kernel_linux_of_openHarmony/kernel/umh.c

701 lines
19 KiB
C

/*
* umh - the kernel usermode helper
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/sched/task.h>
#include <linux/binfmts.h>
#include <linux/syscalls.h>
#include <linux/unistd.h>
#include <linux/kmod.h>
#include <linux/slab.h>
#include <linux/completion.h>
#include <linux/cred.h>
#include <linux/file.h>
#include <linux/fdtable.h>
#include <linux/fs_struct.h>
#include <linux/workqueue.h>
#include <linux/security.h>
#include <linux/mount.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/resource.h>
#include <linux/notifier.h>
#include <linux/suspend.h>
#include <linux/rwsem.h>
#include <linux/ptrace.h>
#include <linux/async.h>
#include <linux/uaccess.h>
#include <linux/shmem_fs.h>
#include <linux/pipe_fs_i.h>
#include <trace/events/module.h>
#define CAP_BSET (void *)1
#define CAP_PI (void *)2
static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
static DEFINE_SPINLOCK(umh_sysctl_lock);
static DECLARE_RWSEM(umhelper_sem);
static void call_usermodehelper_freeinfo(struct subprocess_info *info)
{
if (info->cleanup)
(*info->cleanup)(info);
kfree(info);
}
static void umh_complete(struct subprocess_info *sub_info)
{
struct completion *comp = xchg(&sub_info->complete, NULL);
/*
* See call_usermodehelper_exec(). If xchg() returns NULL
* we own sub_info, the UMH_KILLABLE caller has gone away
* or the caller used UMH_NO_WAIT.
*/
if (comp)
complete(comp);
else
call_usermodehelper_freeinfo(sub_info);
}
/*
* This is the task which runs the usermode application
*/
static int call_usermodehelper_exec_async(void *data)
{
struct subprocess_info *sub_info = data;
struct cred *new;
int retval;
spin_lock_irq(&current->sighand->siglock);
flush_signal_handlers(current, 1);
spin_unlock_irq(&current->sighand->siglock);
/*
* Initial kernel threads share ther FS with init, in order to
* get the init root directory. But we've now created a new
* thread that is going to execve a user process and has its own
* 'struct fs_struct'. Reset umask to the default.
*/
current->fs->umask = 0022;
/*
* Our parent (unbound workqueue) runs with elevated scheduling
* priority. Avoid propagating that into the userspace child.
*/
set_user_nice(current, 0);
retval = -ENOMEM;
new = prepare_kernel_cred(current);
if (!new)
goto out;
spin_lock(&umh_sysctl_lock);
new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
new->cap_inheritable);
spin_unlock(&umh_sysctl_lock);
if (sub_info->init) {
retval = sub_info->init(sub_info, new);
if (retval) {
abort_creds(new);
goto out;
}
}
commit_creds(new);
sub_info->pid = task_pid_nr(current);
if (sub_info->file)
retval = do_execve_file(sub_info->file,
sub_info->argv, sub_info->envp);
else
retval = do_execve(getname_kernel(sub_info->path),
(const char __user *const __user *)sub_info->argv,
(const char __user *const __user *)sub_info->envp);
out:
sub_info->retval = retval;
/*
* call_usermodehelper_exec_sync() will call umh_complete
* if UHM_WAIT_PROC.
*/
if (!(sub_info->wait & UMH_WAIT_PROC))
umh_complete(sub_info);
if (!retval)
return 0;
do_exit(0);
}
/* Handles UMH_WAIT_PROC. */
static void call_usermodehelper_exec_sync(struct subprocess_info *sub_info)
{
pid_t pid;
/* If SIGCLD is ignored kernel_wait4 won't populate the status. */
kernel_sigaction(SIGCHLD, SIG_DFL);
pid = kernel_thread(call_usermodehelper_exec_async, sub_info, SIGCHLD);
if (pid < 0) {
sub_info->retval = pid;
} else {
int ret = -ECHILD;
/*
* Normally it is bogus to call wait4() from in-kernel because
* wait4() wants to write the exit code to a userspace address.
