PulseFocusPlatform/ppdet/modeling/architectures/keypoint_hrhrnet.py

287 lines
11 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from scipy.optimize import linear_sum_assignment
from collections import abc, defaultdict
import numpy as np
import paddle
from ppdet.core.workspace import register, create, serializable
from .meta_arch import BaseArch
from .. import layers as L
from ..keypoint_utils import transpred
__all__ = ['HigherHRNet']
@register
class HigherHRNet(BaseArch):
__category__ = 'architecture'
def __init__(self,
backbone='HRNet',
hrhrnet_head='HigherHRNetHead',
post_process='HrHRNetPostProcess',
eval_flip=True,
flip_perm=None,
max_num_people=30):
"""
HigherHRNet network, see https://arxiv.org/abs/1908.10357
HigherHRNet+swahr, see https://arxiv.org/abs/2012.15175
Args:
backbone (nn.Layer): backbone instance
hrhrnet_head (nn.Layer): keypoint_head instance
bbox_post_process (object): `BBoxPostProcess` instance
"""
super(HigherHRNet, self).__init__()
self.backbone = backbone
self.hrhrnet_head = hrhrnet_head
self.post_process = post_process
self.flip = eval_flip
self.flip_perm = paddle.to_tensor(flip_perm)
self.deploy = False
self.interpolate = L.Upsample(2, mode='bilinear')
self.pool = L.MaxPool(5, 1, 2)
self.max_num_people = max_num_people
@classmethod
def from_config(cls, cfg, *args, **kwargs):
# backbone
backbone = create(cfg['backbone'])
# head
kwargs = {'input_shape': backbone.out_shape}
hrhrnet_head = create(cfg['hrhrnet_head'], **kwargs)
post_process = create(cfg['post_process'])
return {
'backbone': backbone,
"hrhrnet_head": hrhrnet_head,
"post_process": post_process,
}
def _forward(self):
if self.flip and not self.training and not self.deploy:
self.inputs['image'] = paddle.concat(
(self.inputs['image'], paddle.flip(self.inputs['image'], [3])))
body_feats = self.backbone(self.inputs)
if self.training:
return self.hrhrnet_head(body_feats, self.inputs)
else:
outputs = self.hrhrnet_head(body_feats)
if self.flip and not self.deploy:
outputs = [paddle.split(o, 2) for o in outputs]
output_rflip = [
paddle.flip(paddle.gather(o[1], self.flip_perm, 1), [3])
for o in outputs
]
output1 = [o[0] for o in outputs]
heatmap = (output1[0] + output_rflip[0]) / 2.
tagmaps = [output1[1], output_rflip[1]]
outputs = [heatmap] + tagmaps
outputs = self.get_topk(outputs)
if self.deploy:
return outputs
res_lst = []
h = self.inputs['im_shape'][0, 0].numpy().item()
w = self.inputs['im_shape'][0, 1].numpy().item()
kpts, scores = self.post_process(*outputs, h, w)
res_lst.append([kpts, scores])
return res_lst
def get_loss(self):
return self._forward()
def get_pred(self):
outputs = {}
res_lst = self._forward()
outputs['keypoint'] = res_lst
return outputs
def get_topk(self, outputs):
# resize to image size
outputs = [self.interpolate(x) for x in outputs]
if len(outputs) == 3:
tagmap = paddle.concat(
(outputs[1].unsqueeze(4), outputs[2].unsqueeze(4)), axis=4)
else:
tagmap = outputs[1].unsqueeze(4)
heatmap = outputs[0]
N, J = 1, self.hrhrnet_head.num_joints
heatmap_maxpool = self.pool(heatmap)
# topk
maxmap = heatmap * (heatmap == heatmap_maxpool)
maxmap = maxmap.reshape([N, J, -1])
heat_k, inds_k = maxmap.topk(self.max_num_people, axis=2)
outputs = [heatmap, tagmap, heat_k, inds_k]
return outputs
@register
@serializable
class HrHRNetPostProcess(object):
'''
HrHRNet postprocess contain:
1) get topk keypoints in the output heatmap
2) sample the tagmap's value corresponding to each of the topk coordinate
3) match different joints to combine to some people with Hungary algorithm
4) adjust the coordinate by +-0.25 to decrease error std
5) salvage missing joints by check positivity of heatmap - tagdiff_norm
Args:
max_num_people (int): max number of people support in postprocess
heat_thresh (float): value of topk below this threshhold will be ignored
tag_thresh (float): coord's value sampled in tagmap below this threshold belong to same people for init
inputs(list[heatmap]): the output list of modle, [heatmap, heatmap_maxpool, tagmap], heatmap_maxpool used to get topk
original_height, original_width (float): the original image size
'''
def __init__(self, max_num_people=30, heat_thresh=0.1, tag_thresh=1.):
