forked from jiuyuan/InfiniTensor
95 lines
3.5 KiB
C++
95 lines
3.5 KiB
C++
#include "core/graph.h"
|
|
#include "core/kernel.h"
|
|
#include "core/runtime.h"
|
|
#include "cuda/cuda_runtime.h"
|
|
#include "cuda/cuda_utility.h"
|
|
#include "operators/unary.h"
|
|
|
|
#include "test.h"
|
|
|
|
namespace infini {
|
|
|
|
template <class T>
|
|
void testUnary(const std::function<void(void *, size_t, DataType)> &generator,
|
|
const Shape &shape) {
|
|
// Runtime
|
|
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
|
auto cudaRuntime = make_ref<CudaRuntimeObj>();
|
|
|
|
// Build input data on CPU
|
|
Tensor inputCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
|
|
|
// GPU
|
|
Graph cudaGraph = make_ref<GraphObj>(cudaRuntime);
|
|
auto inputGpu = cudaGraph->cloneTensor(inputCpu);
|
|
auto gpuOp = cudaGraph->addOp<T>(inputGpu, nullptr);
|
|
cudaGraph->dataMalloc();
|
|
inputGpu->setData(generator);
|
|
cudaRuntime->run(cudaGraph);
|
|
auto outputGpu = gpuOp->getOutput();
|
|
auto outputGpu2Cpu = outputGpu->clone(cpuRuntime);
|
|
// CPU
|
|
Graph cpuGraph = make_ref<GraphObj>(cpuRuntime);
|
|
auto cpuOp = cpuGraph->addOp<T>(inputCpu, nullptr);
|
|
cpuGraph->addTensor(inputCpu);
|
|
cpuGraph->dataMalloc();
|
|
inputCpu->setData(generator);
|
|
cpuRuntime->run(cpuGraph);
|
|
auto outputCpu = cpuOp->getOutput();
|
|
// Check
|
|
EXPECT_TRUE(outputCpu->equalData(outputGpu2Cpu));
|
|
}
|
|
|
|
template <class T>
|
|
void testCast(const std::function<void(void *, size_t, DataType)> &generator,
|
|
const Shape &shape, vector<float> ansVec) {
|
|
// Runtime
|
|
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
|
|
auto cudaRuntime = make_ref<CudaRuntimeObj>();
|
|
|
|
// Build input data on CPU
|
|
Tensor inputCpu = make_ref<TensorObj>(shape, DataType::Float32, cpuRuntime);
|
|
inputCpu->dataMalloc();
|
|
inputCpu->setData(generator);
|
|
|
|
// GPU
|
|
Graph cudaGraph = make_ref<GraphObj>(cudaRuntime);
|
|
auto inputGpu = cudaGraph->cloneTensor(inputCpu);
|
|
auto gpuOp =
|
|
cudaGraph->addOp<T>(inputGpu, nullptr, CastType::Float2Float16);
|
|
cudaGraph->dataMalloc();
|
|
inputGpu->setData(generator);
|
|
cudaRuntime->run(cudaGraph);
|
|
auto outputGpu = gpuOp->getOutput();
|
|
auto outputGpu2Cpu = outputGpu->clone(cpuRuntime);
|
|
|
|
inputCpu->printData();
|
|
outputGpu2Cpu->printData();
|
|
EXPECT_TRUE(outputGpu2Cpu->equalData(ansVec));
|
|
}
|
|
|
|
TEST(cuDNN_Unary, run) {
|
|
testUnary<ReluObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
|
testUnary<SiluObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
|
testUnary<AbsObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
|
testUnary<SigmoidObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
|
testUnary<TanhObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
|
testUnary<HardSigmoidObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
|
testUnary<HardSwishObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
|
testUnary<SqrtObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
|
testUnary<NegObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
|
testUnary<ErfObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
|
testCast<CastObj>(IncrementalGenerator(), Shape{8, 1},
|
|
vector<float>{0, 1, 2, 3, 4, 5, 6, 7});
|
|
// more shapes
|
|
testUnary<SqrtObj>(IncrementalGenerator(), Shape{13});
|
|
testUnary<SqrtObj>(IncrementalGenerator(), Shape{4, 3});
|
|
testUnary<SqrtObj>(IncrementalGenerator(), Shape{2, 3, 4, 5, 6});
|
|
|
|
testUnary<GeluObj>(IncrementalGenerator(), Shape{1});
|
|
testUnary<GeluObj>(IncrementalGenerator(), Shape{1, 2});
|
|
testUnary<GeluObj>(IncrementalGenerator(), Shape{1, 2, 2, 3});
|
|
}
|
|
|
|
} // namespace infini
|