* But call_usermodehelper_exec_sync() always runs as kernel
* thread (workqueue) and put_user() to a kernel address works
* OK for kernel threads, due to their having an mm_segment_t
* which spans the entire address space.
*
* Thus the __user pointer cast is valid here.
*/
kernel_wait4(pid, (int __user *)&ret, 0, NULL);
/*
* If ret is 0, either call_usermodehelper_exec_async failed and
* the real error code is already in sub_info->retval or
* sub_info->retval is 0 anyway, so don't mess with it then.
*/
if (ret)
sub_info->retval = ret;
}
/* Restore default kernel sig handler */
kernel_sigaction(SIGCHLD, SIG_IGN);
umh_complete(sub_info);
}
/*
* We need to create the usermodehelper kernel thread from a task that is affine
* to an optimized set of CPUs (or nohz housekeeping ones) such that they
* inherit a widest affinity irrespective of call_usermodehelper() callers with
* possibly reduced affinity (eg: per-cpu workqueues). We don't want
* usermodehelper targets to contend a busy CPU.
*
* Unbound workqueues provide such wide affinity and allow to block on
* UMH_WAIT_PROC requests without blocking pending request (up to some limit).
*
* Besides, workqueues provide the privilege level that caller might not have
* to perform the usermodehelper request.
*
*/
static void call_usermodehelper_exec_work(struct work_struct *work)
{
struct subprocess_info *sub_info =
container_of(work, struct subprocess_info, work);
if (sub_info->wait & UMH_WAIT_PROC) {
call_usermodehelper_exec_sync(sub_info);
} else {
pid_t pid;
/*
* Use CLONE_PARENT to reparent it to kthreadd; we do not
* want to pollute current->children, and we need a parent
* that always ignores SIGCHLD to ensure auto-reaping.
*/
pid = kernel_thread(call_usermodehelper_exec_async, sub_info,
CLONE_PARENT | SIGCHLD);
if (pid < 0) {
sub_info->retval = pid;
umh_complete(sub_info);
}
}
}
/*
* If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
* (used for preventing user land processes from being created after the user
* land has been frozen during a system-wide hibernation or suspend operation).
* Should always be manipulated under umhelper_sem acquired for write.
*/
static enum umh_disable_depth usermodehelper_disabled = UMH_DISABLED;
/* Number of helpers running */
static atomic_t running_helpers = ATOMIC_INIT(0);
/*
* Wait queue head used by usermodehelper_disable() to wait for all running
* helpers to finish.
*/
static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
/*
* Used by usermodehelper_read_lock_wait() to wait for usermodehelper_disabled
* to become 'false'.
*/
static DECLARE_WAIT_QUEUE_HEAD(usermodehelper_disabled_waitq);
/*
* Time to wait for running_helpers to become zero before the setting of
* usermodehelper_disabled in usermodehelper_disable() fails
*/
#define RUNNING_HELPERS_TIMEOUT (5 * HZ)
int usermodehelper_read_trylock(void)
{
DEFINE_WAIT(wait);
int ret = 0;
down_read(&umhelper_sem);
for (;;) {
prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
TASK_INTERRUPTIBLE);
if (!usermodehelper_disabled)
break;
if (usermodehelper_disabled == UMH_DISABLED)
ret = -EAGAIN;
up_read(&umhelper_sem);
if (ret)
break;
schedule();
try_to_freeze();
down_read(&umhelper_sem);
}
finish_wait(&usermodehelper_disabled_waitq, &wait);
return ret;
}
EXPORT_SYMBOL_GPL(usermodehelper_read_trylock);
long usermodehelper_read_lock_wait(long timeout)
{
DEFINE_WAIT(wait);
if (timeout < 0)
return -EINVAL;
down_read(&umhelper_sem);
for (;;) {
prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
TASK_UNINTERRUPTIBLE);
if (!usermodehelper_disabled)
break;
up_read(&umhelper_sem);
timeout = schedule_timeout(timeout);
if (!timeout)
break;
down_read(&umhelper_sem);
}
finish_wait(&usermodehelper_disabled_waitq, &wait);
return timeout;
}
EXPORT_SYMBOL_GPL(usermodehelper_read_lock_wait);
void usermodehelper_read_unlock(void)
{
up_read(&umhelper_sem);
}
EXPORT_SYMBOL_GPL(usermodehelper_read_unlock);
/**
* __usermodehelper_set_disable_depth - Modify usermodehelper_disabled.
