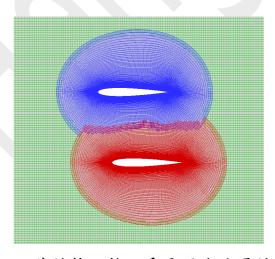
双 NACA0012 算例(非结构网格装配)

1 算例概述

双翼型 NACA0012, 非结构重叠网格。


该算例只验证重叠网格装配, 查看挖洞效果, 不进行流场计算。

测试环境: Windows7 x64, 6 核并行。

2 计算条件

马赫数	单位长度雷诺数	攻角	侧滑角	来流温度
0.755	6.5e6	0.016	0	288.15
壁面	参考展长	参考长度	参考面积	参考点
绝热壁面	1	1	1	(0,0,0)

3 计算网格

双翼型 NACA0012 非结构网格, 重叠区域边界的边界条件 bctype 为 1000。

4 参数设置

4.1 网格转换

注:本次网格转换要依次对 aux-lower.cgns、aux-upper.cgns、background.cgns、lowerwing.cgns、upperwing.cgns 等 5 部分网格进行网格分区操作。

网格转换: key.hypara + grid_para.hypara

命令: 在可执行程序位置 shift+鼠标右键点击"在此处打开命令窗口" 输入 mpiexec –n 1 ./ PHengLEIv3d0.exe 进行网格转换

文件	参 数	值	备注
	ndim	2	空间维数
ly avy hym a ma	nparafile	1	参数文件个数
key.hypara	nsimutask	1	参数类型
	string parafilename =	"./bin/grid_para.hypara"	相应参数文件路径
	int gridtype	0	网格类型
	axisup	1	坐标方向
grid_para.hypara	int from_gtype	2	输入网格类型
	string from_gfile	"./grid/aux-lower.cgns"	指定输入网格路径
	string out_gfile	"./grid/aux-lower.fts"	指定输出格路径

按照上面相同的设置,只修改输入和输出路径中(上表最后两行)的 网格文件名, 再依次对 aux-upper.cgns、background.cgns、lowerwing.cgns、upperwing.cgns 进行网格分区操作。最终在 grid 文件夹中转换生成 aux-lower_0.fts、aux-upper_0.fts、background_0.fts、lowerwing_0.fts、upperwing_0.fts 等 5 个.fts 格式的网格文件。

aux-lower.cgns	2021/6/23 19:30	CGNS 文件
aux-lower_0.bcmesh	2021/6/24 18:20	BCMESH 文件
aux-lower_0.bcname	2021/6/24 18:20	BCNAME 文件
aux-lower_0.fts	2021/6/24 18:20	FTS 文件
aux-upper.cgns	2021/6/23 19:25	CGNS 文件
aux-upper_0.bcmesh	2021/6/24 18:20	BCMESH 文件
aux-upper_0.bcname	2021/6/24 18:20	BCNAME 文件
aux-upper_0.fts	2021/6/24 18:20	FTS 文件
abackground.cgns	2021/6/24 11:40	CGNS 文件
background_0.bcmesh	2021/6/24 18:20	BCMESH 文件
background_0.bcname	2021/6/24 18:20	BCNAME 文件
background_0.fts	2021/6/24 18:20	FTS 文件
lowerwing.cgns	2021/6/24 12:33	CGNS 文件
lowerwing_0.bcmesh	2021/6/24 18:21	BCMESH 文件
lowerwing_0.bcname	2021/6/24 18:21	BCNAME 文件
lowerwing_0.fts	2021/6/24 18:21	FTS 文件
upperwing.cgns	2021/6/24 12:36	CGNS 文件
upperwing_0.bcmesh	2021/6/24 18:21	BCMESH 文件
upperwing_0.bcname	2021/6/24 18:21	BCNAME 文件
upperwing_0.fts	2021/6/24 18:21	FTS 文件

图 1 网格转换结果

4.2 边界条件

在网格转换操作结束后,需要将 grid 文件夹各个网格的.bcname 文件(图1)中的边界条件信息(以 aux-lower_0.bcname 为例,如图 2 所示)拷贝到 bin 文件夹中的 boundary_condition.hypara 文件中(注:各个网格文件中重复边界信息只拷贝 1 次);然后修改 boundary_condition.hypara 文件中 nBoundaryConditions(边界条件类型的数目)的数值为 7,最终效果如图 3 所示。

