af761641d6 | ||
---|---|---|
.github/workflows | ||
doc | ||
module | ||
pic | ||
stl | ||
test | ||
.gitattributes | ||
.gitignore | ||
LICENSE | ||
README.md | ||
lib.nas | ||
main.cpp | ||
makefile | ||
nasal.ebnf | ||
nasal.h | ||
nasal_ast.h | ||
nasal_builtin.h | ||
nasal_codegen.h | ||
nasal_dbg.h | ||
nasal_err.h | ||
nasal_gc.h | ||
nasal_import.h | ||
nasal_lexer.h | ||
nasal_opt.h | ||
nasal_parse.h | ||
nasal_vm.h |
README.md
Nasal Scripting Language
__ _
/\ \ \__ _ ___ __ _| |
/ \/ / _` / __|/ _` | |
/ /\ / (_| \__ \ (_| | |
\_\ \/ \__,_|___/\__,_|_|
Contents
- Introduction
- Compile
- Usage
- Tutorial
- Release Notes
- Parser
- Abstract Syntax Tree
- Bytecode VM
- Benchmark
- Difference
- Trace Back Info
- Debugger
Contact us if having great ideas to share!
-
E-mail: lhk101lhk101@qq.com
-
QQ: 896693328
Introduction
Nasal is an ECMAscript-like programming language that used in FlightGear. This language is designed by Andy Ross.
The interpreter is totally rewritten by ValKmjolnir using C++
(-std=c++11
)
without reusing the code in Andy Ross's nasal interpreter.
But we really appreciate that Andy created this amazing programming language and his interpreter project.
Now this project uses MIT license (2021/5/4). Edit it if you want, use this project to learn or create more interesting things (But don't forget me XD).
Why writing this nasal interpreter? In 2019 summer holiday, members in FGPRC told me that it is hard to debug with nasal-console in Flightgear, especially when checking syntax errors. So i tried to write a new interpreter to help them checking syntax error and even, runtime error.
I wrote the lexer, parser and bytecode virtual machine(there was an ast-interpreter, but deleted after v4.0) to help checking errors. We found it much easier to check syntax and runtime errors before copying nasal-codes in nasal-console in Flightgear to test.
Also, you could use this language to write some interesting programs and run them without the lib of Flightgear. You could add your own modules to make this interpreter a useful tool in your own projects (such as a script in a game just as Flightgear does).
How to Compile
Better choose the latest update of the interpreter. Download the source and build it! It's quite easy to build this interpreter.
CAUTION: If want to use the release zip/tar.gz file to build the interpreter, please read the Release Notes below to make sure this release file has no fatal bugs. There are some tips to fix the release manually.
Use g++(MinGW-w64
) or MSVC(Visual Studio
) on Windows
platform. Download MinGW-w64 HERE(Visual Studio also has this), and use g++/clang++ on linux/macOS/Unix
platform (we suggest clang
).
We could build the interpreter using makefile
.
mingw32-make
is Windows(MinGW-w64)
platform's make
:
mingw32-make nasal.exe
mingw32-make.exe nasal.exe
on linux/macOS/Unix
:
make nasal
You could choose which compiler you want to use:
make nasal CXX=clang++
make nasal CXX=g++
make nasal CXX=...
If you think -O3
isn't that safe and stable, you could choose:
make stable-release
mingw32-make stable-release-mingw
How to Use
First we should learn how to write and run a program using this language, click to see the tutorial.
Input this command to run scripts directly:
./nasal filename
Use these commands to get version of interpreter:
./nasal -v | --version
Use these commands to get help(see more debug commands in help):
./nasal -h | --help
If your system is Windows
and you want to output unicode,please use this command before running nasal interpreter:
chcp 65001
or you could write this in your nasal code:
if(os.platform()=="windows")
system("chcp 65001");
Tutorial
Nasal is really easy to learn. Reading this tutorial will not takes you over 15 minutes. If you have learnt C/C++/Javascript before, this will take less time. You could totally use it after reading this simple tutorial:
basic value type
vm_none
is error type.
This type is used to interrupt the execution of virtual machine and will not be created by user program.
vm_nil
is a null type. It means nothing.
var spc=nil;
vm_num
has 3 formats: dec
, hex
and oct
. Using IEEE754 double to store.
