InfiniTensor/include/operators/conv.h

229 lines
9.5 KiB
C++

#pragma once
#include "core/operator.h"
namespace infini {
/**
* @brief Convolution. Currently this operator only supports 2-D convolution.
* This is the base class for convolution and transposed convolution.
* The input tensor has four dimensions, called N (batch), C (channel), H
* (height), and W (width) respectively; The weight tensor has four dimensions,
* called F (number of filters), C (channel), R (height of weight), and S (width
* of weight) respectively; The output tensor has four dimensions, called N, F,
* H, and W respectively. By default, we take NCHW layout for the input and
* output tensors, and FCRS layout for the weight tensor.
* Convolutions have three attributes, called padding, stride, and dilation.
* Padding is assigned by padding mode or padding size. Padding mode must be
* Other, Same, or Valid (see the definition of enum class PaddingMode). Same
* means the output has the same shape as the input. Valid means padding size is
* 0. Other means padding size is assigned by value ph and pw, denoting the
* padding size along height dimension and weight dimension, respectively.
* Stride is assigned by sh and sw, denoting the stride along height dimension
* and weight dimension, respectively.
* Dilation is assigned by dh and dw, denoting the dilation along height
* dimension and weight dimension, respectively.
* See
* https://towardsdatascience.com/types-of-convolutions-in-deep-learning-717013397f4d
* for a detailed explanation of convolution.
*
*/
class ConvBaseObj : public OperatorObj {
public:
// When PaddingMode is Other, ConvObj will use padding size (ph, pw)
// Otherwise, padding size (ph, pw) will be computed by padding mode
enum class PaddingMode {
Other,
Same,
Valid,
};
protected:
int ph, pw;
int sh, sw;
int dh, dw;
PaddingMode padding;
// Auxiliary attributes. Descripitions stand on a forward perspective,
// i.e., convTransposed2d is not regarded as the backward of conv2d.
int n; // batch size
int c; // input/output channel for conv2d/convTransposed2d
int h, w; // input shape (same for conv2d and convTranposed2d)
int f; // output/input channel for conv2d/convTransposed2d
int r, s; // weight shape
ActType act;
public:
/**
* @brief Construct a new ConvBase object by explicitly setting padding
* size.
*
* @param opType Indicate if this is a convolution or transposed
* convolution.
* @param inputs The input, weight and bias tensors. Bias is optional.
* FIXME: Split inputs into three parameters, input, weight, and bias.
* @param output The output tensor.
* @param ph Padding along height dimension.
* @param pw Padding along weight dimension.
* @param sh Stride along height dimension.
* @param sw Stride along weight dimension.
* @param dh Dilation along height dimension.
* @param dw Dilation along weight dimension.
* @param inputInConvFWD To be removed.
* @param weightInConvFWD To be removed.
*/
ConvBaseObj(OpType opType, TensorVec inputs, Tensor &output, int ph, int pw,
int sh, int sw, int dh, int dw, const Tensor &inputInConvFWD,
const Tensor &weightInConvFWD, ActType act = ActType::None);
/**
* @brief Construct a new ConvBase object by setting padding mode.
*
* @param opType Indicate if this is a convolution or transposed
* convolution.
* @param inputs The input, weight and bias tensors. Bias is optional.
* FIXME: Split inputs into three parameters, input, weight, and bias.
* @param output The output tensor.
* @param mode Padding mode, which is set to Other, Same, or Valid.
* @param sh Stride along height dimension.
* @param sw Stride along weight dimension.
* @param dh Dilation along height dimension.
* @param dw Dilation along weight dimension.
* @param inputInConvFWD To be removed.
* @param weightInConvFWD To be removed.
*/
ConvBaseObj(OpType opType, TensorVec inputs, Tensor &output,
PaddingMode mode, int sh, int sw, int dh, int dw,
const Tensor &inputInConvFWD, const Tensor &weightInConvFWD,
ActType act = ActType::None);
std::string toString() const override;
int numInputs() const override { return 2; }
int numOutputs() const override { return 1; }
Tensor getBias() const { return inputs[2]; }
PaddingMode getPaddingMode() const { return padding; }
pair<int, int> inferPaddingSize() const;
int getDh() const { return dh; }
int getDw() const { return dw; }
int getPh() const { return ph; }
int getPw() const { return pw; }
int getSh() const { return sh; }
int getSw() const { return sw; }
auto getNCHWFRS() const { return tuple(n, c, h, w, f, r, s); }
auto getPadStrideDilation() const { return tuple(ph, pw, sh, sw, dh, dw); }
int getChannelPerGroup() const {
if (type == OpType::ConvTransNHWC) {
return inputs[1]->getDims()[3];
} else {
return inputs[1]->getDims()[1];
}
}
ActType getAct() const { return act; }
virtual int getNumGroups() const = 0;
private:
vector<int> getWorkloadVector() const override;
vector<int> getOpAttrVector() const override;
/**
* @brief Set the Auxilary Attributes: nchwrfs and padding (ph, pw) if
* padding mode is set. This function should be called in constructor.
