This commit is contained in:
freeneuro 2022-01-05 22:48:15 +08:00
parent 352fbc18b8
commit 93619ce4a7
19 changed files with 721 additions and 1 deletions

1
src/.gitignore vendored
View File

@ -25,7 +25,6 @@
storage.googleapis.com
runs/*
data/*
!data/images/zidane.jpg
!data/images/bus.jpg
!data/coco.names

View File

@ -0,0 +1,55 @@
# Global Wheat 2020 dataset http://www.global-wheat.com/
# Train command: python train.py --data GlobalWheat2020.yaml
# Default dataset location is next to YOLOv3:
# /parent_folder
# /datasets/GlobalWheat2020
# /yolov3
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: # 3422 images
- ../datasets/GlobalWheat2020/images/arvalis_1
- ../datasets/GlobalWheat2020/images/arvalis_2
- ../datasets/GlobalWheat2020/images/arvalis_3
- ../datasets/GlobalWheat2020/images/ethz_1
- ../datasets/GlobalWheat2020/images/rres_1
- ../datasets/GlobalWheat2020/images/inrae_1
- ../datasets/GlobalWheat2020/images/usask_1
val: # 748 images (WARNING: train set contains ethz_1)
- ../datasets/GlobalWheat2020/images/ethz_1
test: # 1276 images
- ../datasets/GlobalWheat2020/images/utokyo_1
- ../datasets/GlobalWheat2020/images/utokyo_2
- ../datasets/GlobalWheat2020/images/nau_1
- ../datasets/GlobalWheat2020/images/uq_1
# number of classes
nc: 1
# class names
names: [ 'wheat_head' ]
# download command/URL (optional) --------------------------------------------------------------------------------------
download: |
from utils.general import download, Path
# Download
dir = Path('../datasets/GlobalWheat2020') # dataset directory
urls = ['https://zenodo.org/record/4298502/files/global-wheat-codalab-official.zip',
'https://github.com/ultralytics/yolov5/releases/download/v1.0/GlobalWheat2020_labels.zip']
download(urls, dir=dir)
# Make Directories
for p in 'annotations', 'images', 'labels':
(dir / p).mkdir(parents=True, exist_ok=True)
# Move
for p in 'arvalis_1', 'arvalis_2', 'arvalis_3', 'ethz_1', 'rres_1', 'inrae_1', 'usask_1', \
'utokyo_1', 'utokyo_2', 'nau_1', 'uq_1':
(dir / p).rename(dir / 'images' / p) # move to /images
f = (dir / p).with_suffix('.json') # json file
if f.exists():
f.rename((dir / 'annotations' / p).with_suffix('.json')) # move to /annotations

52
src/data/SKU-110K.yaml Normal file
View File

@ -0,0 +1,52 @@
# SKU-110K retail items dataset https://github.com/eg4000/SKU110K_CVPR19
# Train command: python train.py --data SKU-110K.yaml
# Default dataset location is next to YOLOv3:
# /parent_folder
# /datasets/SKU-110K
# /yolov3
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: ../datasets/SKU-110K/train.txt # 8219 images
val: ../datasets/SKU-110K/val.txt # 588 images
test: ../datasets/SKU-110K/test.txt # 2936 images
# number of classes
nc: 1
# class names
names: [ 'object' ]
# download command/URL (optional) --------------------------------------------------------------------------------------
download: |
import shutil
from tqdm import tqdm
from utils.general import np, pd, Path, download, xyxy2xywh
# Download
datasets = Path('../datasets') # download directory
urls = ['http://trax-geometry.s3.amazonaws.com/cvpr_challenge/SKU110K_fixed.tar.gz']
download(urls, dir=datasets, delete=False)
# Rename directories
dir = (datasets / 'SKU-110K')
if dir.exists():
shutil.rmtree(dir)
(datasets / 'SKU110K_fixed').rename(dir) # rename dir
(dir / 'labels').mkdir(parents=True, exist_ok=True) # create labels dir
# Convert labels
names = 'image', 'x1', 'y1', 'x2', 'y2', 'class', 'image_width', 'image_height' # column names
for d in 'annotations_train.csv', 'annotations_val.csv', 'annotations_test.csv':
x = pd.read_csv(dir / 'annotations' / d, names=names).values # annotations
images, unique_images = x[:, 0], np.unique(x[:, 0])
with open((dir / d).with_suffix('.txt').__str__().replace('annotations_', ''), 'w') as f:
f.writelines(f'./images/{s}\n' for s in unique_images)
for im in tqdm(unique_images, desc=f'Converting {dir / d}'):
cls = 0 # single-class dataset
with open((dir / 'labels' / im).with_suffix('.txt'), 'a') as f:
for r in x[images == im]:
w, h = r[6], r[7] # image width, height
xywh = xyxy2xywh(np.array([[r[1] / w, r[2] / h, r[3] / w, r[4] / h]]))[0] # instance
f.write(f"{cls} {xywh[0]:.5f} {xywh[1]:.5f} {xywh[2]:.5f} {xywh[3]:.5f}\n") # write label