# this language use '#' to write notes
var n=1; # dec
var n=2.71828; # dec
var n=2.147e16; # dec
var n=1e-10; # dec
var n=0x7fffffff; # hex
var n=0xAA55; # hex
var n=0o170001; # oct
vm_str
has 3 formats. The third one is used to declare a character.
var s='str';
var s="another string";
var s=`c`;
# some special characters is allowed in this language:
'\a'; '\b'; '\e'; '\f';
'\n'; '\r'; '\t'; '\v';
'\0'; '\\'; '\?'; '\'';
'\"';
vm_vec
has unlimited length and can store all types of values.
var vec=[];
var vec=[
0,
nil,
{},
[],
func(){return 0;}
];
append(vec,0,1,2);
vm_hash
is a hashmap(or like a dict in python
) that stores values with strings/identifiers as the key.
var hash={
member1:nil,
member2:"str",
'member3':'member\'s name can also be a string constant',
function:func(){
var a=me.member2~me.member3;
return a;
}
};
vm_func
is a function type (in fact it is lambda).
var f=func(x,y,z){
return nil;
}
var f=func{
return 1024;
}
var f=func(x,y,z,default1=1,default2=2){
return x+y+z+default1+default2;
}
var f=func(args...){
var sum=0;
foreach(var i;args)
sum+=i;
return sum;
}
vm_upval
is a special type that used to store upvalues.
This type is only used in nasal_vm
to make sure closure runs correctly.
vm_obj
is a special type that stores user data.
This means you could use other complex C/C++ data types in nasal.
This type is used when you are trying to add a new data structure into nasal,
so this type is often created by native-function that programmed in C/C++ by library developers.
You could see how to write your own native-functions below.
var new_obj=func(){
return __my_obj();
}
var obj=new_obj();
operators
Nasal has basic math operators +
-
*
/
and a special operator ~
that links two strings together.
1+2-1*2/1;
'str1'~'str2';
(1+2)*(3+4)
For conditional expressions, operators ==
!=
<
>
<=
>=
are used to compare two values.
and
or
have the same function as C/C++ &&
||
, link comparations together.
1+1 and 0;
1<0 or 1>0;
1<=0 and 1>=0;
1==0 or 1!=0;
Unary operators -
!
have the same function as C/C++.
-1;
!0;
Operators =
+=
-=
*=
/=
~=
are used in assignment expressions.
a=b=c=d=1;
a+=1;
a-=1;
a*=1;
a/=1;
a~='string';
definition
var a=1;
var (a,b,c)=[0,1,2];
var (a,b,c)=(0,1,2);
(var a,b,c)=[0,1,2];
(var a,b,c)=(0,1,2);
multi-assignment
The last one is often used to swap two variables.
(a,b[0],c.d)=[0,1,2];
(a,b[1],c.e)=(0,1,2);
(a,b)=(b,a);
conditional expression
In nasal there's a new key word elsif
.
It has the same functions as else if
.
if(1){
;
}elsif(2){
;
}else if(3){
;
}else{
;
}
loop
While loop and for loop is simalar to C/C++.
while(condition)
continue;
for(var i=0;i<10;i+=1)
break;
Nasal has another two kinds of loops that iterates through a vector:
forindex
will get the index of a vector. Index will be 0
to size(elem)-1
.
forindex(var i;elem)
print(elem[i]);
foreach
will get the element of a vector. Element will be elem[0]
to elem[size(elem)-1]
.
foreach(var i;elem)
print(i);
subvec
Nasal provides this special syntax to help user generate a new vector by getting values by one index or getting values by indexes in a range from an old vector.
If there's only one index in the bracket, then we will get the value directly.
Use index to search one element in the string will get the ascii number of this character.
If you want to get the character, use built-in function chr()
.
a[0];
a[-1,1,0:2,0:,:3,:,nil:8,3:nil,nil:nil];
"hello world"[0];
special function call
This is of great use but is not very efficient (because hashmap use string as the key to compare).
f(x:0,y:nil,z:[]);
lambda
Also functions have this kind of use:
func(x,y){return x+y}(0,1);
func(x){return 1/(1+math.exp(-x));}(0.5);
There's an interesting test file y-combinator.nas
,
try it for fun:
var fib=func(f){
return f(f);
}(
func(f){
return func(x){
if(x<2) return x;
return f(f)(x-1)+f(f)(x-2);
}
}
);
closure
Closure means you could get the variable that is not in the local scope of a function that you called.