*/
virtual void setAuxilaryAttributes(PaddingMode mode) = 0;
};
class ConvObj : public ConvBaseObj {
public:
ConvObj(GraphObj *graph, Tensor input, Tensor weight, Tensor output, int ph,
int pw, int sh = 1, int sw = 1, int dh = 1, int dw = 1,
Tensor bias = nullptr, ActType act = ActType::None);
// Constructors for setting padding mode
ConvObj(GraphObj *graph, Tensor input, Tensor weight, Tensor output,
PaddingMode mode = PaddingMode::Same, int sh = 1, int sw = 1,
int dh = 1, int dw = 1, Tensor bias = nullptr,
ActType act = ActType::None);
OP_CLONE(ConvObj);
optional<vector<Shape>> inferShape(const TensorVec &inputs) override;
int getNumGroups() const override { return c / getChannelPerGroup(); }
private:
void setAuxilaryAttributes(PaddingMode mode) override;
};
class ConvBackwardFilterObj : public ConvBaseObj {
private:
ActType act;
public:
ConvBackwardFilterObj(GraphObj *graph, Tensor inputX, Tensor diffY,
Tensor diffW, int ph, int pw, int sh = 1, int sw = 1,
int dh = 1, int dw = 1, Tensor bias = nullptr,
ActType act = ActType::None);
// Constructors for setting padding mode
ConvBackwardFilterObj(GraphObj *graph, Tensor inputX, Tensor diffY,
Tensor diffW, PaddingMode mode = PaddingMode::Same,
int sh = 1, int sw = 1, int dh = 1, int dw = 1,
Tensor bias = nullptr, ActType act = ActType::None);
optional<vector<Shape>> inferShape(const TensorVec &inputs) override;
ActType getAct() const { return act; }
int getNumGroups() const override { return c / getChannelPerGroup(); }
private:
void setAuxilaryAttributes(PaddingMode mode) override;
};
class ConvTransposed2dObj : public ConvBaseObj {
private:
int oph, opw;
int group;
public:
ConvTransposed2dObj(GraphObj *graph, Tensor input, Tensor weight,
Tensor output, int ph, int pw, int sh = 1, int sw = 1,
int dh = 1, int dw = 1, int oph = 0, int opw = 0,
int group = 1, Tensor bias = nullptr,
ActType act = ActType::None);
// Constructors for setting padding mode
ConvTransposed2dObj(GraphObj *graph, Tensor input, Tensor weight,
Tensor output, PaddingMode mode = PaddingMode::Same,
int sh = 1, int sw = 1, int dh = 1, int dw = 1,
int oph = 0, int opw = 0, int group = 1,
Tensor bias = nullptr, ActType act = ActType::None);
OP_CLONE(ConvTransposed2dObj);
optional<vector<Shape>> inferShape(const TensorVec &inputs) override;
int getNumGroups() const override { return group; }
std::pair<int, int> getOutputPadding() const { return {oph, opw}; }
private:
void setAuxilaryAttributes(PaddingMode mode) override;
};
class ConvTransposed2dNHWCObj : public ConvBaseObj {
private:
int oph, opw;
int group;
public:
ConvTransposed2dNHWCObj(GraphObj *graph, Tensor input, Tensor weight,
Tensor output, int ph, int pw, int sh = 1,
int sw = 1, int dh = 1, int dw = 1, int oph = 0,
int opw = 0, int group = 1, Tensor bias = nullptr,
ActType act = ActType::None);
// Constructors for setting padding mode
ConvTransposed2dNHWCObj(GraphObj *graph, Tensor input, Tensor weight,
Tensor output, PaddingMode mode = PaddingMode::Same,
int sh = 1, int sw = 1, int dh = 1, int dw = 1,
int oph = 0, int opw = 0, int group = 1,
Tensor bias = nullptr, ActType act = ActType::None);
OP_CLONE(ConvTransposed2dNHWCObj);
optional<vector<Shape>> inferShape(const TensorVec &inputs) override;
int getNumGroups() const override { return group; }
private:
void setAuxilaryAttributes(PaddingMode mode) override;
};
} // namespace infini