61
src/data/VisDrone.yaml Normal file
View File

@ -0,0 +1,61 @@
# VisDrone2019-DET dataset https://github.com/VisDrone/VisDrone-Dataset
# Train command: python train.py --data VisDrone.yaml
# Default dataset location is next to YOLOv3:
# /parent_folder
# /VisDrone
# /yolov3
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: ../VisDrone/VisDrone2019-DET-train/images # 6471 images
val: ../VisDrone/VisDrone2019-DET-val/images # 548 images
test: ../VisDrone/VisDrone2019-DET-test-dev/images # 1610 images
# number of classes
nc: 10
# class names
names: [ 'pedestrian', 'people', 'bicycle', 'car', 'van', 'truck', 'tricycle', 'awning-tricycle', 'bus', 'motor' ]
# download command/URL (optional) --------------------------------------------------------------------------------------
download: |
from utils.general import download, os, Path
def visdrone2yolo(dir):
from PIL import Image
from tqdm import tqdm
def convert_box(size, box):
# Convert VisDrone box to YOLO xywh box
dw = 1. / size[0]
dh = 1. / size[1]
return (box[0] + box[2] / 2) * dw, (box[1] + box[3] / 2) * dh, box[2] * dw, box[3] * dh
(dir / 'labels').mkdir(parents=True, exist_ok=True) # make labels directory
pbar = tqdm((dir / 'annotations').glob('*.txt'), desc=f'Converting {dir}')
for f in pbar:
img_size = Image.open((dir / 'images' / f.name).with_suffix('.jpg')).size
lines = []
with open(f, 'r') as file: # read annotation.txt
for row in [x.split(',') for x in file.read().strip().splitlines()]:
if row[4] == '0': # VisDrone 'ignored regions' class 0
continue
cls = int(row[5]) - 1
box = convert_box(img_size, tuple(map(int, row[:4])))
lines.append(f"{cls} {' '.join(f'{x:.6f}' for x in box)}\n")
with open(str(f).replace(os.sep + 'annotations' + os.sep, os.sep + 'labels' + os.sep), 'w') as fl:
fl.writelines(lines) # write label.txt
# Download
dir = Path('../VisDrone') # dataset directory
urls = ['https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-train.zip',
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-val.zip',
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-dev.zip',
'https://github.com/ultralytics/yolov5/releases/download/v1.0/VisDrone2019-DET-test-challenge.zip']
download(urls, dir=dir)
# Convert
for d in 'VisDrone2019-DET-train', 'VisDrone2019-DET-val', 'VisDrone2019-DET-test-dev':
visdrone2yolo(dir / d) # convert VisDrone annotations to YOLO labels

