forked from PulseFocusPlatform/PulseFocusPlatform
287 lines
11 KiB
Python
287 lines
11 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
from __future__ import absolute_import
|
||
from __future__ import division
|
||
from __future__ import print_function
|
||
|
||
from scipy.optimize import linear_sum_assignment
|
||
from collections import abc, defaultdict
|
||
import numpy as np
|
||
import paddle
|
||
|
||
from ppdet.core.workspace import register, create, serializable
|
||
from .meta_arch import BaseArch
|
||
from .. import layers as L
|
||
from ..keypoint_utils import transpred
|
||
|
||
__all__ = ['HigherHRNet']
|
||
|
||
|
||
@register
|
||
class HigherHRNet(BaseArch):
|
||
__category__ = 'architecture'
|
||
|
||
def __init__(self,
|
||
backbone='HRNet',
|
||
hrhrnet_head='HigherHRNetHead',
|
||
post_process='HrHRNetPostProcess',
|
||
eval_flip=True,
|
||
flip_perm=None,
|
||
max_num_people=30):
|
||
"""
|
||
HigherHRNet network, see https://arxiv.org/abs/1908.10357;
|
||
HigherHRNet+swahr, see https://arxiv.org/abs/2012.15175
|
||
|
||
Args:
|
||
backbone (nn.Layer): backbone instance
|
||
hrhrnet_head (nn.Layer): keypoint_head instance
|
||
bbox_post_process (object): `BBoxPostProcess` instance
|
||
"""
|
||
super(HigherHRNet, self).__init__()
|
||
self.backbone = backbone
|
||
self.hrhrnet_head = hrhrnet_head
|
||
self.post_process = post_process
|
||
self.flip = eval_flip
|
||
self.flip_perm = paddle.to_tensor(flip_perm)
|
||
self.deploy = False
|
||
self.interpolate = L.Upsample(2, mode='bilinear')
|
||
self.pool = L.MaxPool(5, 1, 2)
|
||
self.max_num_people = max_num_people
|
||
|
||
@classmethod
|
||
def from_config(cls, cfg, *args, **kwargs):
|
||
# backbone
|
||
backbone = create(cfg['backbone'])
|
||
# head
|
||
kwargs = {'input_shape': backbone.out_shape}
|
||
hrhrnet_head = create(cfg['hrhrnet_head'], **kwargs)
|
||
post_process = create(cfg['post_process'])
|
||
|
||
return {
|
||
'backbone': backbone,
|
||
"hrhrnet_head": hrhrnet_head,
|
||
"post_process": post_process,
|
||
}
|
||
|
||
def _forward(self):
|
||
if self.flip and not self.training and not self.deploy:
|
||
self.inputs['image'] = paddle.concat(
|
||
(self.inputs['image'], paddle.flip(self.inputs['image'], [3])))
|
||
body_feats = self.backbone(self.inputs)
|
||
|
||
if self.training:
|
||
return self.hrhrnet_head(body_feats, self.inputs)
|
||
else:
|
||
outputs = self.hrhrnet_head(body_feats)
|
||
|
||
if self.flip and not self.deploy:
|
||
outputs = [paddle.split(o, 2) for o in outputs]
|
||
output_rflip = [
|
||
paddle.flip(paddle.gather(o[1], self.flip_perm, 1), [3])
|
||
for o in outputs
|
||
]
|
||
output1 = [o[0] for o in outputs]
|
||
heatmap = (output1[0] + output_rflip[0]) / 2.
