forked from jiuyuan/InfiniTensor
163 lines
5.8 KiB
Python
163 lines
5.8 KiB
Python
import re
|
|
|
|
import numpy as np
|
|
import tvm
|
|
from tvm import te, tir, auto_scheduler, topi
|
|
import os
|
|
import json
|
|
import logging
|
|
|
|
USE_CACHE = True
|
|
logger = logging.getLogger('InfiniTensor')
|
|
logger.setLevel(logging.DEBUG)
|
|
|
|
|
|
def gen_ansor_op(input_tensors, input_dtypes, output_tensor, output_dtype, f,
|
|
func_name, input_names, output_name, nnet_expression: str,
|
|
nnet_simplified_expression: str, hash_code=None):
|
|
assert len(input_tensors) == len(input_dtypes)
|
|
assert len(input_tensors) == len(input_names)
|
|
|
|
logging.debug(f'Work on hash {hash_code}')
|
|
|
|
dir_name = os.path.join(".cache", "generated_kernels", str(hash_code))
|
|
func_code_fn = os.path.join(dir_name, "kernel.cu")
|
|
invoke_code_fn = os.path.join(dir_name, "invoke.cpp")
|
|
config_fn = os.path.join(dir_name, "config.json")
|
|
|
|
if USE_CACHE and hash_code is not None:
|
|
if os.path.exists(dir_name):
|
|
print(f"Use cache in {dir_name}")
|
|
with open(func_code_fn, "r") as func_code_fin:
|
|
func_code = func_code_fin.read()
|
|
with open(invoke_code_fn, "r") as invoke_code_fin:
|
|
invoke_code = invoke_code_fin.read()
|
|
with open(config_fn, "r") as config_fin:
|
|
config = json.loads(config_fin.read().strip())
|
|
conv_time = config["conv_time"]
|
|
invoke_params = config["invoke_params"]
|
|
|
|
logger.debug(f'Find tuning log for {hash_code}')
|
|
return func_code, invoke_code, conv_time, invoke_params
|
|
|
|
print("Generating Ansor op: ")
|
|
print(f)
|
|
|
|
@auto_scheduler.register_workload(func_name)
|
|
def compute():
|
|
_locals = locals()
|
|
exec(f, {'tvm': tvm, 'te': te, 'tir': tir, 'topi': topi}, _locals)
|
|
return _locals['ret']
|
|
|
|
target = tvm.target.Target("cuda")
|
|
|
|
task = auto_scheduler.SearchTask(func=func_name, args=(), target=target)
|
|
|
|
# Inspect the computational graph
|
|
print("Computational DAG:")
|
|
print(task.compute_dag)
|
|
|
|
log_file = f"ansor_{func_name}_log.json"
|
|
measure_ctx = auto_scheduler.LocalRPCMeasureContext(min_repeat_ms=300)
|
|
tune_option = auto_scheduler.TuningOptions(
|
|
num_measure_trials=10,
|
|
runner=measure_ctx.runner,
|
|
measure_callbacks=[auto_scheduler.RecordToFile(log_file)],
|
|
verbose=2,
|
|
)
|
|
|
|
# Run auto-tuning (search)
|
|
task.tune(tune_option)
|
|
# Apply the best schedule
|
|
sch, args = task.apply_best(log_file)
|
|
|
|
# Kill the measurement process
|
|
del measure_ctx
|
|
|
|
def test_mutator():
|
|
# test part
|
|
tgt_temp = tvm.target.Target(target="llvm", host="llvm")
|
|
all_tensors = compute()
|
|
sch = te.create_schedule(all_tensors[0].op)
|
|
args = all_tensors
|
|
C0, K0, A0 = args
|
|
func_temp = tvm.build(sch, args, tgt_temp, name="temp")
|
|
|
|
# print result
|
