2022-10-18 22:02:51 +08:00
|
|
|
#include "core/graph.h"
|
|
|
|
#include "core/kernel.h"
|
|
|
|
#include "core/runtime.h"
|
|
|
|
#include "cuda/cuda_runtime.h"
|
|
|
|
#include "cuda/cuda_utility.h"
|
|
|
|
#include "operators/concat.h"
|
|
|
|
#include "operators/conv.h"
|
|
|
|
#include "operators/pooling.h"
|
|
|
|
#include "operators/unary.h"
|
|
|
|
|
|
|
|
#include "test.h"
|
|
|
|
|
|
|
|
namespace infini {
|
|
|
|
|
|
|
|
TEST(CUDA_Inception_v3_block, run) {
|
|
|
|
const int bs = 1, initialChannels = 192, h = 32;
|
|
|
|
|
|
|
|
auto cudaRuntime = make_ref<CudaRuntimeObj>();
|
|
|
|
auto g = make_ref<GraphObj>(cudaRuntime);
|
|
|
|
auto blockInput = g->addTensor({bs, initialChannels, h, h});
|
|
|
|
vector<vector<tuple<bool, int, int>>> configs =
|
|
|
|
// <isConv, f, r/s>
|
|
|
|
{
|
|
|
|
{{true, 64, 1}}, // a chain with one Conv
|
|
|
|
{{true, 48, 1}, {true, 64, 5}},
|
|
|
|
{{true, 64, 1}, {true, 96, 3}, {true, 96, 3}},
|
|
|
|
{{false, 192, 3}, {true, 32, 3}},
|
|
|
|
};
|
|
|
|
TensorVec outputs;
|
|
|
|
vector<OpVec> ops;
|
|
|
|
auto maxpool =
|
|
|
|
g->addOp<MaxPoolObj>(blockInput, nullptr, 3, 3, 1, 1, 1, 1, 1, 1);
|
|
|
|
auto chainInput = maxpool->getOutput();
|
|
|
|
for (auto &pathConfig : configs) {
|
|
|
|
int inputChannels = initialChannels;
|
|
|
|
auto input = chainInput;
|
|
|
|
ops.emplace_back();
|
|
|
|
for (auto &[isConv, f, r] : pathConfig) { // OpConfig
|
|
|
|
if (isConv) {
|
|
|
|
{ // Add Conv
|
|
|
|
auto w = g->addTensor({f, inputChannels, r, r});
|
|
|
|
auto conv =
|
|
|
|
g->addOp<ConvObj>(input, w, nullptr, r / 2, r / 2);
|
|
|
|
input = conv->getOutput();
|
|
|
|
ops.back().emplace_back(conv);
|
|
|
|
}
|
|
|
|
{ // Add Relu
|
|
|
|
auto relu = g->addOp<ReluObj>(input, nullptr);
|
|
|
|
input = relu->getOutput();
|
|
|
|
ops.back().emplace_back(relu);
|
|
|
|
}
|
|
|
|
inputChannels = f;
|
|
|
|
} else { // Add AveragePool
|
|
|
|
auto pool = g->addOp<AvgPoolObj>(input, nullptr, r, r, 1, 1,
|
|
|
|
r / 2, r / 2, 1, 1);
|
|
|
|
input = pool->getOutput();
|
|
|
|
ops.back().emplace_back(pool);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
outputs.emplace_back(input);
|
|
|
|
}
|
|
|
|
auto concat = g->addOp<ConcatObj>(outputs, nullptr, 1);
|
|
|
|
g->print();
|
|
|
|
|
|
|
|
// check connection
|
|
|
|
EXPECT_EQ(maxpool->getSuccessors().size(), 4u);
|
2023-03-25 12:04:24 +08:00
|
|
|
EXPECT_EQ(chainInput->getTargets().size(), 4u);
|
2022-10-18 22:02:51 +08:00
|
|
|
for (const auto &chainOps : ops) {
|
|
|
|
for (size_t i = 1; i < chainOps.size(); i++) {
|
|
|
|
auto prev = chainOps[i - 1];
|
|
|
|
auto cur = chainOps[i];
|
|
|
|
EXPECT_EQ(prev->getSuccessors().size(), 1u);
|
|
|
|
EXPECT_EQ(cur->getPredecessors().size(), 1u);
|
|
|
|
EXPECT_EQ(prev->getSuccessors()[0], cur);
|
|
|
|
EXPECT_EQ(prev, cur->getPredecessors()[0]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPECT_EQ(concat->getPredecessors().size(), 4u);
|
|
|
|
|
|
|
|
// TODO: check outputs
|
|
|
|
g->dataMalloc();
|
|
|
|
cudaRuntime->run(g);
|
|
|
|
}
|
|
|
|
}; // namespace infini
|