|
||
tagmaps = [output1[1], output_rflip[1]]
|
||
outputs = [heatmap] + tagmaps
|
||
outputs = self.get_topk(outputs)
|
||
|
||
if self.deploy:
|
||
return outputs
|
||
|
||
res_lst = []
|
||
h = self.inputs['im_shape'][0, 0].numpy().item()
|
||
w = self.inputs['im_shape'][0, 1].numpy().item()
|
||
kpts, scores = self.post_process(*outputs, h, w)
|
||
res_lst.append([kpts, scores])
|
||
return res_lst
|
||
|
||
def get_loss(self):
|
||
return self._forward()
|
||
|
||
def get_pred(self):
|
||
outputs = {}
|
||
res_lst = self._forward()
|
||
outputs['keypoint'] = res_lst
|
||
return outputs
|
||
|
||
def get_topk(self, outputs):
|
||
# resize to image size
|
||
outputs = [self.interpolate(x) for x in outputs]
|
||
if len(outputs) == 3:
|
||
tagmap = paddle.concat(
|
||
(outputs[1].unsqueeze(4), outputs[2].unsqueeze(4)), axis=4)
|
||
else:
|
||
tagmap = outputs[1].unsqueeze(4)
|
||
|
||
heatmap = outputs[0]
|
||
N, J = 1, self.hrhrnet_head.num_joints
|
||
heatmap_maxpool = self.pool(heatmap)
|
||
# topk
|
||
maxmap = heatmap * (heatmap == heatmap_maxpool)
|
||
maxmap = maxmap.reshape([N, J, -1])
|
||
heat_k, inds_k = maxmap.topk(self.max_num_people, axis=2)
|
||
|
||
outputs = [heatmap, tagmap, heat_k, inds_k]
|
||
return outputs
|
||
|
||
|
||
@register
|
||
@serializable
|
||
class HrHRNetPostProcess(object):
|
||
'''
|
||
HrHRNet postprocess contain:
|
||
1) get topk keypoints in the output heatmap
|
||
2) sample the tagmap's value corresponding to each of the topk coordinate
|
||
3) match different joints to combine to some people with Hungary algorithm
|
||
4) adjust the coordinate by +-0.25 to decrease error std
|
||
5) salvage missing joints by check positivity of heatmap - tagdiff_norm
|
||
Args:
|
||
max_num_people (int): max number of people support in postprocess
|
||
heat_thresh (float): value of topk below this threshhold will be ignored
|
||
tag_thresh (float): coord's value sampled in tagmap below this threshold belong to same people for init
|
||
|
||
inputs(list[heatmap]): the output list of modle, [heatmap, heatmap_maxpool, tagmap], heatmap_maxpool used to get topk
|
||
original_height, original_width (float): the original image size
|
||
'''
|
||
|
||
def __init__(self, max_num_people=30, heat_thresh=0.1, tag_thresh=1.):
|
||
self.max_num_people = max_num_people
|
||
self.heat_thresh = heat_thresh
|
||
self.tag_thresh = tag_thresh
|
||
|
||
def lerp(self, j, y, x, heatmap):
|
||
H, W = heatmap.shape[-2:]
|
||
left = np.clip(x - 1, 0, W - 1)
|
||
right = np.clip(x + 1, 0, W - 1)
|
||
up = np.clip(y - 1, 0, H - 1)
|
||
down = np.clip(y + 1, 0, H - 1)
|
||
offset_y = np.where(heatmap[j, down, x] > heatmap[j, up, x], 0.25,
|
||
-0.25)
|
||
offset_x = np.where(heatmap[j, y, right] > heatmap[j, y, left], 0.25,
|
||
-0.25)
|
||
return offset_y + 0.5, offset_x + 0.5
|
||
|
||
def __call__(self, heatmap, tagmap, heat_k, inds_k, original_height,
|
||
original_width):
|
||
|
||
N, J, H, W = heatmap.shape
|
||
assert N == 1, "only support batch size 1"
|
||
heatmap = heatmap[0].cpu().detach().numpy()
|
||
tagmap = tagmap[0].cpu().detach().numpy()
|
||
heats = heat_k[0].cpu().detach().numpy()
|
||
inds_np = inds_k[0].cpu().detach().numpy()
|
||
y = inds_np // W
|
||
x = inds_np % W
|
||
tags = tagmap[np.arange(J)[None, :].repeat(self.max_num_people),
|
||
y.flatten(), x.flatten()].reshape(J, -1, tagmap.shape[-1])
|
||
coords = np.stack((y, x), axis=2)
|
||
# threshold
|
||
mask = heats > self.heat_thresh
|
||
# cluster
|
||
cluster = defaultdict(lambda: {
|
||
'coords': np.zeros((J, 2), dtype=np.float32),
|
||
'scores': np.zeros(J, dtype=np.float32),
|
||
'tags': []
|
||
})
|
||
for jid, m in enumerate(mask):
|
||
num_valid = m.sum()
|
||
if num_valid == 0:
|
||
continue
|
||
valid_inds = np.where(m)[0]
|
||
valid_tags = tags[jid, m, :]
|
||
if len(cluster) == 0: # initialize
|
||
for i in valid_inds:
|
||
tag = tags[jid, i]
|
||
key = tag[0]
|
||
cluster[key]['tags'].append(tag)
|
||
cluster[key]['scores'][jid] = heats[jid, i]
|
||
cluster[key]['coords'][jid] = coords[jid, i]
|
||
continue
|
||
candidates = list(cluster.keys())[:self.max_num_people]
|
||
centroids = [
|
||
np.mean(
|
||
cluster[k]['tags'], axis=0) for k in candidates
|
||
]
|
||
num_clusters = len(centroids)
|
||
# shape is (num_valid, num_clusters, tag_dim)
|
||
dist = valid_tags[:, None, :] - np.array(centroids)[None, ...]