aux-lower.cgns	2021/6/23 星期	CGNS 文件	80 KB
aux-lower_0.bcmesh	2021/6/24 星期	BCMESH 文件	95 KB
aux-lower_0.bcname	2021/6/24 星期	BCNAME 文件	1 KB
aux-lower_0.fts	2021/6/24 星期	FTS 文件	182 KB
aux-upper.cgns	2021/6/23 星期	CGNS 文件	80 KB
aux-upper_0.bcmesh	2021/6/24 星期	BCMESH 文件	95 KB
aux-upper_0.bcname	2021/6/24 星期	BCNAME 文件	1 KB
aux-upper_0.fts	2021/6/24 星期	FTS 文件	182 KB
background.cgns	2021/6/24 星期	CGNS 文件	2,468 KB
background_0.bcmesh	2021/6/24 星期	BCMESH 文件	2,493 KB
background_0.bcname	2021/6/24 星期	BCNAME 文件	1 KB
background_0.fts	2021/6/24 星期	FTS 文件	5,180 KB
lowerwing.cgns	2021/6/24 星期	CGNS 文件	1,496 KB
lowerwing_0.bcmesh	2021/6/24 星期	BCMESH 文件	1,508 KB
lowerwing_0.bcname	2021/6/24 星期	BCNAME 文件	1 KB
lowerwing_0.fts	2021/6/24 星期	FTS 文件	3,125 KB
upperwing.cgns	2021/6/24 星期	CGNS 文件	1,496 KB
upperwing_0.bcmesh	2021/6/24 星期	BCMESH 文件	1,508 KB
upperwing_0.bcname	2021/6/24 星期	BCNAME 文件	1 KB
upperwing_0.fts	2021/6/24 星期	FTS 文件	3,125 KB

图 1 grid 文件夹生成的.bcname 文件

```
# bcType(in PHengLEI): Boundary Condition Type.
int nBoundaryConditons = 2;
string bcName = "Wall";
{
  int bcType = 2;
}
string bcName = "Wall2";
{
  int bcType = 2;
}
```

图 2.bcname 文件中的边界条件信息

```
int nBoundaryConditons = 7;
string bcName = "Wall";
{
  int bcType = 2;
}
string bcName = "Wall2";
{
  int bcType = 2;
}
string bcName = "Farfield";
{
  int bcType = 4;
}
string bcName = "Farfield2";
{
  int bcType = 4;
}
string bcName = "Farfield3";
{
  int bcType = 4;
}
string bcName = "Farfield4";
{
  int bcType = 4;
}
string bcName = "Farfield4";
{
  int bcType = 4;
}
string bcName = "UserDefined";
{
  int bcType = 1000;
}
```

图 3 boundary_condition.hypara 文件修改后的最终效果

注意:复制过来的边界信息顺序无影响,保证有7个边界信息。

4.3 网格分区

注: 只需对先前 grid 文件夹中转换生成的 background.fts (2个分区)、

lowerwing.fts (2个分区)、upperwing.fts (2个分区)进行网格分区操作。

网格转换: key.hypara + partition.hypara

命令: 在可执行程序位置 shift+鼠标右键点击"在此处打开命令窗口" 输入 mpiexec –n 1 ./ PHengLEIv3d0.exe 进行网格分区

文件	参 数	值	备注
	ndim	2	空间维数
	nparafile	1	参数文件个数
key.hypara	nsimutask	3	参数类型
	string parafilename =	"./bin/partition.hypara"	相应参数文件路
			径
	int gridtype	0	网格类型
	int macproc	2	分区数
	string original_grid_file	"./grid/ background.fts"	分区前网格文件
partition.hypara			路径
	string partition_grid_file	"./grid/	分区前网格文件
		background2.fts"	路径
	int numberOfMultigrid	1	多重计算分区

先按照上表中的参数设置对 background.fts 进行网格分区 (2 个分区)操作生成分区后的 background__2.fts 文件;再按照相同的设置, 重复 2 次操作:

- 1)修改输入和输出路径中的网格文件名为 lowerwing.fts 和 lowerwing__2.fts 然后进行网格分区操作生成分区后的 lowerwing__2.fts 文件。
- 2)修改输入和输出路径中的网格文件名为 upperwing.fts 和 upperwing__2.fts 然后进行网格分区操作生成分区后的 upperwing__2.fts 文件。

aux-lower.cgns	2021/6/23 星期	CGNS 文件	80 KB
aux-lower_0.bcmesh	2021/6/24 星期	BCMESH 文件	95 KB
aux-lower_0.bcname	2021/6/24 星期	BCNAME 文件	1 KB
aux-lower_0.fts	2021/6/24 星期	FTS 文件	182 KB
aux-upper.cgns	2021/6/23 星期	CGNS 文件	80 KB
aux-upper_0.bcmesh	2021/6/24 星期	BCMESH 文件	95 KB
aux-upper_0.bcname	2021/6/24 星期	BCNAME 文件	1 KB
aux-upper_0.fts	2021/6/24 星期	FTS 文件	182 KB
background.cgns	2021/6/24 星期	CGNS 文件	2,468 KB
abackground_2_0.fts	2021/6/24 星期	FTS 文件	5,242 KB
background_2_0.wdt	2021/6/24 星期	WDT 文件	1,079 KB
background_0.bcmesh	2021/6/24 星期	BCMESH 文件	2,493 KB
background_0.bcname	2021/6/24 星期	BCNAME 文件	1 KB
background_0.fts	2021/6/24 星期	FTS 文件	5,180 KB
lowerwing.cgns	2021/6/24 星期	CGNS 文件	1,496 KB
lowerwing_2_0.fts	2021/6/24 星期	FTS 文件	3,171 KB
lowerwing_0.bcmesh	2021/6/24 星期	BCMESH 文件	1,508 KB
lowerwing_0.bcname	2021/6/24 星期	BCNAME 文件	1 KB
lowerwing_0.fts	2021/6/24 星期	FTS 文件	3,125 KB
upperwing.cgns	2021/6/24 星期	CGNS 文件	1,496 KB
upperwing_2_0.fts	2021/6/24 星期	FTS 文件	3,171 KB
upperwing_0.bcmesh	2021/6/24 星期	BCMESH 文件	1,508 KB
upperwing_0.bcname	2021/6/24 星期	BCNAME 文件	1 KB
upperwing_0.fts	2021/6/24 星期	FTS 文件	3,125 KB