Here is an example, result is 1
:
var f=func(){
var a=1;
return func(){return a;};
}
print(f()());
Using closure makes it easier to OOP.
var student=func(n,a){
var (name,age)=(n,a);
return {
print_info:func() {println(name,' ',age);},
set_age: func(a){age=a;},
get_age: func() {return age;},
set_name: func(n){name=n;},
get_name: func() {return name;}
};
}
trait
Also there's another way to OOP, that is trait
.
When a hash has a member named parents
and the value type is vector,
then when you are trying to find a member that is not in this hash,
virtual machine will search the member in parents
.
If there is a hash that has the member, you will get the member's value.
Using this mechanism, we could OOP like this, the result is 114514
:
var trait={
get:func{return me.val;},
set:func(x){me.val=x;}
};
var class={
new:func(){
return {
val:nil,
parents:[trait]
};
}
};
var a=class.new();
a.set(114514);
println(a.get());
First virtual machine cannot find member set
in hash a
, but in a.parents
there's a hash trait
has the member set
, so we get the set
.
variable me
points to hash a
, so we change the a.val
.
And get
has the same process.
And we must remind you that if you do this:
var trait={
get:func{return me.val;},
set:func(x){me.val=x;}
};
var class={
new:func(){
return {
val:nil,
parents:[trait]
};
}
};
var a=class.new();
var b=class.new();
a.set(114);
b.set(514);
println(a.get());
println(b.get());
var c=a.get;
var d=b.get;
println(c());
println(c());
println(d());
println(d());
You will get this result now:
114
514
514
514
514
514
Because a.get
will set me=a
in the trait.get
. Then b.get
do the me=b
. So in fact c is b.get
too after running var d=b.get
.
If you want to use this trick to make the program running more efficiently, you must know this special mechanism.
native functions
This part shows how we add native functions in this nasal interpreter. If you are interested in this part, this may help you. And...
CAUTION: If you want to add your own functions without changing the source code of the interpreter, see the module
after this part.
If you really want to change source code, check built-in functions in lib.nas
and see the example below.
Definition:
nasal_ref builtin_print(nasal_ref*,nasal_gc&);
// you could also use a macro to define one.
nas_native(builtin_print);
Then complete this function using C++:
nasal_ref builtin_print(nasal_ref* local,nasal_gc& gc)
{
// find value with index begin from 1
// because local[0] is reserved for value 'me'
nasal_ref vec=local[1];
// main process
// also check number of arguments and type here
// if get an error,use builtin_err
for(auto& i:vec.vec().elems)
switch(i.type)
{
case vm_none: std::cout<<"undefined"; break;
case vm_nil: std::cout<<"nil"; break;
case vm_num: std::cout<<i.num(); break;
case vm_str: std::cout<<i.str(); break;
case vm_vec: i.vec().print(); break;
case vm_hash: i.hash().print(); break;
case vm_func: std::cout<<"func(..){..}";break;
case vm_obj: std::cout<<"<object>"; break;
}
std::cout<<std::flush;
// generate return value,
// use gc::alloc(type) to make a new value
// or use reserved reference nil/one/zero
return nil;
}
After that, register the built-in function's name(in nasal) and the function's pointer in this table:
struct func
{
const char* name;
nasal_ref (*func)(nasal_ref*,nasal_gc&);
} builtin[]=
{
{"__print",builtin_print},
{nullptr, nullptr }
};
At last,warp the __print
in a nasal file:
var print=func(elems...){
return __print(elems);
};
In fact the arguments that __print
uses are not necessary.
So writting it like this is also right:
var print=func(elems...){
return __print;
};
If you don't warp built-in function in a normal nasal function, this built-in function may cause a fault when searching arguments, which will cause segmentation error.
Use import("filename.nas")
to get the nasal file including your built-in functions, then you could use it.
Also there's another way of importing nasal files, the two way of importing have the same function:
import.dirname.dirname.filename;
import("./dirname/dirname/filename.nas");
When running a builtin function, alloc will run more than one time, this may cause mark-sweep in gc::alloc
.
The value got before will be collected, but stil in use in this builtin function, this will cause a fatal error.