* @depth: New value to assign to usermodehelper_disabled.
*
* Change the value of usermodehelper_disabled (under umhelper_sem locked for
* writing) and wakeup tasks waiting for it to change.
*/
void __usermodehelper_set_disable_depth(enum umh_disable_depth depth)
{
down_write(&umhelper_sem);
usermodehelper_disabled = depth;
wake_up(&usermodehelper_disabled_waitq);
up_write(&umhelper_sem);
}
/**
* __usermodehelper_disable - Prevent new helpers from being started.
* @depth: New value to assign to usermodehelper_disabled.
*
* Set usermodehelper_disabled to @depth and wait for running helpers to exit.
*/
int __usermodehelper_disable(enum umh_disable_depth depth)
{
long retval;
if (!depth)
return -EINVAL;
down_write(&umhelper_sem);
usermodehelper_disabled = depth;
up_write(&umhelper_sem);
/*
* From now on call_usermodehelper_exec() won't start any new
* helpers, so it is sufficient if running_helpers turns out to
* be zero at one point (it may be increased later, but that
* doesn't matter).
*/
retval = wait_event_timeout(running_helpers_waitq,
atomic_read(&running_helpers) == 0,
RUNNING_HELPERS_TIMEOUT);
if (retval)
return 0;
__usermodehelper_set_disable_depth(UMH_ENABLED);
return -EAGAIN;
}
static void helper_lock(void)
{
atomic_inc(&running_helpers);
smp_mb__after_atomic();
}
static void helper_unlock(void)
{
if (atomic_dec_and_test(&running_helpers))
wake_up(&running_helpers_waitq);
}
/**
* call_usermodehelper_setup - prepare to call a usermode helper
* @path: path to usermode executable
* @argv: arg vector for process
* @envp: environment for process
* @gfp_mask: gfp mask for memory allocation
* @cleanup: a cleanup function
* @init: an init function
* @data: arbitrary context sensitive data
*
* Returns either %NULL on allocation failure, or a subprocess_info
* structure. This should be passed to call_usermodehelper_exec to
* exec the process and free the structure.
*
* The init function is used to customize the helper process prior to
* exec. A non-zero return code causes the process to error out, exit,
* and return the failure to the calling process
*
* The cleanup function is just before ethe subprocess_info is about to
* be freed. This can be used for freeing the argv and envp. The
* Function must be runnable in either a process context or the
* context in which call_usermodehelper_exec is called.