self.max_num_people = max_num_people
self.heat_thresh = heat_thresh
self.tag_thresh = tag_thresh
def lerp(self, j, y, x, heatmap):
H, W = heatmap.shape[-2:]
left = np.clip(x - 1, 0, W - 1)
right = np.clip(x + 1, 0, W - 1)
up = np.clip(y - 1, 0, H - 1)
down = np.clip(y + 1, 0, H - 1)
offset_y = np.where(heatmap[j, down, x] > heatmap[j, up, x], 0.25,
-0.25)
offset_x = np.where(heatmap[j, y, right] > heatmap[j, y, left], 0.25,
-0.25)
return offset_y + 0.5, offset_x + 0.5
def __call__(self, heatmap, tagmap, heat_k, inds_k, original_height,
original_width):
N, J, H, W = heatmap.shape
assert N == 1, "only support batch size 1"
heatmap = heatmap[0].cpu().detach().numpy()
tagmap = tagmap[0].cpu().detach().numpy()
heats = heat_k[0].cpu().detach().numpy()
inds_np = inds_k[0].cpu().detach().numpy()
y = inds_np // W
x = inds_np % W
tags = tagmap[np.arange(J)[None, :].repeat(self.max_num_people),
y.flatten(), x.flatten()].reshape(J, -1, tagmap.shape[-1])
coords = np.stack((y, x), axis=2)
# threshold
mask = heats > self.heat_thresh
# cluster
cluster = defaultdict(lambda: {
'coords': np.zeros((J, 2), dtype=np.float32),
'scores': np.zeros(J, dtype=np.float32),
'tags': []
})
for jid, m in enumerate(mask):
num_valid = m.sum()
if num_valid == 0:
continue
valid_inds = np.where(m)[0]
valid_tags = tags[jid, m, :]
if len(cluster) == 0: # initialize
for i in valid_inds:
tag = tags[jid, i]
key = tag[0]
cluster[key]['tags'].append(tag)
cluster[key]['scores'][jid] = heats[jid, i]
cluster[key]['coords'][jid] = coords[jid, i]
continue
candidates = list(cluster.keys())[:self.max_num_people]
centroids = [
np.mean(
cluster[k]['tags'], axis=0) for k in candidates
]
num_clusters = len(centroids)
# shape is (num_valid, num_clusters, tag_dim)
dist = valid_tags[:, None, :] - np.array(centroids)[None, ...]
l2_dist = np.linalg.norm(dist, ord=2, axis=2)
# modulate dist with heat value, see `use_detection_val`
cost = np.round(l2_dist) * 100 - heats[jid, m, None]
# pad the cost matrix, otherwise new pose are ignored
if num_valid > num_clusters:
cost = np.pad(cost, ((0, 0), (0, num_valid - num_clusters)),
constant_values=((0, 0), (0, 1e-10)))
rows, cols = linear_sum_assignment(cost)
for y, x in zip(rows, cols):
tag = tags[jid, y]
if y < num_valid and x < num_clusters and \
l2_dist[y, x] < self.tag_thresh:
key = candidates[x] # merge to cluster
else:
key = tag[0] # initialize new cluster
cluster[key]['tags'].append(tag)
cluster[key]['scores'][jid] = heats[jid, y]
cluster[key]['coords'][jid] = coords[jid, y]
# shape is [k, J, 2] and [k, J]
pose_tags = np.array([cluster[k]['tags'] for k in cluster])
pose_coords = np.array([cluster[k]['coords'] for k in cluster])
pose_scores = np.array([cluster[k]['scores'] for k in cluster])
valid = pose_scores > 0
pose_kpts = np.zeros((pose_scores.shape[0], J, 3), dtype=np.float32)
if valid.sum() == 0:
return pose_kpts, pose_kpts
# refine coords
valid_coords = pose_coords[valid].astype(np.int32)
y = valid_coords[..., 0].flatten()
x = valid_coords[..., 1].flatten()
_, j = np.nonzero(valid)
offsets = self.lerp(j, y, x, heatmap)
pose_coords[valid, 0] += offsets[0]
pose_coords[valid, 1] += offsets[1]
# mean score before salvage
mean_score = pose_scores.mean(axis=1)
pose_kpts[valid, 2] = pose_scores[valid]
# salvage missing joints
if True:
for pid, coords in enumerate(pose_coords):
tag_mean = np.array(pose_tags[pid]).mean(axis=0)
norm = np.sum((tagmap - tag_mean)**2, axis=3)**0.5
score = heatmap - np.round(norm) # (J, H, W)
flat_score = score.reshape(J, -1)
max_inds = np.argmax(flat_score, axis=1)
max_scores = np.max(flat_score, axis=1)
salvage_joints = (pose_scores[pid] == 0) & (max_scores > 0)
if salvage_joints.sum() == 0:
continue
y = max_inds[salvage_joints] // W
x = max_inds[salvage_joints] % W
offsets = self.lerp(salvage_joints.nonzero()[0], y, x, heatmap)
y = y.astype(np.float32) + offsets[0]
x = x.astype(np.float32) + offsets[1]
pose_coords[pid][salvage_joints, 0] = y
pose_coords[pid][salvage_joints, 1] = x
pose_kpts[pid][salvage_joints, 2] = max_scores[salvage_joints]
pose_kpts[..., :2] = transpred(pose_coords[..., :2][..., ::-1],
original_height, original_width,
min(H, W))
return pose_kpts, mean_score