So use gc::temp
in builtin functions to temprorarily store the gc-managed value that you want to return later. Like this:
nasal_ref builtin_keys(nasal_ref* local,nasal_gc& gc)
{
nasal_ref hash=local[1];
if(hash.type!=vm_hash)
return builtin_err("keys","\"hash\" must be hash");
// avoid being sweeped
nasal_ref res=gc.temp=gc.alloc(vm_vec);
auto& vec=res.vec().elems;
for(auto& iter:hash.hash().elems)
vec.push_back(gc.newstr(iter.first));
gc.temp=nil;
return res;
}
modules(for library developers)
If there is only one way to add your own functions into nasal, that is really inconvenient.
Luckily, we have developed some useful native-functions to help you add modules that created by you.
After 2021/12/3, there are some new functions added to lib.nas
:
var dylib=
{
dlopen: func(libname){return __dlopen;},
dlsym: func(lib,sym){return __dlsym; },
dlclose: func(lib){return __dlclose; },
dlcall: func(funcptr,args...){return __dlcall}
};
Aha, as you could see, these functions are used to load dynamic libraries into the nasal runtime and execute. Let's see how they work.
First, write a cpp file that you want to generate the dynamic lib, take the fib.cpp
as the example(example codes are in ./module
):
// add header file nasal.h to get api
#include "nasal.h"
double fibonaci(double x){
if(x<=2)
return x;
return fibonaci(x-1)+fibonaci(x-2);
}
// remember to use extern "C",
// so you could search the symbol quickly
extern "C" nasal_ref fib(std::vector<nasal_ref>& args,nasal_gc& gc){
// the arguments are generated into a vm_vec: args
// get values from the vector that must be used here
nasal_ref num=args[0];
// if you want your function safer, try this
// builtin_err will print the error info on screen
// and return vm_null for runtime to interrupt
if(num.type!=vm_num)
return builtin_err("extern_fib","\"num\" must be number");
// ok, you must know that vm_num now is not managed by gc
// if want to return a gc object, use gc.alloc(type)
// usage of gc is the same as adding a native function
return {vm_num,fibonaci(num.tonum())};
}
Next, compile this fib.cpp
into dynamic lib.
Linux(.so
):
clang++ -c -O3 fib.cpp -fPIC -o fib.o
clang++ -shared -o libfib.so fib.o
Mac(.so
& .dylib
): same as Linux.
Windows(.dll
):
g++ -c -O3 fib.cpp -fPIC -o fib.o
g++ -shared -o libfib.dll fib.o
Then we write a test nasal file to run this fib function, using os.platform()
we could write a program that runs on three different OS:
import("lib.nas");
var dlhandle=dylib.dlopen("./module/libfib."~(os.platform()=="windows"?"dll":"so"));
var fib=dylib.dlsym(dlhandle,"fib");
for(var i=1;i<30;i+=1)
println(dylib.dlcall(fib,i));
dylib.dlclose(dlhandle);
dylib.dlopen
is used to load dynamic library.
dylib.dlsym
is used to get the function address.
dylib.dlcall
is used to call the function, the first argument is the function address, make sure this argument is vm_obj and type=obj_extern.
dylib.dlclose
is used to unload the library, at the moment that you call the function, all the function addresses that got from it are invalid.
If get this, Congratulations!
./nasal a.nas
1
2
3
5
8
13
21
34
55
89
144
233
377
610
987
1597
2584
4181
6765
10946
17711
28657
46368
75025
121393
196418
317811
514229
832040
Release Notes
version 8.0 release
I made a big mistake in v8.0
release:
in nasal_dbg.h:215
: auto canary=gc.stack+STACK_MAX_DEPTH-1;
this will cause incorrect stackoverflow
error.
please change it to:
canary=gc.stack+STACK_MAX_DEPTH-1;
If do not change this line, only the debugger runs abnormally. this bug is fixed in v9.0
.
Another bug is that in nasal_err.h:class nasal_err
, we should add a constructor for this class:
nasal_err():error(0){}
This bug is fixed in v9.0
. So we suggest that do not use v8.0
.
Parser
LL(1)
parser with special check.
(var a,b,c)=[{b:nil},[1,2],func return 0;];
(a.b,b[0],c)=(1,2,3);
These two expressions have the same first set,so LL(1)
is useless for this language. We add some special checks in it.
Problems mentioned above have been solved for a long time, but recently i found a new problem here:
var f=func(x,y,z){return x+y+z}
(a,b,c)=(0,1,2);
This will be recognized as this:
var f=func(x,y,z){return x+y+z}(a,b,c)
=(0,1,2);
and causes fatal syntax error. And i tried this program in flightgear nasal console. It also found this is a syntax error. I think this is a serious design fault. To avoid this syntax error, change program like this, just add a semicolon:
var f=func(x,y,z){return x+y+z};
^ here
(a,b,c)=(0,1,2);
version 1.0 parser (last update 2019/10/14)
First fully functional version of nasal_parser.
