GraphObj>(runtime);
Tensor a = g->addTensor({1, 2, 3}, DataType::UInt32);
Tensor b = g->addTensor({1, 2, 3}, DataType::UInt32);
Tensor ab = g->addTensor({1, 2, 3}, DataType::UInt32);
Tensor c = g->addTensor({1, 2, 3}, DataType::UInt32);
Tensor abc = g->addTensor({1, 2, 3}, DataType::UInt32);
Tensor d = g->addTensor({1, 2, 3}, DataType::UInt32);
Tensor abcd = g->addTensor({1, 2, 3}, DataType::UInt32);
Tensor e = g->addTensor({1, 2, 3}, DataType::UInt32);
Tensor abcde = g->addTensor({1, 2, 3}, DataType::UInt32);
auto ops = std::vector{
g->addOpWithOutputs<AddObj>(abcd, e, abcde),
g->addOpWithOutputs<AddObj>(abc, d, abcd),
g->addOpWithOutputs<AddObj>(ab, c, abc),
g->addOpWithOutputs<AddObj>(a, b, ab),
};
{
auto p = ops.begin();
auto q = g->getOperators().begin();
while (p != ops.end()) {
EXPECT_EQ(*p++, *q++);
}
}
EXPECT_TRUE(g->topo_sort());
{
auto p = ops.rbegin();
auto q = g->getOperators().begin();
while (p != ops.rend()) {
EXPECT_EQ(*p++, *q++);
}
}
} // namespace infini
TEST(Graph, perf_engine) {
Runtime runtime = NativeCpuRuntimeObj::getInstance();
Graph g = make_ref<GraphObj>(runtime);
Tensor i0 = g->addTensor({1, 2, 3}, DataType::UInt32);
Tensor w0 = g->addTensor({1, 3, 4}, DataType::UInt32);
auto matmul = g->addOp<MatmulObj>(i0, w0, nullptr);
g->dataMalloc();
i0->copyin(vector<uint32_t>{1, 2, 3, 4, 5, 6});
w0->copyin(vector<uint32_t>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12});
runtime->run(g, true, true);
double perfTime = runtime->getPerfTime(g);
// The example matmul takes 0.0036ms with one core
EXPECT_GT(perfTime, 0);
EXPECT_LT(perfTime, 0.01);
// check answer
auto ans = make_ref<TensorObj>(Shape{1, 2, 4}, DataType::UInt32, runtime);
ans->dataMalloc();
ans->copyin(vector<uint32_t>{38, 44, 50, 56, 83, 98, 113, 128});
EXPECT_TRUE(matmul->getOutput()->equalData(ans));
}
TEST(Graph, test_tensor_id) {
Runtime runtime = NativeCpuRuntimeObj::getInstance();
Graph g = make_ref<GraphObj>(runtime);
Tensor i0 = g->addTensor({1, 2, 3}, DataType::UInt32);
Tensor w0 = g->addTensor({1, 3, 4}, DataType::UInt32);
Tensor o0 = g->addTensor({1, 2, 4}, DataType::UInt32);
g->dataMalloc();
i0->copyin(vector<uint32_t>{1, 2, 3, 4, 5, 6});
w0->copyin(vector<uint32_t>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12});
auto i1 = g->addTensor(i0->clone());
auto matmul = g->addOpWithOutputs<MatmulObj>(i0, w0, o0);
g->print();
EXPECT_NE(i0->getGuid(), i1->getGuid());
EXPECT_EQ(i0->getFuid(), i1->getFuid());
EXPECT_NE(i0->getDataBlob(), nullptr);
EXPECT_EQ(i1->getDataBlob(), nullptr);
}
TEST(Graph, test_OpVec_ctor) {
Runtime runtime = NativeCpuRuntimeObj::getInstance();
Graph g = make_ref<GraphObj>(runtime);
Tensor i0 = g->addTensor({1, 2, 3}, DataType::UInt32);
Tensor w0 = g->addTensor({1, 3, 4}, DataType::UInt32);
Tensor o0 = g->addTensor({1, 2, 4}, DataType::UInt32);
g->dataMalloc();
i0->copyin(vector<uint32_t>{1, 2, 3, 4, 5, 6});
w0->copyin(vector<uint32_t>{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12});
auto o1 = g->addTensor(o0->clone());
auto matmul = g->addOpWithOutputs<MatmulObj>(i0, w0, o0);
g->addOp<ReluObj>(o1, nullptr);
g->print();
puts("=========");
OpVec ops = g->getOperators();
Graph g2 = make_ref<GraphObj>(runtime, ops);
g2->print();
// Check if the two tensors with the same FUID (o0,o1) remain only one in g2
EXPECT_EQ(g2->getTensors().size(), 4u);
EXPECT_EQ(g2->getOperators().size(), 2u);
map<pair<int, int>, int> inputOutput2Cnt = {
{{1, 0}, 2}, {{1, 1}, 1}, {{0, 1}, 1}};
for (auto t : g2->getTensors()) {
pair<int, int> key = {t->getTargets().size(),
t->getSource() != nullptr};
EXPECT_GE(inputOutput2Cnt[key], 0);
inputOutput2Cnt[key]--;
}
for (auto [u, v] : inputOutput2Cnt) {
EXPECT_EQ(v, 0);
}
}
} // namespace infini