forked from jiuyuan/InfiniTensor
52 lines
1.6 KiB
C++
52 lines
1.6 KiB
C++
#include "bang/bang_runtime.h"
|
|
#include "core/graph.h"
|
|
#include "core/kernel.h"
|
|
#include "core/runtime.h"
|
|
#include "operators/element_wise.h"
|
|
|
|
#include "test.h"
|
|
|
|
namespace infini {
|
|
|
|
template <class T>
|
|
void testBitCompute(
|
|
const std::function<void(void *, size_t, DataType)> &generator,
|
|
const Shape &shape) {
|
|
// Runtime
|
|
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
|
auto bangRuntime = make_ref<BangRuntimeObj>();
|
|
|
|
// Build input data on CPU
|
|
Tensor inputCpu1 =
|
|
make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
|
inputCpu1->dataMalloc();
|
|
inputCpu1->setData(generator);
|
|
Tensor inputCpu2 =
|
|
make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
|
inputCpu2->dataMalloc();
|
|
inputCpu2->setData(generator);
|
|
|
|
// GPU
|
|
Graph bangGraph = make_ref<GraphObj>(bangRuntime);
|
|
auto inputGpu1 = bangGraph->cloneTensor(inputCpu1);
|
|
auto inputGpu2 = bangGraph->cloneTensor(inputCpu2);
|
|
auto gpuOp = bangGraph->addOp<T>(inputGpu1, inputGpu2, nullptr);
|
|
bangGraph->dataMalloc();
|
|
bangRuntime->run(bangGraph);
|
|
auto outputGpu = gpuOp->getOutput();
|
|
auto outputGpu2Cpu = outputGpu->clone(cpuRuntime);
|
|
inputCpu1->printData();
|
|
inputCpu2->printData();
|
|
outputGpu2Cpu->printData();
|
|
EXPECT_TRUE(1);
|
|
}
|
|
|
|
TEST(cnnl_BitCompute, run) {
|
|
testBitCompute<BitAndObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
|
testBitCompute<BitOrObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
|
testBitCompute<BitXorObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
|
testBitCompute<BitNotObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
|
}
|
|
|
|
} // namespace infini
|