add stream inference output function

This commit is contained in:
anrongqiao 2024-03-14 17:38:39 +08:00
parent ffa3ad00be
commit ccb188a04e
4 changed files with 286 additions and 0 deletions

21
stream_infer/README.md Normal file
View File

@ -0,0 +1,21 @@
# 流式输出操作手册
# 环境安装
docker 路径:
由于流式输出需要特定的环境依赖因此在新的env下进行推理和输出
conda activate stream_info
# 流程:
1 将模型进行convert处理将训练模型转换成流式输出支持的格式
python convert.py
2 模型推理: python deploy_llm_8b_demo.py
(1) 设置CUDA_VISIBLE_DEVICES的数目
(2) 修改LocalLoader 中的实际使用模型的属性
(3) 在修改LocalLoader调用的时候修改流式输出模型位置及其词表
3 测试请求python request_demo.py
若不清楚请求的ip port可以在推理阶段保存的log文件error_8b.log中找到

84
stream_infer/convert.py Normal file
View File

@ -0,0 +1,84 @@
import torch
import struct
import numpy as np
def write_string(fp, v):
v = v.encode("utf-8")
fp.write( struct.pack("I", len(v)) )
fp.write(v)
def write_tuple(fp, v):
fp.write( struct.pack("B", len(v)) )
for i in v:
fp.write( struct.pack("I", i) )
def write_dtype(fp, v):
sv = -1
if v == np.int8:
sv = 0
elif v == np.float16:
sv = 1
if sv == -1:
raise TypeError("Unknown dtype %s" % v)
fp.write( struct.pack("B", sv) )
def write_parameter(fp, name : str, value : torch.Tensor):
write_string(fp, name)
write_tuple(fp, value.size())
value = np.ascontiguousarray(value.cpu().numpy())
value_bytes = value.tobytes()
fp.write( struct.pack("I", len(value_bytes)) )
write_dtype(fp, value.dtype)
fp.write(value_bytes)
def split(x, s):
sizes = []
for it in x.size():
sizes.append(it)
assert sizes[0] % s == 0
sizes = [s, sizes[0] // s ] + sizes[1:]
return x.reshape(*sizes)
def main(src_model_path, dst_model_path, layer_num):
#训练保存的原始模型
model = torch.load(src_model_path, map_location="cpu")
params = {}
params["input_embedding.weight"] = model["input_embedding.weight"].cpu()
params["lm_head.weight"] = model["lm_head.weight"].cpu()
params["output_layernorm.weight"] = (model["encoder.output_layernorm.weight"]).cpu()
for i in range(layer_num):
params[f"layers.{i}.ln_attn.weight"] = model[f"encoder.layers.{i}.self_att.layernorm_before_attention.weight"].cpu()
params[f"layers.{i}.attn.project_q.weight"] = model[f"encoder.layers.{i}.self_att.self_attention.project_q.weight"]
params[f"layers.{i}.attn.project_k.weight"] = model[f"encoder.layers.{i}.self_att.self_attention.project_k.weight"]
params[f"layers.{i}.attn.project_v.weight"] = model[f"encoder.layers.{i}.self_att.self_attention.project_v.weight"]
params[f"layers.{i}.attn.attn_out.weight"] = model[f"encoder.layers.{i}.self_att.self_attention.attention_out.weight"]
params[f"layers.{i}.ln_ff.weight"] = model[f"encoder.layers.{i}.ffn.layernorm_before_ffn.weight"].cpu()
params[f"layers.{i}.ff.w_in.weight"] = model[f"encoder.layers.{i}.ffn.ffn.w_in.w_0.weight"]
params[f"layers.{i}.ff.w_gated.weight"] = model[f"encoder.layers.{i}.ffn.ffn.w_in.w_1.weight"]
params[f"layers.{i}.ff.w_out.weight"] = model[f"encoder.layers.{i}.ffn.ffn.w_out.weight"]
#转换后的模型
fout = open(dst_model_path, "wb")
fout.write( struct.pack("I", len(params)) )
for name, value in params.items():
write_parameter(fout, name, value)
fout.close()
if __name__ == '__main__':
src_model_path = "/home/wangyixuan/workplace/llm_service/sse/checkpoints-epoch-2/cpm9g-8b-sft-epoch-2.pt"
dst_model_path = "model_8b.ckpt"
# 百亿32
# 千亿80
layer_num = 32
main(src_model_path, dst_model_path, layer_num)

