InfiniTensor/test/kernels/cuda/test_cuda_conv_transposed_2...

172 lines
6.9 KiB
C++

#include "core/graph.h"
#include "core/kernel.h"
#include "core/perf_engine.h"
#include "core/runtime.h"
#include "cuda/cuda_runtime.h"
#include "cuda/cuda_utility.h"
#include "operators/conv.h"
#include "test.h"
namespace infini {
void testConvTransposedCudnn(
const std::function<void(void *, size_t, DataType)> &generator,
vector<float> ansVec) {
const auto &[N, C, H, W, F, R, S] = tuple{1, 1, 2, 2, 1, 4, 4};
const int stride = 1, padding = 0, dilation = 1;
// Construct Runtime and graph for CPU and CUDA
Runtime cpu = NativeCpuRuntimeObj::getInstance(); // CPUruntime is singleton
Graph gCpu = make_ref<GraphObj>(cpu);
Runtime cuda = make_ref<CudaRuntimeObj>();
Graph gCuda = make_ref<GraphObj>(cuda);
// Set input data on CPU in a CPU Graph
Tensor i0Cpu = gCpu->addTensor({N, F, H, H}, DataType::Float32);
Tensor w0Cpu = gCpu->addTensor({F, C, R, S}, DataType::Float32);
// Malloc data for all tensors in a graph. Do we need implicit allocation?
gCpu->dataMalloc();
i0Cpu->setData(generator);
w0Cpu->setData(generator);
// Copy input tensors from CPU to CUDA
Tensor i0Cuda = gCuda->cloneTensor(i0Cpu);
Tensor w0Cuda = gCuda->cloneTensor(w0Cpu);
// Build CUDA graph
auto conv = gCuda->addOp<ConvTransposed2dObj>(i0Cuda, w0Cuda, nullptr,
padding, padding, stride,
stride, dilation, dilation);
gCuda->dataMalloc();
i0Cuda->setData(generator);
w0Cuda->setData(generator);
// Execute on CUDA
cuda->run(gCuda);
// copy output from CUDA to CPU
auto o0Cpu = gCpu->cloneTensor(conv->getOutput());
// check results on CPU
EXPECT_TRUE(o0Cpu->equalData(ansVec));
}
void testConvTransposedNHWCCudnn(
const std::function<void(void *, size_t, DataType)> &generator,
vector<float> ansVec) {
const auto &[N, C, H, W, F, R, S] = tuple{1, 1, 2, 2, 2, 4, 4};
const int stride = 1, padding = 0, dilation = 1;
// Construct Runtime and graph for CPU and CUDA
Runtime cpu = NativeCpuRuntimeObj::getInstance(); // CPUruntime is singleton
Graph gCpu = make_ref<GraphObj>(cpu);
Runtime cuda = make_ref<CudaRuntimeObj>();
Graph gCuda = make_ref<GraphObj>(cuda);
// Set input data on CPU in a CPU Graph
Tensor i0Cpu = gCpu->addTensor({N, H, W, F}, DataType::Float32);
Tensor w0Cpu = gCpu->addTensor({F, R, S, C}, DataType::Float32);
// Malloc data for all tensors in a graph. Do we need implicit allocation?
