kernel_linux_of_openHarmony/arch/nds32/Kconfig.cpu

176 lines
5.1 KiB
Plaintext
Raw Normal View History

2021-06-02 00:23:24 +08:00
comment "Processor Features"
config CPU_BIG_ENDIAN
def_bool !CPU_LITTLE_ENDIAN
config CPU_LITTLE_ENDIAN
bool "Little endian"
default y
config HWZOL
bool "hardware zero overhead loop support"
depends on CPU_D10 || CPU_D15
default n
help
A set of Zero-Overhead Loop mechanism is provided to reduce the
instruction fetch and execution overhead of loop-control instructions.
It will save 3 registers($LB, $LC, $LE) for context saving if say Y.
You don't need to save these registers if you can make sure your user
program doesn't use these registers.
If unsure, say N.
config CPU_CACHE_ALIASING
bool "Aliasing cache"
depends on CPU_N10 || CPU_D10 || CPU_N13 || CPU_V3
default y
help
If this CPU is using VIPT data cache and its cache way size is larger
than page size, say Y. If it is using PIPT data cache, say N.
If unsure, say Y.
choice
prompt "minimum CPU type"
default CPU_V3
help
The data cache of N15/D15 is implemented as PIPT and it will not cause
the cache aliasing issue. The rest cpus(N13, N10 and D10) are
implemented as VIPT data cache. It may cause the cache aliasing issue
if its cache way size is larger than page size. You can specify the
CPU type direcly or choose CPU_V3 if unsure.
A kernel built for N10 is able to run on N15, D15, N13, N10 or D10.
A kernel built for N15 is able to run on N15 or D15.
A kernel built for D10 is able to run on D10 or D15.
A kernel built for D15 is able to run on D15.
A kernel built for N13 is able to run on N15, N13 or D15.
config CPU_N15
bool "AndesCore N15"
config CPU_N13
bool "AndesCore N13"
select CPU_CACHE_ALIASING if ANDES_PAGE_SIZE_4KB
config CPU_N10
bool "AndesCore N10"
select CPU_CACHE_ALIASING
config CPU_D15
bool "AndesCore D15"
config CPU_D10
bool "AndesCore D10"
select CPU_CACHE_ALIASING
config CPU_V3
bool "AndesCore v3 compatible"
select CPU_CACHE_ALIASING
endchoice
choice
prompt "Paging -- page size "
default ANDES_PAGE_SIZE_4KB
config ANDES_PAGE_SIZE_4KB
bool "use 4KB page size"
config ANDES_PAGE_SIZE_8KB
bool "use 8KB page size"
endchoice
config CPU_ICACHE_DISABLE
bool "Disable I-Cache"
help
Say Y here to disable the processor instruction cache. Unless
you have a reason not to or are unsure, say N.
config CPU_DCACHE_DISABLE
bool "Disable D-Cache"
help
Say Y here to disable the processor data cache. Unless
you have a reason not to or are unsure, say N.
config CPU_DCACHE_WRITETHROUGH
bool "Force write through D-cache"
depends on !CPU_DCACHE_DISABLE
help
Say Y here to use the data cache in writethrough mode. Unless you
specifically require this or are unsure, say N.
config WBNA
bool "WBNA"
default n
help
Say Y here to enable write-back memory with no-write-allocation policy.
config ALIGNMENT_TRAP
bool "Kernel support unaligned access handling by sw"
depends on PROC_FS
default n
help
Andes processors cannot load/store information which is not
naturally aligned on the bus, i.e., a 4 byte load must start at an
address divisible by 4. On 32-bit Andes processors, these non-aligned
load/store instructions will be emulated in software if you say Y
here, which has a severe performance impact. With an IP-only
configuration it is safe to say N, otherwise say Y.
config HW_SUPPORT_UNALIGNMENT_ACCESS
bool "Kernel support unaligned access handling by hw"
depends on !ALIGNMENT_TRAP
default n
help
Andes processors load/store world/half-word instructions can access
unaligned memory locations without generating the Data Alignment
Check exceptions. With an IP-only configuration it is safe to say N,
otherwise say Y.
config HIGHMEM
bool "High Memory Support"
depends on MMU && !CPU_CACHE_ALIASING
help
The address space of Andes processors is only 4 Gigabytes large
and it has to accommodate user address space, kernel address
space as well as some memory mapped IO. That means that, if you
have a large amount of physical memory and/or IO, not all of the
memory can be "permanently mapped" by the kernel. The physical
memory that is not permanently mapped is called "high memory".
Depending on the selected kernel/user memory split, minimum
vmalloc space and actual amount of RAM, you may not need this
option which should result in a slightly faster kernel.
If unsure, say N.
config CACHE_L2
bool "Support L2 cache"
default y
help
Say Y here to enable L2 cache if your SoC are integrated with L2CC.
If unsure, say N.
menu "Memory configuration"
choice
prompt "Memory split"
depends on MMU
default VMSPLIT_3G_OPT
help
Select the desired split between kernel and user memory.
If you are not absolutely sure what you are doing, leave this
option alone!
config VMSPLIT_3G
bool "3G/1G user/kernel split"
config VMSPLIT_3G_OPT
bool "3G/1G user/kernel split (for full 1G low memory)"
config VMSPLIT_2G
bool "2G/2G user/kernel split"
config VMSPLIT_1G
bool "1G/3G user/kernel split"
endchoice
config PAGE_OFFSET
hex
default 0x40000000 if VMSPLIT_1G
default 0x80000000 if VMSPLIT_2G
default 0xB0000000 if VMSPLIT_3G_OPT
default 0xC0000000
endmenu