# config # model ## support SegNet_AlexNet, SegNet_VGG, SegNet_ResNet18, SegNet_ResNet34, SegNet_ResNet50, SegNet_ResNet101, SegNet_ResNet152 ## FPN_ResNet18, FPN_ResNet50, FPN_ResNet101, FPN_ResNet34, FPN_ResNet152 ## FCN_AlexNet, FCN_VGG, FCN_ResNet18, FCN_ResNet50, FCN_ResNet101, FCN_ResNet34, FCN_ResNet152 ## UNet_VGG model_name: FCN # choose from FPN, FCN, SegNet, UNet backbone: AlexNet # choose from AlexNet, VGG, ResNet18, ResNet50, ResNet101 # dataset path data_root: samples/data/ boundary: one_point # choose from rm_wall, one_point, all_walls # train/val set train_list: train/train_val.txt # test set ## choose the test set: test_0.txt, test_1.txt, test_2.txt, test_3.txt,test_4.txt,test_5.txt,test_6.txt test_list: test/test_0.txt # metric for testing ## choose from "mae_global", "mae_boundary", "mae_component", ## "value_and_pos_error_of_maximum_temperature", "max_tem_spearmanr", "global_image_spearmanr" metric: mae_boundary # dataset format: mat or h5 data_format: mat batch_size: 2 max_epochs: 50 lr: 0.001 # number of gpus to use gpus: 1 val_check_interval: 1.0 # num_workers in dataloader num_workers: 4 # preprocessing of data ## input mean_layout: 0 std_layout: 1000 ## output mean_heat: 298 std_heat: 50