PulseFocusPlatform/static/docs/tutorials/INSTALL.md

142 lines
4.3 KiB
Markdown
Raw Permalink Normal View History

2022-06-01 11:18:00 +08:00
English | [简体中文](INSTALL_cn.md)
# Installation
---
## Table of Contents
- [Introduction](#introduction)
- [PaddlePaddle](#paddlepaddle)
- [Other Dependencies](#other-dependencies)
- [PaddleDetection](#paddle-detection)
## Introduction
This document covers how to install PaddleDetection, its dependencies
(including PaddlePaddle), together with COCO and Pascal VOC dataset.
For general information about PaddleDetection, please see [README.md](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/).
## Install PaddlePaddle
### Requirements:
- OS 64 bit
- Python2 >= 2.7.15 or Python 3(3.5.1+/3.6/3.7)64 bit
- pip/pip3(9.0.1+), 64 bit
- CUDA >= 9.0
- cuDNN >= 7.6
If you need GPU multi-card training, firstly please install NCCL. (Windows does not support nccl).
PaddleDetection depends on PaddlePaddle version relationship:
| PaddleDetection version | PaddlePaddle version | tips |
| :----------------: | :---------------: | :-------: |
| release/0.3 | >=1.7 | -- |
| release/0.4 | >= 1.8.4 | PP-YOLO depends on 1.8.4 |
| release/0.5 | >= 1.8.4 | Cascade R-CNN and SOLOv2 depends on 2.0.0.rc |
| release/2.0-rc | >= 2.0.1 | -- |
If you want install paddlepaddle, please follow the instructions in [installation document](http://www.paddlepaddle.org.cn/).
```
# install paddlepaddle
# install paddlepaddle CUDA9.0
python -m pip install paddlepaddle-gpu==2.0.1.post90 -i https://mirror.baidu.com/pypi/simple
install paddlepaddle CUDA10.0
python -m pip install paddlepaddle-gpu==2.0.1.post101 -f https://paddlepaddle.org.cn/whl/mkl/stable.html
install paddlepaddle CPU
python -m pip install paddlepaddle -i https://mirror.baidu.com/pypi/simple
```
For more installation methods such as conda, docker installation, please refer to the instructions in the [installation document](https://www.paddlepaddle.org.cn/install/quick)
Please make sure that your PaddlePaddle is installed successfully and the version is not lower than the required version. Use the following command to verify.
```
# check
>>> import paddle
>>> paddle.utils.run_check()
# confirm the paddle's version
python -c "import paddle; print(paddle.__version__)"
```
## Other Dependencies
[COCO-API](https://github.com/cocodataset/cocoapi):
COCO-API is needed for running. Installation is as follows:
git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
# if cython is not installed
pip install Cython
# Install into global site-packages
make install
# Alternatively, if you do not have permissions or prefer
# not to install the COCO API into global site-packages
python setup.py install --user
# or with pip
pip install "git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI"
**Installation of COCO-API in windows:**
# if cython is not installed
pip install Cython
# Because the origin version of cocoapi does not support windows, another version is used which only supports Python3
pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI
## PaddleDetection
**Clone Paddle models repository:**
You can clone PaddleDetection with the following commands:
```
cd <path/to/clone/PaddleDetection>
git clone https://github.com/PaddlePaddle/PaddleDetection.git
```
**Install Python dependencies:**
Required python packages are specified in [requirements.txt](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/static/requirements.txt), and can be installed with:
```
pip install -r requirements.txt
```
**Make sure the tests pass:**
```shell
python ppdet/modeling/tests/test_architectures.py
```
After the test is passed, the following information will be prompted:
```
..........
----------------------------------------------------------------------
Ran 12 tests in 2.480s
OK (skipped=2)
```
**Infer by pretrained-model**
Use the pre-trained model to predict the image:
```
# set use_gpu
python tools/infer.py -c configs/ppyolo/ppyolo.yml -o use_gpu=true weights=https://paddlemodels.bj.bcebos.com/object_detection/ppyolo.pdparams --infer_img=demo/000000014439.jpg
```
An image of the same name with the predicted result will be generated under the `output` folder.
The result is as shown below
![](../images/000000014439.jpg)