View File

@ -0,0 +1,21 @@
# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/
# Train command: python train.py --data argoverse_hd.yaml
# Default dataset location is next to YOLOv3:
# /parent_folder
# /argoverse
# /yolov3
# download command/URL (optional)
download: bash data/scripts/get_argoverse_hd.sh
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: ../argoverse/Argoverse-1.1/images/train/ # 39384 images
val: ../argoverse/Argoverse-1.1/images/val/ # 15062 iamges
test: ../argoverse/Argoverse-1.1/images/test/ # Submit to: https://eval.ai/web/challenges/challenge-page/800/overview
# number of classes
nc: 8
# class names
names: [ 'person', 'bicycle', 'car', 'motorcycle', 'bus', 'truck', 'traffic_light', 'stop_sign' ]

26
src/data/carla.yaml Normal file
View File

@ -0,0 +1,26 @@
# COCO 2017 dataset http://cocodataset.org - first 128 training images
# Train command: python train.py --data coco128.yaml
# Default dataset location is next to YOLOv5:
# /parent
# /datasets/coco128
# /yolov5
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: F:/PythonPro/DualAttentionAttack/data/phy_attack # dataset root dir
train: train_new # train_new train_label_new
val: train_new # val images (relative to 'path') 128 images
test: # test images (optional)
# Classes
nc: 80 # number of classes
names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush' ] # class names

35
src/data/coco.yaml Normal file
View File

@ -0,0 +1,35 @@
# COCO 2017 dataset http://cocodataset.org
# Train command: python train.py --data coco.yaml
# Default dataset location is next to YOLOv3:
# /parent_folder
# /coco
# /yolov3
# download command/URL (optional)
download: bash data/scripts/get_coco.sh
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: ../coco/train2017.txt # 118287 images
val: ../coco/val2017.txt # 5000 images
test: ../coco/test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
# number of classes
nc: 80
# class names
names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush' ]
# Print classes
# with open('data/coco.yaml') as f:
# d = yaml.safe_load(f) # dict
# for i, x in enumerate(d['names']):
# print(i, x)

28
src/data/coco128.yaml Normal file
View File

@ -0,0 +1,28 @@
# COCO 2017 dataset http://cocodataset.org - first 128 training images
# Train command: python train.py --data coco128.yaml
# Default dataset location is next to YOLOv3:
# /parent_folder
# /coco128
# /yolov3
# download command/URL (optional)
download: https://github.com/ultralytics/yolov5/releases/download/v1.0/coco128.zip
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: F:/DataSource/coco128/images/train2017/ # 128 images
val: F:/DataSource/coco128/images/train2017/ # 128 images
# number of classes
nc: 80
# class names
names: [ 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush' ]

View File

@ -0,0 +1,38 @@
# Hyperparameters for VOC finetuning
# python train.py --batch 64 --weights yolov5m.pt --data voc.yaml --img 512 --epochs 50
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
# Hyperparameter Evolution Results
# Generations: 306
# P R mAP.5 mAP.5:.95 box obj cls
# Metrics: 0.6 0.936 0.896 0.684 0.0115 0.00805 0.00146
lr0: 0.0032
lrf: 0.12
momentum: 0.843
weight_decay: 0.00036
warmup_epochs: 2.0
warmup_momentum: 0.5
warmup_bias_lr: 0.05
box: 0.0296
cls: 0.243
cls_pw: 0.631
obj: 0.301
obj_pw: 0.911
iou_t: 0.2
anchor_t: 2.91
# anchors: 3.63
fl_gamma: 0.0
hsv_h: 0.0138
hsv_s: 0.664
hsv_v: 0.464
degrees: 0.373
translate: 0.245
scale: 0.898
shear: 0.602
perspective: 0.0
flipud: 0.00856
fliplr: 0.5
mosaic: 1.0
mixup: 0.243

