diff --git a/README.md b/README.md index 9dd6a95..3c5e25b 100644 --- a/README.md +++ b/README.md @@ -24,13 +24,13 @@ Input to sagecal must be in CASA MS format, make sure to create a column in the ### 2) Sky Model: -#### 2a)Make an image of your MS (using ExCon/casapy). +#### 2a) Make an image of your MS (using ExCon/casapy). Use Duchamp to create a mask for the image. Use buildsky to create a sky model. (see the README file on top level directory). Also create a proper cluster file. Special options to buildsky: -o 1 (NOTE: not -o 2) Alternatively, create these files by hand according to the following formats. -#### 2b)Cluster file format: +#### 2b) Cluster file format: cluster_id chunk_size source1 source2 ... e.g. ``` @@ -44,7 +44,7 @@ Note: putting -ve values for cluster_id will not subtract them from data. chunk_size: find hybrid solutions during one solve run. Eg. if -t 120 is used to select 120 timeslots, cluster 0 will find a solution using the full 120 timeslots while cluster 2 will solve for every 120/3=40 timeslots. -#### 2c)Sky model format: +#### 2c) Sky model format: ``` #name h m s d m s I Q U V spectral_index RM extent_X(rad) extent_Y(rad) pos_angle(rad) freq0 ``` @@ -90,7 +90,7 @@ p3=q3/ln(10)^2 ... ``` -### 3)Run sagecal +### 3) Run sagecal Optionally: Make sure your machine has (1/2 working NVIDIA GPU cards or Intel Xeon Phi MICs) to use sagecal. Recommended usage: (with GPUs) @@ -118,7 +118,7 @@ Eg. If you need to ignore cluster ids '-1', '10', '999', create a text file : and use it as the 'ignore_file'. -### 4)Distributed calibration +### 4) Distributed calibration Use mpirun to run sagecal-mpi, example: ``` @@ -143,7 +143,7 @@ Note: the number of slaves (-np option) can be lower than the number of MS calib The rest of the options are similar to sagecal. -### 5)Solution format +### 5) Solution format All SAGECal solutions are stored as text files. Lines starting with '#' are comments. The first non-comment line includes some general information, i.e. freq(MHz) bandwidth(MHz) time_interval(min) stations clusters effective_clusters