|
||
l2_dist = np.linalg.norm(dist, ord=2, axis=2)
|
||
# modulate dist with heat value, see `use_detection_val`
|
||
cost = np.round(l2_dist) * 100 - heats[jid, m, None]
|
||
# pad the cost matrix, otherwise new pose are ignored
|
||
if num_valid > num_clusters:
|
||
cost = np.pad(cost, ((0, 0), (0, num_valid - num_clusters)),
|
||
constant_values=((0, 0), (0, 1e-10)))
|
||
rows, cols = linear_sum_assignment(cost)
|
||
for y, x in zip(rows, cols):
|
||
tag = tags[jid, y]
|
||
if y < num_valid and x < num_clusters and \
|
||
l2_dist[y, x] < self.tag_thresh:
|
||
key = candidates[x] # merge to cluster
|
||
else:
|
||
key = tag[0] # initialize new cluster
|
||
cluster[key]['tags'].append(tag)
|
||
cluster[key]['scores'][jid] = heats[jid, y]
|
||
cluster[key]['coords'][jid] = coords[jid, y]
|
||
|
||
# shape is [k, J, 2] and [k, J]
|
||
pose_tags = np.array([cluster[k]['tags'] for k in cluster])
|
||
pose_coords = np.array([cluster[k]['coords'] for k in cluster])
|
||
pose_scores = np.array([cluster[k]['scores'] for k in cluster])
|
||
valid = pose_scores > 0
|
||
|
||
pose_kpts = np.zeros((pose_scores.shape[0], J, 3), dtype=np.float32)
|
||
if valid.sum() == 0:
|
||
return pose_kpts, pose_kpts
|
||
|
||
# refine coords
|
||
valid_coords = pose_coords[valid].astype(np.int32)
|
||
y = valid_coords[..., 0].flatten()
|
||
x = valid_coords[..., 1].flatten()
|
||
_, j = np.nonzero(valid)
|
||
offsets = self.lerp(j, y, x, heatmap)
|
||
pose_coords[valid, 0] += offsets[0]
|
||
pose_coords[valid, 1] += offsets[1]
|
||
|
||
# mean score before salvage
|
||
mean_score = pose_scores.mean(axis=1)
|
||
pose_kpts[valid, 2] = pose_scores[valid]
|
||
|
||
# salvage missing joints
|
||
if True:
|
||
for pid, coords in enumerate(pose_coords):
|
||
tag_mean = np.array(pose_tags[pid]).mean(axis=0)
|
||
norm = np.sum((tagmap - tag_mean)**2, axis=3)**0.5
|
||
score = heatmap - np.round(norm) # (J, H, W)
|
||
flat_score = score.reshape(J, -1)
|
||
max_inds = np.argmax(flat_score, axis=1)
|
||
max_scores = np.max(flat_score, axis=1)
|
||
salvage_joints = (pose_scores[pid] == 0) & (max_scores > 0)
|
||
if salvage_joints.sum() == 0:
|
||
continue
|
||
y = max_inds[salvage_joints] // W
|
||
x = max_inds[salvage_joints] % W
|
||
offsets = self.lerp(salvage_joints.nonzero()[0], y, x, heatmap)
|
||
y = y.astype(np.float32) + offsets[0]
|
||
x = x.astype(np.float32) + offsets[1]
|
||
pose_coords[pid][salvage_joints, 0] = y
|
||
pose_coords[pid][salvage_joints, 1] = x
|
||
pose_kpts[pid][salvage_joints, 2] = max_scores[salvage_joints]
|
||
pose_kpts[..., :2] = transpred(pose_coords[..., :2][..., ::-1],
|
||
original_height, original_width,
|
||
min(H, W))
|
||
return pose_kpts, mean_score
|