forked from PulseFocusPlatform/PulseFocusPlatform
232 lines
9.2 KiB
Python
232 lines
9.2 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import paddle.nn as nn
|
|
import paddle.nn.functional as F
|
|
from paddle import ParamAttr
|
|
from paddle.nn.initializer import XavierUniform
|
|
|
|
from ppdet.core.workspace import register, serializable
|
|
from ppdet.modeling.layers import ConvNormLayer
|
|
from ..shape_spec import ShapeSpec
|
|
|
|
__all__ = ['FPN']
|
|
|
|
|
|
@register
|
|
@serializable
|
|
class FPN(nn.Layer):
|
|
"""
|
|
Feature Pyramid Network, see https://arxiv.org/abs/1612.03144
|
|
|
|
Args:
|
|
in_channels (list[int]): input channels of each level which can be
|
|
derived from the output shape of backbone by from_config
|
|
out_channel (list[int]): output channel of each level
|
|
spatial_scales (list[float]): the spatial scales between input feature
|
|
maps and original input image which can be derived from the output
|
|
shape of backbone by from_config
|
|
has_extra_convs (bool): whether to add extra conv to the last level.
|
|
default False
|
|
extra_stage (int): the number of extra stages added to the last level.
|
|
default 1
|
|
use_c5 (bool): Whether to use c5 as the input of extra stage,
|
|
otherwise p5 is used. default True
|
|
norm_type (string|None): The normalization type in FPN module. If
|
|
norm_type is None, norm will not be used after conv and if
|
|
norm_type is string, bn, gn, sync_bn are available. default None
|
|
norm_decay (float): weight decay for normalization layer weights.
|
|
default 0.
|
|
freeze_norm (bool): whether to freeze normalization layer.
|
|
default False
|
|
relu_before_extra_convs (bool): whether to add relu before extra convs.
|
|
default False
|
|
|
|
"""
|
|
|
|
def __init__(self,
|
|
in_channels,
|
|
out_channel,
|
|
spatial_scales=[0.25, 0.125, 0.0625, 0.03125],
|
|
has_extra_convs=False,
|
|
extra_stage=1,
|
|
use_c5=True,
|
|
norm_type=None,
|
|
norm_decay=0.,
|
|
freeze_norm=False,
|
|
relu_before_extra_convs=True):
|
|
super(FPN, self).__init__()
|
|
self.out_channel = out_channel
|
|
for s in range(extra_stage):
|
|
spatial_scales = spatial_scales + [spatial_scales[-1] / 2.]
|
|
self.spatial_scales = spatial_scales
|
|
self.has_extra_convs = has_extra_convs
|
|
self.extra_stage = extra_stage
|
|
self.use_c5 = use_c5
|
|
self.relu_before_extra_convs = relu_before_extra_convs
|
|
self.norm_type = norm_type
|
|
self.norm_decay = norm_decay
|
|
self.freeze_norm = freeze_norm
|
|
|
|
self.lateral_convs = []
|
|
self.fpn_convs = []
|
|
fan = out_channel * 3 * 3
|
|
|
|
# stage index 0,1,2,3 stands for res2,res3,res4,res5 on ResNet Backbone
|
|
# 0 <= st_stage < ed_stage <= 3
|
|
st_stage = 4 - len(in_channels)
|
|
ed_stage = st_stage + len(in_channels) - 1
|
|
for i in range(st_stage, ed_stage + 1):
|
|
if i == 3:
|
|
lateral_name = 'fpn_inner_res5_sum'
|
|
else:
|
|
lateral_name = 'fpn_inner_res{}_sum_lateral'.format(i + 2)
|
|
in_c = in_channels[i - st_stage]
|
|
if self.norm_type is not None:
|
|
lateral = self.add_sublayer(
|
|
lateral_name,
|
|
ConvNormLayer(
|
|
ch_in=in_c,
|
|
ch_out=out_channel,
|
|
filter_size=1,
|
|
stride=1,
|
|
norm_type=self.norm_type,
|
|
norm_decay=self.norm_decay,
|
|
freeze_norm=self.freeze_norm,
|
|
initializer=XavierUniform(fan_out=in_c)))
|
|
else:
|
|
lateral = self.add_sublayer(
|
|
lateral_name,
|
|
nn.Conv2D(
|
|
