InfiniTensor/test/kernels/kunlun/test_kunlun_conv.cc

57 lines
1.9 KiB
C++

#include "core/graph.h"
#include "core/kernel.h"
#include "core/runtime.h"
#include "kunlun/kunlun_runtime.h"
#include "operators/conv.h"
#include "test.h"
namespace infini {
template <class T>
void testConv(const std::function<void(void *, size_t, DataType)> &generatorA,
const std::function<void(void *, size_t, DataType)> &generatorB,
const Shape &shapeA, const Shape &shapeB) {
// Runtime
Runtime cpuRuntime = NativeCpuRuntimeObj::getInstance();
auto xpuRuntime = make_ref<KUNLUNRuntimeObj>();
// Build input data on CPU
Tensor inputCpu1 =
make_ref<TensorObj>(shapeA, DataType::Float32, cpuRuntime);
Tensor inputCpu2 =
make_ref<TensorObj>(shapeB, DataType::Float32, cpuRuntime);
// MLU
Graph xpuGraph = make_ref<GraphObj>(xpuRuntime);
auto inputMlu1 = xpuGraph->cloneTensor(inputCpu1);
auto inputMlu2 = xpuGraph->cloneTensor(inputCpu2);
auto mluOp =
xpuGraph->addOp<T>(inputMlu1, inputMlu2, nullptr, 1, 1, 1, 1, 1, 1);
xpuGraph->dataMalloc();
inputMlu1->setData(generatorA);
inputMlu2->setData(generatorB);
xpuRuntime->run(xpuGraph);
auto outputXpu = mluOp->getOutput();
auto outputXpu2Cpu = outputXpu->clone(cpuRuntime);
// CPU
Graph cpuGraph = make_ref<GraphObj>(cpuRuntime);
cpuGraph->addTensor(inputCpu1);
cpuGraph->addTensor(inputCpu2);
auto cpuOp =
cpuGraph->addOp<T>(inputCpu1, inputCpu2, nullptr, 1, 1, 1, 1, 1, 1);
cpuGraph->dataMalloc();
inputCpu1->setData(generatorA);
inputCpu2->setData(generatorB);
cpuRuntime->run(cpuGraph);
auto outputCpu = cpuOp->getOutput();
// Check
EXPECT_TRUE(outputCpu->equalData(outputXpu2Cpu));
}
TEST(xpu_Conv, run) {
testConv<ConvObj>(IncrementalGenerator(), IncrementalGenerator(),
Shape{1, 3, 32, 32}, Shape{2, 3, 3, 3});
}
} // namespace infini