*/
struct subprocess_info *call_usermodehelper_setup(const char *path, char **argv,
char **envp, gfp_t gfp_mask,
int (*init)(struct subprocess_info *info, struct cred *new),
void (*cleanup)(struct subprocess_info *info),
void *data)
{
struct subprocess_info *sub_info;
sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
if (!sub_info)
goto out;
INIT_WORK(&sub_info->work, call_usermodehelper_exec_work);
#ifdef CONFIG_STATIC_USERMODEHELPER
sub_info->path = CONFIG_STATIC_USERMODEHELPER_PATH;
#else
sub_info->path = path;
#endif
sub_info->argv = argv;
sub_info->envp = envp;
sub_info->cleanup = cleanup;
sub_info->init = init;
sub_info->data = data;
out:
return sub_info;
}
EXPORT_SYMBOL(call_usermodehelper_setup);
struct subprocess_info *call_usermodehelper_setup_file(struct file *file,
int (*init)(struct subprocess_info *info, struct cred *new),
void (*cleanup)(struct subprocess_info *info), void *data)
{
struct subprocess_info *sub_info;
sub_info = kzalloc(sizeof(struct subprocess_info), GFP_KERNEL);
if (!sub_info)
return NULL;
INIT_WORK(&sub_info->work, call_usermodehelper_exec_work);
sub_info->path = "none";
sub_info->file = file;
sub_info->init = init;
sub_info->cleanup = cleanup;
sub_info->data = data;
return sub_info;
}
static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
{
struct umh_info *umh_info = info->data;
struct file *from_umh[2];
struct file *to_umh[2];
int err;
/* create pipe to send data to umh */
err = create_pipe_files(to_umh, 0);
if (err)
return err;
err = replace_fd(0, to_umh[0], 0);
fput(to_umh[0]);
if (err < 0) {
fput(to_umh[1]);
return err;
}
/* create pipe to receive data from umh */
err = create_pipe_files(from_umh, 0);
if (err) {
fput(to_umh[1]);
replace_fd(0, NULL, 0);
return err;
}
err = replace_fd(1, from_umh[1], 0);
fput(from_umh[1]);
if (err < 0) {
fput(to_umh[1]);
replace_fd(0, NULL, 0);
fput(from_umh[0]);
return err;
}
umh_info->pipe_to_umh = to_umh[1];
umh_info->pipe_from_umh = from_umh[0];
return 0;
}
static void umh_save_pid(struct subprocess_info *info)
{
struct umh_info *umh_info = info->data;
umh_info->pid = info->pid;
}
/**
* fork_usermode_blob - fork a blob of bytes as a usermode process
* @data: a blob of bytes that can be do_execv-ed as a file
* @len: length of the blob
* @info: information about usermode process (shouldn't be NULL)
*
* Returns either negative error or zero which indicates success
* in executing a blob of bytes as a usermode process. In such
* case 'struct umh_info *info' is populated with two pipes
* and a pid of the process. The caller is responsible for health
* check of the user process, killing it via pid, and closing the
* pipes when user process is no longer needed.
*/
int fork_usermode_blob(void *data, size_t len, struct umh_info *info)
{
struct subprocess_info *sub_info;
struct file *file;
ssize_t written;
loff_t pos = 0;
int err;
file = shmem_kernel_file_setup("", len, 0);
if (IS_ERR(file))
return PTR_ERR(file);
written = kernel_write(file, data, len, &pos);
if (written != len) {
err = written;
if (err >= 0)
err = -ENOMEM;
goto out;
}
err = -ENOMEM;
sub_info = call_usermodehelper_setup_file(file, umh_pipe_setup,
umh_save_pid, info);
if (!sub_info)
goto out;
err = call_usermodehelper_exec(sub_info, UMH_WAIT_EXEC);
out:
fput(file);
return err;
}
EXPORT_SYMBOL_GPL(fork_usermode_blob);
/**
* call_usermodehelper_exec - start a usermode application
* @sub_info: information about the subprocessa
* @wait: wait for the application to finish and return status.
* when UMH_NO_WAIT don't wait at all, but you get no useful error back
* when the program couldn't be exec'ed. This makes it safe to call
* from interrupt context.
*
* Runs a user-space application. The application is started
* asynchronously if wait is not set, and runs as a child of system workqueues.
* (ie. it runs with full root capabilities and optimized affinity).
*
* Note: successful return value does not guarantee the helper was called at
* all. You can't rely on sub_info->{init,cleanup} being called even for
* UMH_WAIT_* wait modes as STATIC_USERMODEHELPER_PATH="" turns all helpers
* into a successful no-op.