View File

@ -0,0 +1,28 @@
lr0: 0.00258
lrf: 0.17
momentum: 0.779
weight_decay: 0.00058
warmup_epochs: 1.33
warmup_momentum: 0.86
warmup_bias_lr: 0.0711
box: 0.0539
cls: 0.299
cls_pw: 0.825
obj: 0.632
obj_pw: 1.0
iou_t: 0.2
anchor_t: 3.44
anchors: 3.2
fl_gamma: 0.0
hsv_h: 0.0188
hsv_s: 0.704
hsv_v: 0.36
degrees: 0.0
translate: 0.0902
scale: 0.491
shear: 0.0
perspective: 0.0
flipud: 0.0
fliplr: 0.5
mosaic: 1.0
mixup: 0.0

33
src/data/hyp.scratch.yaml Normal file
View File

@ -0,0 +1,33 @@
# Hyperparameters for COCO training from scratch
# python train.py --batch 40 --cfg yolov5m.yaml --weights '' --data coco.yaml --img 640 --epochs 300
# See tutorials for hyperparameter evolution https://github.com/ultralytics/yolov5#tutorials
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
lrf: 0.2 # final OneCycleLR learning rate (lr0 * lrf)
momentum: 0.937 # SGD momentum/Adam beta1
weight_decay: 0.0005 # optimizer weight decay 5e-4
warmup_epochs: 3.0 # warmup epochs (fractions ok)
warmup_momentum: 0.8 # warmup initial momentum
warmup_bias_lr: 0.1 # warmup initial bias lr
box: 0.05 # box loss gain
cls: 0.5 # cls loss gain
cls_pw: 1.0 # cls BCELoss positive_weight
obj: 1.0 # obj loss gain (scale with pixels)
obj_pw: 1.0 # obj BCELoss positive_weight
iou_t: 0.20 # IoU training threshold
anchor_t: 4.0 # anchor-multiple threshold
# anchors: 3 # anchors per output layer (0 to ignore)
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
degrees: 0.0 # image rotation (+/- deg)
translate: 0.1 # image translation (+/- fraction)
scale: 0.5 # image scale (+/- gain)
shear: 0.0 # image shear (+/- deg)
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
flipud: 0.0 # image flip up-down (probability)
fliplr: 0.5 # image flip left-right (probability)
mosaic: 1.0 # image mosaic (probability)
mixup: 0.0 # image mixup (probability)

BIN
src/data/images/bus.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 476 KiB

BIN
src/data/images/zidane.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 165 KiB

