Merge branch 'gh-pages' of github.com:winterwindwang/Full-coverage-camouflage-adversarial-attack into gh-pages
This commit is contained in:
commit
8ab7be504c
62
README.md
62
README.md
|
@ -1,2 +1,60 @@
|
|||
# Full-coverage-camouflage-adversarial-attack
|
||||
## code and example are public available!
|
||||
## FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack
|
||||
|
||||
Case study of the FCA. The code can be find in [FCA](https://github.com/winterwindwang/Full-coverage-camouflage-adversarial-attack.git).
|
||||
|
||||
### Cases of digital attack
|
||||
|
||||
#### Carmear distance at 3
|
||||
|
||||
<table>
|
||||
<tr>
|
||||
<td><center> <img src = 'https://github.com/winterwindwang/Full-coverage-camouflage-adversarial-attack/blob/gh-pages/assets/distance_3_elevation_0_ori_pred.gif?raw=true'/></center></td>
|
||||
<td><center><img src = 'https://github.com/winterwindwang/Full-coverage-camouflage-adversarial-attack/blob/gh-pages/assets/distance_3_elevation_0_adv_pred.gif?raw=true'/></center></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><center> <img src = 'https://github.com/winterwindwang/Full-coverage-camouflage-adversarial-attack/blob/gh-pages/assets/distance_3_elevation_30_ori_pred.gif?raw=true'/></center></td>
|
||||
<td><center><img src = 'https://github.com/winterwindwang/Full-coverage-camouflage-adversarial-attack/blob/gh-pages/assets/distance_3_elevation_30_adv_pred.gif?raw=true'/></center></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><center> <img src = 'https://github.com/winterwindwang/Full-coverage-camouflage-adversarial-attack/blob/gh-pages/assets/distance_3_elevation_50_ori_pred.gif?raw=true'/></center></td>
|
||||
<td><center><img src = 'https://github.com/winterwindwang/Full-coverage-camouflage-adversarial-attack/blob/gh-pages/assets/distance_3_elevation_50_adv_pred.gif?raw=true'/></center></td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
|
||||
#### Carmear distance at 5
|
||||
<table>
|
||||
<tr>
|
||||
<td><center> <img src = 'https://github.com/winterwindwang/Full-coverage-camouflage-adversarial-attack/blob/gh-pages/assets/distance_5_elevation_20_ori_pred.gif?raw=true'/></center></td>
|
||||
<td><center><img src = 'https://github.com/winterwindwang/Full-coverage-camouflage-adversarial-attack/blob/gh-pages/assets/distance_5_elevation_20_adv_pred.gif?raw=true'/></center></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><center> <img src = 'https://github.com/winterwindwang/Full-coverage-camouflage-adversarial-attack/blob/gh-pages/assets/distance_5_elevation_50_ori_pred.gif?raw=true'/></center></td>
|
||||
<td><center><img src = 'https://github.com/winterwindwang/Full-coverage-camouflage-adversarial-attack/blob/gh-pages/assets/distance_5_elevation_50_adv_pred.gif?raw=true'/></center></td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
|
||||
#### Carmear distance at 10
|
||||
<table>
|
||||
<tr>
|
||||
<td><center> <img src = 'https://github.com/winterwindwang/Full-coverage-camouflage-adversarial-attack/blob/gh-pages/assets/distance_10_elevation_30_ori_pred.gif?raw=true'/></center></td>
|
||||
<td><center><img src = 'https://github.com/winterwindwang/Full-coverage-camouflage-adversarial-attack/blob/gh-pages/assets/distance_10_elevation_30_adv_pred.gif?raw=true'/></center></td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td><center> <img src = 'https://github.com/winterwindwang/Full-coverage-camouflage-adversarial-attack/blob/gh-pages/assets/distance_10_elevation_50_ori_pred.gif?raw=true'/></center></td>
|
||||
<td><center><img src = 'https://github.com/winterwindwang/Full-coverage-camouflage-adversarial-attack/blob/gh-pages/assets/distance_10_elevation_50_adv_pred.gif?raw=true'/></center></td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
### Cases of multi-view robust
|
||||
|
||||
|
||||
|
||||
### Ablation study
|
||||
|
||||
#### Different combination of loss terms
|
||||
|
||||
<img src = 'https://github.com/winterwindwang/Full-coverage-camouflage-adversarial-attack/blob/gh-pages/assets/abaltion_study_loss.png?raw=true'/>
|
||||
|
||||
As we can see from the Figure, different loss term plays different role in attacking. For example, the camouflaged car generated by `obj+smooth (we omit the smooth loss, and denotes as obj)` hardly hidden from the detector, while the camouflaged car generated by `iou` successfully suppress the detecting bounding box of the car region, and finally the camouflaged car generated by `cls` successfully make the detector to misclassify the car to anther category.
|
||||
|
|
Loading…
Reference in New Issue