*/
int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait)
{
DECLARE_COMPLETION_ONSTACK(done);
int retval = 0;
if (!sub_info->path) {
call_usermodehelper_freeinfo(sub_info);
return -EINVAL;
}
helper_lock();
if (usermodehelper_disabled) {
retval = -EBUSY;
goto out;
}
/*
* If there is no binary for us to call, then just return and get out of
* here. This allows us to set STATIC_USERMODEHELPER_PATH to "" and
* disable all call_usermodehelper() calls.
*/
if (strlen(sub_info->path) == 0)
goto out;
/*
* Set the completion pointer only if there is a waiter.
* This makes it possible to use umh_complete to free
* the data structure in case of UMH_NO_WAIT.
*/
sub_info->complete = (wait == UMH_NO_WAIT) ? NULL : &done;
sub_info->wait = wait;
queue_work(system_unbound_wq, &sub_info->work);
if (wait == UMH_NO_WAIT) /* task has freed sub_info */
goto unlock;
if (wait & UMH_KILLABLE) {
retval = wait_for_completion_killable(&done);
if (!retval)
goto wait_done;
/* umh_complete() will see NULL and free sub_info */
if (xchg(&sub_info->complete, NULL))
goto unlock;
/* fallthrough, umh_complete() was already called */
}
wait_for_completion(&done);
wait_done:
retval = sub_info->retval;
out:
call_usermodehelper_freeinfo(sub_info);
unlock:
helper_unlock();
return retval;
}
EXPORT_SYMBOL(call_usermodehelper_exec);
/**
* call_usermodehelper() - prepare and start a usermode application
* @path: path to usermode executable
* @argv: arg vector for process
* @envp: environment for process
* @wait: wait for the application to finish and return status.
* when UMH_NO_WAIT don't wait at all, but you get no useful error back
* when the program couldn't be exec'ed. This makes it safe to call
* from interrupt context.
*
* This function is the equivalent to use call_usermodehelper_setup() and
* call_usermodehelper_exec().
*/
int call_usermodehelper(const char *path, char **argv, char **envp, int wait)
{
struct subprocess_info *info;
gfp_t gfp_mask = (wait == UMH_NO_WAIT) ? GFP_ATOMIC : GFP_KERNEL;
info = call_usermodehelper_setup(path, argv, envp, gfp_mask,
NULL, NULL, NULL);
if (info == NULL)
return -ENOMEM;
return call_usermodehelper_exec(info, wait);
}
EXPORT_SYMBOL(call_usermodehelper);
static int proc_cap_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp, loff_t *ppos)
{
struct ctl_table t;
unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
kernel_cap_t new_cap;
int err, i;
if (write && (!capable(CAP_SETPCAP) ||
!capable(CAP_SYS_MODULE)))
return -EPERM;
/*
* convert from the global kernel_cap_t to the ulong array to print to
* userspace if this is a read.
*/
spin_lock(&umh_sysctl_lock);
for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++) {
if (table->data == CAP_BSET)
cap_array[i] = usermodehelper_bset.cap[i];
else if (table->data == CAP_PI)
cap_array[i] = usermodehelper_inheritable.cap[i];
else
BUG();
}
spin_unlock(&umh_sysctl_lock);
t = *table;
t.data = &cap_array;
/*
* actually read or write and array of ulongs from userspace. Remember
* these are least significant 32 bits first
*/
err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
if (err < 0)
return err;
/*
* convert from the sysctl array of ulongs to the kernel_cap_t
* internal representation
*/
for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
new_cap.cap[i] = cap_array[i];
/*
* Drop everything not in the new_cap (but don't add things)
*/
if (write) {
spin_lock(&umh_sysctl_lock);
if (table->data == CAP_BSET)
usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
if (table->data == CAP_PI)
usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
spin_unlock(&umh_sysctl_lock);
}
return 0;
}
struct ctl_table usermodehelper_table[] = {
{
.procname = "bset",
.data = CAP_BSET,
.maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
.mode = 0600,
.proc_handler = proc_cap_handler,
},
{
.procname = "inheritable",
.data = CAP_PI,
.maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
.mode = 0600,
.proc_handler = proc_cap_handler,
},
{ }
};