102
src/data/objects365.yaml Normal file
View File

@ -0,0 +1,102 @@
# Objects365 dataset https://www.objects365.org/
# Train command: python train.py --data objects365.yaml
# Default dataset location is next to YOLOv3:
# /parent_folder
# /datasets/objects365
# /yolov3
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: ../datasets/objects365/images/train # 1742289 images
val: ../datasets/objects365/images/val # 5570 images
# number of classes
nc: 365
# class names
names: [ 'Person', 'Sneakers', 'Chair', 'Other Shoes', 'Hat', 'Car', 'Lamp', 'Glasses', 'Bottle', 'Desk', 'Cup',
'Street Lights', 'Cabinet/shelf', 'Handbag/Satchel', 'Bracelet', 'Plate', 'Picture/Frame', 'Helmet', 'Book',
'Gloves', 'Storage box', 'Boat', 'Leather Shoes', 'Flower', 'Bench', 'Potted Plant', 'Bowl/Basin', 'Flag',
'Pillow', 'Boots', 'Vase', 'Microphone', 'Necklace', 'Ring', 'SUV', 'Wine Glass', 'Belt', 'Monitor/TV',
'Backpack', 'Umbrella', 'Traffic Light', 'Speaker', 'Watch', 'Tie', 'Trash bin Can', 'Slippers', 'Bicycle',
'Stool', 'Barrel/bucket', 'Van', 'Couch', 'Sandals', 'Basket', 'Drum', 'Pen/Pencil', 'Bus', 'Wild Bird',
'High Heels', 'Motorcycle', 'Guitar', 'Carpet', 'Cell Phone', 'Bread', 'Camera', 'Canned', 'Truck',
'Traffic cone', 'Cymbal', 'Lifesaver', 'Towel', 'Stuffed Toy', 'Candle', 'Sailboat', 'Laptop', 'Awning',
'Bed', 'Faucet', 'Tent', 'Horse', 'Mirror', 'Power outlet', 'Sink', 'Apple', 'Air Conditioner', 'Knife',
'Hockey Stick', 'Paddle', 'Pickup Truck', 'Fork', 'Traffic Sign', 'Balloon', 'Tripod', 'Dog', 'Spoon', 'Clock',
'Pot', 'Cow', 'Cake', 'Dinning Table', 'Sheep', 'Hanger', 'Blackboard/Whiteboard', 'Napkin', 'Other Fish',
'Orange/Tangerine', 'Toiletry', 'Keyboard', 'Tomato', 'Lantern', 'Machinery Vehicle', 'Fan',
'Green Vegetables', 'Banana', 'Baseball Glove', 'Airplane', 'Mouse', 'Train', 'Pumpkin', 'Soccer', 'Skiboard',
'Luggage', 'Nightstand', 'Tea pot', 'Telephone', 'Trolley', 'Head Phone', 'Sports Car', 'Stop Sign',
'Dessert', 'Scooter', 'Stroller', 'Crane', 'Remote', 'Refrigerator', 'Oven', 'Lemon', 'Duck', 'Baseball Bat',
'Surveillance Camera', 'Cat', 'Jug', 'Broccoli', 'Piano', 'Pizza', 'Elephant', 'Skateboard', 'Surfboard',
'Gun', 'Skating and Skiing shoes', 'Gas stove', 'Donut', 'Bow Tie', 'Carrot', 'Toilet', 'Kite', 'Strawberry',
'Other Balls', 'Shovel', 'Pepper', 'Computer Box', 'Toilet Paper', 'Cleaning Products', 'Chopsticks',
'Microwave', 'Pigeon', 'Baseball', 'Cutting/chopping Board', 'Coffee Table', 'Side Table', 'Scissors',
'Marker', 'Pie', 'Ladder', 'Snowboard', 'Cookies', 'Radiator', 'Fire Hydrant', 'Basketball', 'Zebra', 'Grape',
'Giraffe', 'Potato', 'Sausage', 'Tricycle', 'Violin', 'Egg', 'Fire Extinguisher', 'Candy', 'Fire Truck',
'Billiards', 'Converter', 'Bathtub', 'Wheelchair', 'Golf Club', 'Briefcase', 'Cucumber', 'Cigar/Cigarette',
'Paint Brush', 'Pear', 'Heavy Truck', 'Hamburger', 'Extractor', 'Extension Cord', 'Tong', 'Tennis Racket',
'Folder', 'American Football', 'earphone', 'Mask', 'Kettle', 'Tennis', 'Ship', 'Swing', 'Coffee Machine',
'Slide', 'Carriage', 'Onion', 'Green beans', 'Projector', 'Frisbee', 'Washing Machine/Drying Machine',
'Chicken', 'Printer', 'Watermelon', 'Saxophone', 'Tissue', 'Toothbrush', 'Ice cream', 'Hot-air balloon',
'Cello', 'French Fries', 'Scale', 'Trophy', 'Cabbage', 'Hot dog', 'Blender', 'Peach', 'Rice', 'Wallet/Purse',
