120 lines
2.8 KiB
Plaintext
120 lines
2.8 KiB
Plaintext
rand(time(0));
|
|
|
|
var new_neuron=func(){
|
|
return {
|
|
in:0,
|
|
out:0,
|
|
w:[],
|
|
bia:0,
|
|
diff:0
|
|
};
|
|
}
|
|
|
|
var tanh=func(x){
|
|
var (a,b)=(math.exp(x),math.exp(-x));
|
|
return (a-b)/(a+b);
|
|
}
|
|
var difftanh=func(x){
|
|
x=tanh(x);
|
|
return 1-x*x;
|
|
}
|
|
var sigmoid=func(x){
|
|
return 1/(1+math.exp(-x));
|
|
}
|
|
var diffsigmoid=func(x){
|
|
x=sigmoid(x);
|
|
return x*(1-x);
|
|
}
|
|
|
|
var (inum,hnum,onum)=(2,4,1);
|
|
var training_set=[[0,0],[0,1],[1,0],[1,1]];
|
|
var expect=[0,1,1,0];
|
|
|
|
var hidden=[];
|
|
for(var i=0;i<hnum;i+=1){
|
|
append(hidden,new_neuron());
|
|
for(var j=0;j<inum;j+=1)
|
|
append(hidden[i].w,rand()>0.5?-2*rand():2*rand());
|
|
hidden[i].bia=rand()>0.5?-5*rand():5*rand();
|
|
}
|
|
|
|
var output=[];
|
|
for(var i=0;i<onum;i+=1){
|
|
append(output,new_neuron());
|
|
for(var j=0;j<hnum;j+=1)
|
|
append(output[i].w,rand()>0.5?-2*rand():2*rand());
|
|
output[i].bia=rand()>0.5?-5*rand():5*rand();
|
|
}
|
|
|
|
var forward=func(x){
|
|
var input=training_set[x];
|
|
for(var i=0;i<hnum;i+=1){
|
|
hidden[i].in=hidden[i].bia;
|
|
for(var j=0;j<inum;j+=1)
|
|
hidden[i].in+=hidden[i].w[j]*input[j];
|
|
hidden[i].out=tanh(hidden[i].in);
|
|
}
|
|
for(var i=0;i<onum;i+=1){
|
|
output[i].in=output[i].bia;
|
|
for(var j=0;j<hnum;j+=1)
|
|
output[i].in+=output[i].w[j]*hidden[j].out;
|
|
output[i].out=sigmoid(output[i].in);
|
|
}
|
|
return;
|
|
}
|
|
var run=func(vec){
|
|
var input=vec;
|
|
for(var i=0;i<hnum;i+=1){
|
|
hidden[i].in=hidden[i].bia;
|
|
for(var j=0;j<inum;j+=1)
|
|
hidden[i].in+=hidden[i].w[j]*input[j];
|
|
hidden[i].out=tanh(hidden[i].in);
|
|
}
|
|
for(var i=0;i<onum;i+=1){
|
|
output[i].in=output[i].bia;
|
|
for(var j=0;j<hnum;j+=1)
|
|
output[i].in+=output[i].w[j]*hidden[j].out;
|
|
output[i].out=sigmoid(output[i].in);
|
|
}
|
|
return;
|
|
}
|
|
var get_error=func(x){
|
|
return 0.5*(expect[x]-output[0].out)*(expect[x]-output[0].out);
|
|
}
|
|
var backward=func(x){
|
|
var input=training_set[x];
|
|
output[0].diff=(expect[x]-output[0].out)*diffsigmoid(output[0].in);
|
|
for(var i=0;i<hnum;i+=1){
|
|
hidden[i].diff=0;
|
|
for(var j=0;j<onum;j+=1)
|
|
hidden[i].diff+=output[j].w[i]*output[j].diff;
|
|
hidden[i].diff*=difftanh(hidden[i].in);
|
|
}
|
|
for(var i=0;i<hnum;i+=1){
|
|
hidden[i].bia+=hidden[i].diff;
|
|
for(var j=0;j<inum;j+=1)
|
|
hidden[i].w[j]+=hidden[i].diff*input[j];
|
|
}
|
|
for(var i=0;i<onum;i+=1){
|
|
output[i].bia+=output[i].diff;
|
|
for(var j=0;j<hnum;j+=1)
|
|
output[i].w[j]+=output[i].diff*hidden[j].out;
|
|
}
|
|
return;
|
|
}
|
|
|
|
var (cnt,error)=(0,100);
|
|
while(error>0.0005){
|
|
error=0;
|
|
for(var i=0;i<4;i+=1){
|
|
forward(i);
|
|
error+=get_error(i);
|
|
backward(i);
|
|
}
|
|
cnt+=1;
|
|
}
|
|
print('finished after ',cnt,' epoch.\n');
|
|
foreach(var v;training_set){
|
|
run(v);
|
|
print(v,': ',output[0].out,'\n');
|
|
} |