|
n, c, h, w, f, r, s = 1, 1, 2, 2, 1, 4, 4
|
|
dev_temp = tvm.device(tgt_temp.kind.name, 0)
|
|
A_temp = tvm.nd.array(
|
|
np.arange(n*h*w*f).reshape(n, h, w, f).astype(A0.dtype), dev_temp)
|
|
K_temp = tvm.nd.array(
|
|
np.arange(f*r*s*c).reshape(f, r, s, c).astype(K0.dtype), dev_temp)
|
|
C_temp = tvm.nd.array(
|
|
np.zeros((1, 4, 4, 1)).astype(C0.dtype), dev_temp)
|
|
func_temp(C_temp, K_temp, A_temp)
|
|
print("================= Test Result =====================")
|
|
print(C_temp)
|
|
|
|
ir = str(tvm.lower(sch, args, simple_mode=True))
|
|
thread_dim = [1, 1, 1]
|
|
block_dim = [1, 1, 1]
|
|
p = re.compile('"thread_extent" = (\d+)')
|
|
for line in ir.splitlines():
|
|
if "thread_extent" in line:
|
|
ext = int(p.search(line).group(1))
|
|
if "threadIdx.x" in line:
|
|
thread_dim[0] = ext
|
|
elif "threadIdx.y" in line:
|
|
thread_dim[1] = ext
|
|
elif "threadIdx.z" in line:
|
|
thread_dim[2] = ext
|
|
elif "blockIdx.x" in line:
|
|
block_dim[0] = ext
|
|
elif "blockIdx.y" in line:
|
|
block_dim[1] = ext
|
|
elif "blockIdx.z" in line:
|
|
block_dim[2] = ext
|
|
|
|
func = tvm.build(sch, args, target, name=func_name)
|
|
|
|
func_code = func.imported_modules[0].get_source()
|
|
invoke_code = "%s_kernel0<<<dim3(%s), dim3(%s)>>>(%s, %s);" % (
|
|
func_name, ", ".join(map(str, block_dim)), ", ".join(
|
|
map(str, thread_dim)), ", ".join(input_names), output_name)
|
|
invoke_params = block_dim + thread_dim
|
|
|
|
ctx = tvm.cuda(0)
|
|
input_a = []
|
|
for i, (shape, dtype) in enumerate(zip(input_tensors, input_dtypes)):
|
|
a_np = np.random.uniform(size=shape).astype(dtype)
|
|
input_a.append(tvm.nd.array(a_np, ctx))
|
|
a_out = tvm.nd.array(np.zeros(output_tensor, dtype=output_dtype), ctx)
|
|
func(a_out, *input_a)
|
|
evaluator = func.time_evaluator(func.entry_name, ctx, number=100)
|
|
conv_time = evaluator(a_out, *input_a).mean * 1e3
|
|
|
|
print("Func Code")
|
|
# Attach TVM code behind func_code
|
|
func_code += "\n/* NNET tensor expression \n" + nnet_expression + "\n*/\n"
|
|
func_code += "\n/* NNET simplified tensor expression \n" + \
|
|
nnet_simplified_expression + "\n*/\n"
|
|
func_code += "\n/* TVM compute\n" + f + "\n*/\n"
|
|
print(func_code)
|
|
print("Invoke Code")
|
|
print(invoke_code)
|
|
print("Time")
|
|
print(conv_time)
|
|
|
|
if hash_code is not None:
|
|
if not os.path.exists(dir_name):
|
|
os.makedirs(dir_name)
|
|
with open(func_code_fn, "w") as func_code_fout:
|
|
func_code_fout.write(func_code)
|
|
with open(invoke_code_fn, "w") as invoke_code_fout:
|
|
invoke_code_fout.write(invoke_code)
|
|
with open(config_fn, "w") as config_fout:
|
|
config_fout.write(json.dumps({
|
|
"conv_time": conv_time,
|
|
"invoke_params": invoke_params
|
|
}, ensure_ascii=False, indent=2))
|
|
|
|
return func_code, invoke_code, conv_time, invoke_params # ms
|