View File

@ -0,0 +1,152 @@
import os
import struct
import json
from typing import List
import libcpm
from flask import Flask, Response, request
# from concurrent.futures import ThreadPoolExecutor
# executor = ThreadPoolExecutor(1)
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3,4,5,6,7"
def _load_dtype(fp):
dtype = struct.unpack("B", fp.read(1))[0]
return dtype
def _load_string(fp):
size = struct.unpack("I", fp.read(4))[0]
return fp.read(size).decode("utf-8")
def _load_tuple(fp):
ndim = struct.unpack("B", fp.read(1))[0]
ret = []
for i in range(ndim):
ret.append(struct.unpack("I", fp.read(4))[0])
return tuple(ret)
class LocalLoader(libcpm.ModelLoader):
def __init__(self,
model_path : str,
vocab_path : str,
):
vocabs = []
with open(vocab_path, "r") as fin:
for line in fin:
if line.startswith("\""):
vocabs.append(json.loads(line))
self._vocabs = vocabs
# print(len(vocabs), "tokens")
with open(model_path, "rb") as fp:
num_parameters = struct.unpack("I", fp.read(4))[0]
parameters = {}
for _ in range(num_parameters):
param_name = "model." + _load_string(fp)
_ = _load_tuple(fp)
param_size = struct.unpack("I", fp.read(4))[0]
_ = _load_dtype(fp)
param = fp.read(param_size)
parameters[param_name] = param
self._parameters = parameters
def fetch_parameter(self, name):
# print(name, len(self._parameters[name]))
return self._parameters[name]
@property
def num_layers(self):
return 32
@property
def dim_model(self):
return 4096
@property
def num_heads(self):
return 32
@property
def num_kv_heads(self):
return 32
@property
def dim_head(self):
return 128
@property
def dim_ff(self):
return 14336
@property
def tokens(self):
return self._vocabs
@property
def rope_theta(self):
return 10000.0
model = libcpm.CPMCaterpillar(
#add converted model and vocabs
LocalLoader(
"model_8b.ckpt",
"vocabs.txt",
),
memory_limit = 40 << 30,
)
app = Flask(__name__)
import logging
logging.basicConfig(filename='error_8b.log',level=logging.DEBUG)
@app.route("/llm", methods=["get", "post"])
def llm():
content: str = request.json["content"]
if "params" in request.json:
params = request.json["params"]
else:
params = {}
# ret = executor.submit(_llm, content).result()
ret = _llm(content, params)
return ret
def _llm(content, params):
logging.debug("~ content:\n" + content)
logging.debug("~ input_params:\n" + json.dumps(params, ensure_ascii=False))
def generate_events(content):
ipt = content.replace("<用户>", "<sep>用户:")
ipt = ipt.replace("<AI>", "<sep>AI")
ipt = ipt.lstrip("<sep>")
old_ans = ""
logging.debug("~ ans:")
true_params = {}
USING_PARAMS = {"max_length", "repetition_penalty", "ngram_penalty", "seed", "temperature", "top_p", "top_k", "interval"}
true_params = {}
for p in USING_PARAMS:
if p in params:
true_params[p] = params[p]
if "max_length" not in true_params:
true_params["max_length"] = 4096
logging.debug("~ true_params:\n" + json.dumps(true_params, ensure_ascii=False))
for it in model.random_search(ipt, **true_params):
ans = it["result"]
if ans is not None:
return_data = "data:" + json.dumps({"text": ans[len(old_ans):]}, ensure_ascii=False) + "\n\n"
yield return_data
logging.debug("return_data[" + return_data.strip() + "]")
old_ans = ans
if it["stoped"]:
break
logging.debug("\n")
return Response(generate_events(content), mimetype="text/event-stream")
if __name__ == "__main__":
app.run(host="0.0.0.0", port=8888, debug=True, use_reloader=False)

View File

@ -0,0 +1,29 @@
import json
import pprint
import requests
import sseclient # pip install sseclient-py
# content = "hello"
url = "http://10.1.2.1:8888/llm"
payload = json.dumps({
"content": "<用户>hello<AI>"
})
headers = {
'Content-Type': 'application/json',
"accept": "text/event-stream"
}
response = requests.request("POST", url, stream=True, headers=headers, data=payload)
# print(response.text)
client = sseclient.SSEClient(response)
for event in client.events():
pprint.pprint(event.data)