gCpu->dataMalloc();
i0Cpu->setData(generator);
w0Cpu->setData(generator);
// Copy input tensors from CPU to CUDA
Tensor i0Cuda = gCuda->cloneTensor(i0Cpu);
Tensor w0Cuda = gCuda->cloneTensor(w0Cpu);
// Build CUDA graph
auto conv = gCuda->addOp<ConvTransposed2dNHWCObj>(
i0Cuda, w0Cuda, nullptr, padding, padding, stride, stride, dilation,
dilation);
gCuda->dataMalloc();
i0Cuda->setData(generator);
w0Cuda->setData(generator);
// Execute on CUDA
cuda->run(gCuda);
// copy output from CUDA to CPU
auto o0Cpu = gCpu->cloneTensor(conv->getOutput());
// check results on CPU
EXPECT_TRUE(o0Cpu->equalData(ansVec));
}
TEST(cuDNN_ConvTransposed, run) {
testConvTransposedCudnn(IncrementalGenerator(),
vector<float>{0., 0., 1., 2., 3., 0., 6.,
12., 18., 16., 8., 30., 36., 42.,
32., 16., 54., 60., 66., 48., 24.,
62., 67., 72., 45.});
}
TEST(cuDNN_ConvTransposedNHWC, run) {
testConvTransposedNHWCCudnn(IncrementalGenerator(),
vector<float>{16, 65, 71, 77, 63, 100, 290,
318, 346, 234, 140, 402, 430, 458,
306, 180, 514, 542, 570, 378, 188,
465, 487, 509, 307});
}
TEST(cuDNN_ConvTransposed, run1) {
// Construct Runtime and graph for CPU and CUDA
Runtime cpu = NativeCpuRuntimeObj::getInstance(); // CPUruntime is singleton
Graph gCpu = make_ref<GraphObj>(cpu);
Runtime cuda = make_ref<CudaRuntimeObj>();
Graph gCuda = make_ref<GraphObj>(cuda);
// Set input data on CPU in a CPU Graph
Tensor i0Cpu = gCpu->addTensor({1, 2, 3, 3}, DataType::Float32);
Tensor w0Cpu = gCpu->addTensor({2, 2, 3, 3}, DataType::Float32);
// Malloc data for all tensors in a graph. Do we need implicit allocation?
gCpu->dataMalloc();
i0Cpu->setData(IncrementalGenerator());
w0Cpu->setData(IncrementalGenerator());
// Copy input tensors from CPU to CUDA
Tensor i0Cuda = gCuda->cloneTensor(i0Cpu);
Tensor w0Cuda = gCuda->cloneTensor(w0Cpu);
// Build CUDA graph
auto conv =
gCuda->addOp<ConvTransposed2dObj>(i0Cuda, w0Cuda, nullptr, 0, 0);
gCuda->dataMalloc();
i0Cuda->setData(IncrementalGenerator());
w0Cuda->setData(IncrementalGenerator());
// Execute on CUDA
cuda->run(gCuda);
// copy output from CUDA to CPU
auto o0Cpu = gCpu->cloneTensor(conv->getOutput());
// check results on CPU
EXPECT_TRUE(o0Cpu->equalData(vector<float>{
162, 351, 569, 413, 224, 405, 876, 1417, 1024, 553,
747, 1611, 2598, 1869, 1005, 639, 1368, 2191, 1564, 835,
396, 843, 1343, 953, 506, 243, 531, 866, 629, 341,
621, 1344, 2173, 1564, 841, 1152, 2475, 3975, 2841, 1518,
963, 2052, 3271, 2320, 1231, 585, 1239, 1964, 1385, 731}));
}
TEST(cuDNN_ConvTransposed, tune) {
Runtime cpu = NativeCpuRuntimeObj::getInstance(); // CPUruntime is singleton
Graph gCpu = make_ref<GraphObj>(cpu);
Runtime cuda = make_ref<CudaRuntimeObj>();
Graph gCuda = make_ref<GraphObj>(cuda);
// Set input data on CPU in a CPU Graph
Tensor i0Cpu = gCpu->addTensor({1, 448, 2, 2}, DataType::Float32);
Tensor w0Cpu = gCpu->addTensor({448, 256, 4, 4}, DataType::Float32);
// Malloc data for all tensors in a graph. Do we need implicit allocation?
gCpu->dataMalloc();
i0Cpu->setData(IncrementalGenerator());
w0Cpu->setData(IncrementalGenerator());
// Copy input tensors from CPU to CUDA
Tensor i0Cuda = gCuda->cloneTensor(i0Cpu);
Tensor w0Cuda = gCuda->cloneTensor(w0Cpu);
// Build CUDA graph
auto conv = gCuda->addOp<ConvTransposed2dObj>(i0Cuda, w0Cuda, nullptr);
// allocate CUDA memory
gCuda->dataMalloc();
i0Cuda->setData(IncrementalGenerator());
w0Cuda->setData(IncrementalGenerator());
// Execute on CUDA
bool tune = true;
cuda->run(gCuda, tune);
// check record
auto kernelAttrs =
KernelAttrs{Device::CUDA, conv->getOpType().underlying()};
auto perfKey = PerfEngine::Key{kernelAttrs, conv->getOpPerfKey()};
std::optional<PerfRecord> perfData =
PerfEngine::getInstance().getPerfData(perfKey);
ASSERT_TRUE(perfData.has_value());
}
} // namespace infini