in_channels=in_c,
|
|
out_channels=out_channel,
|
|
kernel_size=1,
|
|
weight_attr=ParamAttr(
|
|
initializer=XavierUniform(fan_out=in_c))))
|
|
self.lateral_convs.append(lateral)
|
|
|
|
fpn_name = 'fpn_res{}_sum'.format(i + 2)
|
|
if self.norm_type is not None:
|
|
fpn_conv = self.add_sublayer(
|
|
fpn_name,
|
|
ConvNormLayer(
|
|
ch_in=out_channel,
|
|
ch_out=out_channel,
|
|
filter_size=3,
|
|
stride=1,
|
|
norm_type=self.norm_type,
|
|
norm_decay=self.norm_decay,
|
|
freeze_norm=self.freeze_norm,
|
|
initializer=XavierUniform(fan_out=fan)))
|
|
else:
|
|
fpn_conv = self.add_sublayer(
|
|
fpn_name,
|
|
nn.Conv2D(
|
|
in_channels=out_channel,
|
|
out_channels=out_channel,
|
|
kernel_size=3,
|
|
padding=1,
|
|
weight_attr=ParamAttr(
|
|
initializer=XavierUniform(fan_out=fan))))
|
|
self.fpn_convs.append(fpn_conv)
|
|
|
|
# add extra conv levels for RetinaNet(use_c5)/FCOS(use_p5)
|
|
if self.has_extra_convs:
|
|
for i in range(self.extra_stage):
|
|
lvl = ed_stage + 1 + i
|
|
if i == 0 and self.use_c5:
|
|
in_c = in_channels[-1]
|
|
else:
|
|
in_c = out_channel
|
|
extra_fpn_name = 'fpn_{}'.format(lvl + 2)
|
|
if self.norm_type is not None:
|
|
extra_fpn_conv = self.add_sublayer(
|
|
extra_fpn_name,
|
|
ConvNormLayer(
|
|
ch_in=in_c,
|
|
ch_out=out_channel,
|
|
filter_size=3,
|
|
stride=2,
|
|
norm_type=self.norm_type,
|
|
norm_decay=self.norm_decay,
|
|
freeze_norm=self.freeze_norm,
|
|
initializer=XavierUniform(fan_out=fan)))
|
|
else:
|
|
extra_fpn_conv = self.add_sublayer(
|
|
extra_fpn_name,
|
|
nn.Conv2D(
|
|
in_channels=in_c,
|
|
out_channels=out_channel,
|
|
kernel_size=3,
|
|
stride=2,
|
|
padding=1,
|
|
weight_attr=ParamAttr(
|
|
initializer=XavierUniform(fan_out=fan))))
|
|
self.fpn_convs.append(extra_fpn_conv)
|
|
|
|
@classmethod
|
|
def from_config(cls, cfg, input_shape):
|
|
return {
|
|
'in_channels': [i.channels for i in input_shape],
|
|
'spatial_scales': [1.0 / i.stride for i in input_shape],
|
|
}
|
|
|
|
def forward(self, body_feats):
|
|
laterals = []
|
|
num_levels = len(body_feats)
|
|
for i in range(num_levels):
|
|
laterals.append(self.lateral_convs[i](body_feats[i]))
|
|
|
|
for i in range(1, num_levels):
|
|
lvl = num_levels - i
|
|
upsample = F.interpolate(
|
|
laterals[lvl],
|
|
scale_factor=2.,
|
|
mode='nearest', )
|
|
laterals[lvl - 1] += upsample
|
|
|
|
fpn_output = []
|
|
for lvl in range(num_levels):
|
|
fpn_output.append(self.fpn_convs[lvl](laterals[lvl]))
|
|
|
|
if self.extra_stage > 0:
|
|
# use max pool to get more levels on top of outputs (Faster R-CNN, Mask R-CNN)
|
|
if not self.has_extra_convs:
|
|
assert self.extra_stage == 1, 'extra_stage should be 1 if FPN has not extra convs'
|
|
fpn_output.append(F.max_pool2d(fpn_output[-1], 1, stride=2))
|
|
# add extra conv levels for RetinaNet(use_c5)/FCOS(use_p5)
|
|
else:
|
|
if self.use_c5:
|
|
extra_source = body_feats[-1]
|
|
else:
|
|
extra_source = fpn_output[-1]
|
|
fpn_output.append(self.fpn_convs[num_levels](extra_source))
|
|
|
|
for i in range(1, self.extra_stage):
|
|
if self.relu_before_extra_convs:
|
|
fpn_output.append(self.fpn_convs[num_levels + i](F.relu(
|
|
fpn_output[-1])))
|
|
else:
|
|
fpn_output.append(self.fpn_convs[num_levels + i](
|
|
fpn_output[-1]))
|
|
return fpn_output
|
|
|
|
@property
|
|
def out_shape(self):
|
|
return [
|
|
ShapeSpec(
|
|
channels=self.out_channel, stride=1. / s)
|
|
for s in self.spatial_scales
|
|
]
|