'Volleyball', 'Deer', 'Goose', 'Tape', 'Tablet', 'Cosmetics', 'Trumpet', 'Pineapple', 'Golf Ball',
'Ambulance', 'Parking meter', 'Mango', 'Key', 'Hurdle', 'Fishing Rod', 'Medal', 'Flute', 'Brush', 'Penguin',
'Megaphone', 'Corn', 'Lettuce', 'Garlic', 'Swan', 'Helicopter', 'Green Onion', 'Sandwich', 'Nuts',
'Speed Limit Sign', 'Induction Cooker', 'Broom', 'Trombone', 'Plum', 'Rickshaw', 'Goldfish', 'Kiwi fruit',
'Router/modem', 'Poker Card', 'Toaster', 'Shrimp', 'Sushi', 'Cheese', 'Notepaper', 'Cherry', 'Pliers', 'CD',
'Pasta', 'Hammer', 'Cue', 'Avocado', 'Hamimelon', 'Flask', 'Mushroom', 'Screwdriver', 'Soap', 'Recorder',
'Bear', 'Eggplant', 'Board Eraser', 'Coconut', 'Tape Measure/Ruler', 'Pig', 'Showerhead', 'Globe', 'Chips',
'Steak', 'Crosswalk Sign', 'Stapler', 'Camel', 'Formula 1', 'Pomegranate', 'Dishwasher', 'Crab',
'Hoverboard', 'Meat ball', 'Rice Cooker', 'Tuba', 'Calculator', 'Papaya', 'Antelope', 'Parrot', 'Seal',
'Butterfly', 'Dumbbell', 'Donkey', 'Lion', 'Urinal', 'Dolphin', 'Electric Drill', 'Hair Dryer', 'Egg tart',
'Jellyfish', 'Treadmill', 'Lighter', 'Grapefruit', 'Game board', 'Mop', 'Radish', 'Baozi', 'Target', 'French',
'Spring Rolls', 'Monkey', 'Rabbit', 'Pencil Case', 'Yak', 'Red Cabbage', 'Binoculars', 'Asparagus', 'Barbell',
'Scallop', 'Noddles', 'Comb', 'Dumpling', 'Oyster', 'Table Tennis paddle', 'Cosmetics Brush/Eyeliner Pencil',
'Chainsaw', 'Eraser', 'Lobster', 'Durian', 'Okra', 'Lipstick', 'Cosmetics Mirror', 'Curling', 'Table Tennis' ]
# download command/URL (optional) --------------------------------------------------------------------------------------
download: |
from pycocotools.coco import COCO
from tqdm import tqdm
from utils.general import download, Path
# Make Directories
dir = Path('../datasets/objects365') # dataset directory
for p in 'images', 'labels':
(dir / p).mkdir(parents=True, exist_ok=True)
for q in 'train', 'val':
(dir / p / q).mkdir(parents=True, exist_ok=True)
# Download
url = "https://dorc.ks3-cn-beijing.ksyun.com/data-set/2020Objects365%E6%95%B0%E6%8D%AE%E9%9B%86/train/"
download([url + 'zhiyuan_objv2_train.tar.gz'], dir=dir, delete=False) # annotations json
download([url + f for f in [f'patch{i}.tar.gz' for i in range(51)]], dir=dir / 'images' / 'train',
curl=True, delete=False, threads=8)
# Move
train = dir / 'images' / 'train'
for f in tqdm(train.rglob('*.jpg'), desc=f'Moving images'):
f.rename(train / f.name) # move to /images/train
# Labels
coco = COCO(dir / 'zhiyuan_objv2_train.json')
names = [x["name"] for x in coco.loadCats(coco.getCatIds())]
for cid, cat in enumerate(names):
catIds = coco.getCatIds(catNms=[cat])
imgIds = coco.getImgIds(catIds=catIds)
for im in tqdm(coco.loadImgs(imgIds), desc=f'Class {cid + 1}/{len(names)} {cat}'):
width, height = im["width"], im["height"]
path = Path(im["file_name"]) # image filename
try:
with open(dir / 'labels' / 'train' / path.with_suffix('.txt').name, 'a') as file:
annIds = coco.getAnnIds(imgIds=im["id"], catIds=catIds, iscrowd=None)
for a in coco.loadAnns(annIds):
x, y, w, h = a['bbox'] # bounding box in xywh (xy top-left corner)
x, y = x + w / 2, y + h / 2 # xy to center
file.write(f"{cid} {x / width:.5f} {y / height:.5f} {w / width:.5f} {h / height:.5f}\n")
except Exception as e:
print(e)

