InfiniTensor/include/core/graph_handler.h

94 lines
2.8 KiB
C++

#pragma once
#include "core/graph.h"
#include "core/runtime.h"
namespace infini {
// Use the indices from onnx to reduce delivery overhead,
// which comes from onnx but may be not only used for onnx.
//
// see https://onnx.ai/onnx/intro/concepts.html#element-type
enum OnnxDType : int {
UNDEFINED = 0,
FLOAT,
UINT8,
INT8,
UINT16,
INT16,
INT32,
INT64,
STRING,
BOOL,
FLOAT16,
DOUBLE,
UINT32,
UINT64,
COMPLEX64,
COMPLEX128,
BFLOAT16,
};
class GraphHandlerObj {
Graph g;
public:
GraphHandlerObj(Runtime runtime)
: g(make_ref<GraphObj>(std::move(runtime))) {}
Tensor tensor(Shape dims, int dtype);
//------ operators
inline OpVec operators() { return g->getOperators(); }
Tensor conv(Tensor input, Tensor weight, Tensor output, int ph, int pw,
int sh, int sw, int dh, int dw);
Tensor matmul(Tensor a, Tensor b, Tensor y, bool transA, bool transB,
Tensor bias, ActType act);
Tensor batchNorm(Tensor input, Tensor output, Tensor mean, Tensor var,
Tensor scale, Tensor bias, float momentum, float eps,
bool training);
Tensor maxPool(Tensor input, Tensor output, int kh, int kw, int dh, int dw,
int ph, int pw, int sh, int sw);
Tensor avgPool(Tensor input, Tensor output, int kh, int kw, int dh, int dw,
int ph, int pw, int sh, int sw);
Tensor add(Tensor a, Tensor b, Tensor c);
Tensor sub(Tensor a, Tensor b, Tensor c);
Tensor mul(Tensor a, Tensor b, Tensor c);
Tensor div(Tensor a, Tensor b, Tensor c);
Tensor pow(Tensor a, Tensor b, Tensor c);
Tensor relu(Tensor x, Tensor y);
Tensor sigmoid(Tensor x, Tensor y);
Tensor tanh(Tensor x, Tensor y);
Tensor softmax(Tensor x, Tensor y);
Tensor abs(Tensor x, Tensor y);
Tensor identity(Tensor x, Tensor y);
Tensor flatten(Tensor s, Tensor y);
Tensor reshape(Tensor data, Tensor reshaped, Shape shape);
Tensor concat(TensorVec inputs, Tensor output, int dim);
Tensor gather(Tensor data, Tensor indices, Tensor output, int axis);
Tensor reduceMean(Tensor data, Tensor reduced,
const optional<vector<int>> &axes, bool keepdims);
Tensor slice(Tensor input, Tensor output, const vector<int> &starts,
const vector<int> &ends, const optional<vector<int>> &axes,
const optional<vector<int>> &steps);
Tensor pad(Tensor input, Tensor output, const vector<int> &pads,
const optional<vector<int>> &axes);
//------ modifiers
inline bool topo_sort() { return g->topo_sort(); }
//------ runtime
inline void data_malloc() { g->dataMalloc(); }
inline void run() { g->getRuntime()->run(g); }
};
} // namespace infini