图 1 网格分区结果

4.4 CFD 计算

CFD 计算:

 $key.hypara + boundary_condition.hypara + overset_config.hypara$

注意: 此文档为重叠装配算例说明文档

针对重叠装配: 需在 key.hypara 中设置 nparafile=1 和打开 nsimutask=6

命令: 在可执行程序位置 shift+鼠标右键点击"在此处打开命令窗口"

输入 mpiexec -n 6 ./ PHengLEIv3d0.exe 进行计算

文件	参 数	值	备注
	ndim	2	空间维数
	nparafile	1	参数文件个数
key.hypara	nsimutask	6	参数类型
	string parafilename1 =	"./bin/overset_co	重叠参数文件路径
		nfig.hypara"	
boundary_condi			采用网格转换后修改
tion.hypara	-	-	好的文件
	parallelStrategy	1	并行策略
avarget sonfig h	numberOfGridGroups	3	网格组个数
overset_config.h	-t.: :: 1C:1-	"./grid/backgroun	第一部分网格文件路
ypara	string gridfile	d2.fts"	径
	string gridfile1	"./grid/upperwin	第二部分网格文件路

		g2.fts"	
		"./grid/lowerwin	第三部分网格文件路
	string gridfile2	g2.fts"	径
	codeOfOversetGrid	1	有无重叠网格
	codeOfOversetSlipGrid	0	网格有无滑移
	readOversetFileOrNot	0	是否读取 ovs 文件
	symetryOrNot	1	是否只进行半场计算
	readInAuxiliaryInnerGrid	1	是否需要辅助网格 (inner)
	readInAuxiliaryOuterGrid	0	是否需要辅助网格 (outer)
	readInSklFileOrNot	0	是否读入 skl 文件
	auxiliaryInnerGrid0	"./grid/aux-upper .fts";	第一部分网格辅助网 格文件路径
	auxiliaryInnerGrid1	"./grid/aux-lower .fts"	第二部分网格辅助网 格文件路径
	oversetGridFileName	"./grid/overlap.o vs"	
	walldistMainZone	1.0	
	toleranceForOversetSearch	1e-3	
	toleranceForOversetBox	1e-3	
	twoOrderInterpolationOrNot	1	是否采用同二阶插值
	keyEnlargeOfActiveNodes	1	活跃区域扩展次数
	outTecplotOverset	1	是否输出重叠网格流 场数据
	numberOfMovingBodies	2	
	morphing_0	0	
	morphing_1	0	
	morphing_2	0	
	maxSimuStep	300	迭代计算步数
	intervalStepFlow	100	流场文件步数
	intervalStepPlot	100	可视化输出步数
	intervalStepForce	100	气动力输出步数
	intervalStepRes	10	残差输出步数
cfd_para_transo	refMachNumber	0.755	来流马赫数
nic.hypara	attackd	0.016	来流攻角
	angleSlide	0.00	侧滑角
	refReNumber	6.5e6	来流单位雷诺数
	refDimensionalTemperature	288.15	来流温度
	gridScaleFactor	0.001	网格缩放比
	forceRefenenceLengthSpan	1.0	参考展长

Wise		
forceRefenenceLength	1.0	参考长度
forceRefenenceArea	1.0	参考面积
TorqueRefX	0.0	
TorqueRefY	0.0	参考坐标
TorqueRefZ	0.0	
viscousType	0	NS 方程类型
viscousName	Euler	粘性类型
string str. sahama nama		结构网格:
string str_scheme_name	-	空间离散格式
string str_limiter_name		限制器类型
		非结构网格:
string uns_limiter_name	"roe"	限制器类型
double venkatCoeff	5.0	限制器系数
iunsteady	0	定常/非定常计算
CFLEnd	30.0	CFL 终止步
nLUSGSSweeps	1	LUSGS 扫描步
nMGLevel	1	多重网格数
flowInitStep	100	初始化流场步数

5 计算结果

5.1 残差气动力

比较生成的8个boundaryCell.dat和8个oversetGrid.dat的文件。

注:只有进行重叠挖洞时才会生成上述的 boundaryCell.dat 和 oversetGrid.dat 文件,进行流场计算时不会生成这两类文件。

6 结论

计算结果和对比文件结果完全一致,则非结构重叠挖洞算例测试 合格。