View File

@ -0,0 +1,61 @@
#!/bin/bash
# Argoverse-HD dataset (ring-front-center camera) http://www.cs.cmu.edu/~mengtial/proj/streaming/
# Download command: bash data/scripts/get_argoverse_hd.sh
# Train command: python train.py --data argoverse_hd.yaml
# Default dataset location is next to YOLOv3:
# /parent_folder
# /argoverse
# /yolov3
# Download/unzip images
d='../argoverse/' # unzip directory
mkdir $d
url=https://argoverse-hd.s3.us-east-2.amazonaws.com/
f=Argoverse-HD-Full.zip
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f &# download, unzip, remove in background
wait # finish background tasks
cd ../argoverse/Argoverse-1.1/
ln -s tracking images
cd ../Argoverse-HD/annotations/
python3 - "$@" <<END
import json
from pathlib import Path
annotation_files = ["train.json", "val.json"]
print("Converting annotations to YOLOv3 format...")
for val in annotation_files:
a = json.load(open(val, "rb"))
label_dict = {}
for annot in a['annotations']:
img_id = annot['image_id']
img_name = a['images'][img_id]['name']
img_label_name = img_name[:-3] + "txt"
cls = annot['category_id'] # instance class id
x_center, y_center, width, height = annot['bbox']
x_center = (x_center + width / 2) / 1920. # offset and scale
y_center = (y_center + height / 2) / 1200. # offset and scale
width /= 1920. # scale
height /= 1200. # scale
img_dir = "./labels/" + a['seq_dirs'][a['images'][annot['image_id']]['sid']]
Path(img_dir).mkdir(parents=True, exist_ok=True)
if img_dir + "/" + img_label_name not in label_dict:
label_dict[img_dir + "/" + img_label_name] = []
label_dict[img_dir + "/" + img_label_name].append(f"{cls} {x_center} {y_center} {width} {height}\n")
for filename in label_dict:
with open(filename, "w") as file:
for string in label_dict[filename]:
file.write(string)
END
mv ./labels ../../Argoverse-1.1/

View File

@ -0,0 +1,27 @@
#!/bin/bash
# COCO 2017 dataset http://cocodataset.org
# Download command: bash data/scripts/get_coco.sh
# Train command: python train.py --data coco.yaml
# Default dataset location is next to YOLOv3:
# /parent_folder
# /coco
# /yolov3
# Download/unzip labels
d='../' # unzip directory
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
f='coco2017labels.zip' # or 'coco2017labels-segments.zip', 68 MB
echo 'Downloading' $url$f ' ...'
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
# Download/unzip images
d='../coco/images' # unzip directory
url=http://images.cocodataset.org/zips/
f1='train2017.zip' # 19G, 118k images
f2='val2017.zip' # 1G, 5k images
f3='test2017.zip' # 7G, 41k images (optional)
for f in $f1 $f2; do
echo 'Downloading' $url$f '...'
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
done
wait # finish background tasks

View File

@ -0,0 +1,17 @@
#!/bin/bash
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128
# Download command: bash data/scripts/get_coco128.sh
# Train command: python train.py --data coco128.yaml
# Default dataset location is next to YOLOv3:
# /parent_folder
# /coco128
# /yolov3
# Download/unzip images and labels
d='../' # unzip directory
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
f='coco128.zip' # or 'coco2017labels-segments.zip', 68 MB
echo 'Downloading' $url$f ' ...'
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
wait # finish background tasks

