CPM-9G-8B/stream_infer/convert.py

86 lines
2.9 KiB
Python
Raw Permalink Normal View History

2024-03-14 17:38:39 +08:00
import torch
import struct
import numpy as np
def write_string(fp, v):
v = v.encode("utf-8")
fp.write( struct.pack("I", len(v)) )
fp.write(v)
def write_tuple(fp, v):
fp.write( struct.pack("B", len(v)) )
for i in v:
fp.write( struct.pack("I", i) )
def write_dtype(fp, v):
sv = -1
if v == np.int8:
sv = 0
elif v == np.float16:
sv = 1
if sv == -1:
raise TypeError("Unknown dtype %s" % v)
fp.write( struct.pack("B", sv) )
def write_parameter(fp, name : str, value : torch.Tensor):
write_string(fp, name)
write_tuple(fp, value.size())
value = np.ascontiguousarray(value.cpu().numpy())
value_bytes = value.tobytes()
fp.write( struct.pack("I", len(value_bytes)) )
write_dtype(fp, value.dtype)
fp.write(value_bytes)
def split(x, s):
sizes = []
for it in x.size():
sizes.append(it)
assert sizes[0] % s == 0
sizes = [s, sizes[0] // s ] + sizes[1:]
return x.reshape(*sizes)
def main(src_model_path, dst_model_path, layer_num):
2024-04-29 19:37:04 +08:00
2024-03-14 17:38:39 +08:00
model = torch.load(src_model_path, map_location="cpu")
params = {}
params["input_embedding.weight"] = model["input_embedding.weight"].cpu()
params["lm_head.weight"] = model["lm_head.weight"].cpu()
params["output_layernorm.weight"] = (model["encoder.output_layernorm.weight"]).cpu()
for i in range(layer_num):
params[f"layers.{i}.ln_attn.weight"] = model[f"encoder.layers.{i}.self_att.layernorm_before_attention.weight"].cpu()
params[f"layers.{i}.attn.project_q.weight"] = model[f"encoder.layers.{i}.self_att.self_attention.project_q.weight"]
params[f"layers.{i}.attn.project_k.weight"] = model[f"encoder.layers.{i}.self_att.self_attention.project_k.weight"]
params[f"layers.{i}.attn.project_v.weight"] = model[f"encoder.layers.{i}.self_att.self_attention.project_v.weight"]
params[f"layers.{i}.attn.attn_out.weight"] = model[f"encoder.layers.{i}.self_att.self_attention.attention_out.weight"]
params[f"layers.{i}.ln_ff.weight"] = model[f"encoder.layers.{i}.ffn.layernorm_before_ffn.weight"].cpu()
params[f"layers.{i}.ff.w_in.weight"] = model[f"encoder.layers.{i}.ffn.ffn.w_in.w_0.weight"]
params[f"layers.{i}.ff.w_gated.weight"] = model[f"encoder.layers.{i}.ffn.ffn.w_in.w_1.weight"]
params[f"layers.{i}.ff.w_out.weight"] = model[f"encoder.layers.{i}.ffn.ffn.w_out.weight"]
#转换后的模型
fout = open(dst_model_path, "wb")
fout.write( struct.pack("I", len(params)) )
for name, value in params.items():
write_parameter(fout, name, value)
fout.close()
if __name__ == '__main__':
2024-04-29 19:37:04 +08:00
# 输入已有的源模型
src_model_path = "./checkpoints-epoch-1/cpm9g-8b-sft-epoch-1.pt"
# 格式转换后的模型地址
2024-03-14 17:38:39 +08:00
dst_model_path = "model_8b.ckpt"
# 百亿32
# 千亿80
layer_num = 32
main(src_model_path, dst_model_path, layer_num)