116
src/data/scripts/get_voc.sh Normal file
View File

@ -0,0 +1,116 @@
#!/bin/bash
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
# Download command: bash data/scripts/get_voc.sh
# Train command: python train.py --data voc.yaml
# Default dataset location is next to YOLOv3:
# /parent_folder
# /VOC
# /yolov3
start=$(date +%s)
mkdir -p ../tmp
cd ../tmp/
# Download/unzip images and labels
d='.' # unzip directory
url=https://github.com/ultralytics/yolov5/releases/download/v1.0/
f1=VOCtrainval_06-Nov-2007.zip # 446MB, 5012 images
f2=VOCtest_06-Nov-2007.zip # 438MB, 4953 images
f3=VOCtrainval_11-May-2012.zip # 1.95GB, 17126 images
for f in $f3 $f2 $f1; do
echo 'Downloading' $url$f '...'
curl -L $url$f -o $f && unzip -q $f -d $d && rm $f & # download, unzip, remove in background
done
wait # finish background tasks
end=$(date +%s)
runtime=$((end - start))
echo "Completed in" $runtime "seconds"
echo "Splitting dataset..."
python3 - "$@" <<END
import os
import xml.etree.ElementTree as ET
from os import getcwd
sets = [('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')]
classes = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog",
"horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
def convert_box(size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x, y, w, h = (box[0] + box[1]) / 2.0 - 1, (box[2] + box[3]) / 2.0 - 1, box[1] - box[0], box[3] - box[2]
return x * dw, y * dh, w * dw, h * dh
def convert_annotation(year, image_id):
in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml' % (year, image_id))
out_file = open('VOCdevkit/VOC%s/labels/%s.txt' % (year, image_id), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
float(xmlbox.find('ymax').text))
bb = convert_box((w, h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
cwd = getcwd()
for year, image_set in sets:
if not os.path.exists('VOCdevkit/VOC%s/labels/' % year):
os.makedirs('VOCdevkit/VOC%s/labels/' % year)
image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt' % (year, image_set)).read().strip().split()
list_file = open('%s_%s.txt' % (year, image_set), 'w')
for image_id in image_ids:
list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n' % (cwd, year, image_id))
convert_annotation(year, image_id)
list_file.close()
END
cat 2007_train.txt 2007_val.txt 2012_train.txt 2012_val.txt >train.txt
cat 2007_train.txt 2007_val.txt 2007_test.txt 2012_train.txt 2012_val.txt >train.all.txt
mkdir ../VOC ../VOC/images ../VOC/images/train ../VOC/images/val
mkdir ../VOC/labels ../VOC/labels/train ../VOC/labels/val
python3 - "$@" <<END
import os
print(os.path.exists('../tmp/train.txt'))
with open('../tmp/train.txt', 'r') as f:
for line in f.readlines():
line = "/".join(line.split('/')[-5:]).strip()
if os.path.exists("../" + line):
os.system("cp ../" + line + " ../VOC/images/train")
line = line.replace('JPEGImages', 'labels').replace('jpg', 'txt')
if os.path.exists("../" + line):
os.system("cp ../" + line + " ../VOC/labels/train")
print(os.path.exists('../tmp/2007_test.txt'))
with open('../tmp/2007_test.txt', 'r') as f:
for line in f.readlines():
line = "/".join(line.split('/')[-5:]).strip()
if os.path.exists("../" + line):
os.system("cp ../" + line + " ../VOC/images/val")
line = line.replace('JPEGImages', 'labels').replace('jpg', 'txt')
if os.path.exists("../" + line):
os.system("cp ../" + line + " ../VOC/labels/val")
END
rm -rf ../tmp # remove temporary directory
echo "VOC download done."

21
src/data/voc.yaml Normal file
View File

@ -0,0 +1,21 @@
# PASCAL VOC dataset http://host.robots.ox.ac.uk/pascal/VOC/
# Train command: python train.py --data voc.yaml
# Default dataset location is next to YOLOv3:
# /parent_folder
# /VOC
# /yolov3
# download command/URL (optional)
download: bash data/scripts/get_voc.sh
# train and val data as 1) directory: path/images/, 2) file: path/images.txt, or 3) list: [path1/images/, path2/images/]
train: ../VOC/images/train/ # 16551 images
val: ../VOC/images/val/ # 4952 images
# number of classes
nc: 20
# class names
names: [ 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog',
'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor' ]