Before version 1.0,i tried many times to create a correct parser.
Finally i learned LL(1)
and LL(k)
and wrote a parser for math formulas in version 0.16(last update 2019/9/14).
In version 0.17(2019/9/15) 0.18(2019/9/18) 0.19(2019/10/1)i was playing the parser happily and after that i wrote version 1.0.
This project began at 2019/7/25.
Abstract Syntax Tree
version 1.2 ast (last update 2019/10/31)
The ast has been completed in this version.
version 2.0 ast (last update 2020/8/31)
A completed ast-interpreter with unfinished lib functions.
version 3.0 ast (last update 2020/10/23)
The ast is refactored and is now easier to read and maintain.
Ast-interpreter uses new techniques so it can run codes more efficiently.
Now you can add your own functions as builtin-functions in this interpreter!
I decide to save the ast interpreter after releasing v4.0. Because it took me a long time to think and write...
version 5.0 ast (last update 2021/3/7)
I change my mind. AST interpreter leaves me too much things to do.
If i continue saving this interpreter, it will be harder for me to make the bytecode vm become more efficient.
Bytecode Virtual Machine
version 4.0 vm (last update 2020/12/17)
I have just finished the first version of bytecode-interpreter.
This interpreter is still in test. After this test, i will release version 4.0!
Now i am trying to search hidden bugs in this interpreter. Hope you could help me! :)
There's an example of byte code below:
for(var i=0;i<4000000;i+=1);
.number 0
.number 4e+006
.number 1
.symbol i
0x00000000: pzero 0x00000000
0x00000001: loadg 0x00000000 (i)
0x00000002: callg 0x00000000 (i)
0x00000003: pnum 0x00000001 (4e+006)
0x00000004: less 0x00000000
0x00000005: jf 0x0000000b
0x00000006: pone 0x00000000
0x00000007: mcallg 0x00000000 (i)
0x00000008: addeq 0x00000000
0x00000009: pop 0x00000000
0x0000000a: jmp 0x00000002
0x0000000b: nop 0x00000000
version 5.0 vm (last update 2021/3/7)
I decide to optimize bytecode vm in this version.
Because it takes more than 1.5s to count i from 0
to 4000000-1
.This is not efficient at all!
2021/1/23 update: Now it can count from 0
to 4000000-1
in 1.5s.
version 6.0 vm (last update 2021/6/1)
Use loadg
/loadl
/callg
/calll
/mcallg
/mcalll
to avoid branches.
Delete type vm_scop
.
Use const vm_num
to avoid frequently new & delete.
Change garbage collector from reference-counting to mark-sweep.
vapp
and newf
operand use .num to reduce the size of exec_code
.
2021/4/3 update: Now it can count from 0
to 4e6-1
in 0.8s.
2021/4/19 update: Now it can count from 0
to 4e6-1
in 0.4s.
In this update i changed global and local scope from unordered_map
to vector
.
So the bytecode generator changed a lot.
for(var i=0;i<4000000;i+=1);
.number 4e+006
0x00000000: intg 0x00000001
0x00000001: pzero 0x00000000
0x00000002: loadg 0x00000000
0x00000003: callg 0x00000000
0x00000004: pnum 0x00000000 (4e+006)
0x00000005: less 0x00000000
0x00000006: jf 0x0000000c
0x00000007: pone 0x00000000
0x00000008: mcallg 0x00000000
0x00000009: addeq 0x00000000
0x0000000a: pop 0x00000000
0x0000000b: jmp 0x00000003
0x0000000c: nop 0x00000000
version 6.5 vm (last update 2021/6/24)
2021/5/31 update:
Now gc can collect garbage correctly without re-collecting, which will cause fatal error.
Add builtin_alloc
to avoid mark-sweep when running a built-in function,
which will mark useful items as useless garbage to collect.
Better use setsize and assignment to get a big array,
append
is very slow in this situation.
2021/6/3 update:
Fixed a bug that gc still re-collects garbage, this time i use three mark states to make sure garbage is ready to be collected.
Change callf
to callfv
and callfh
.
And callfv
fetches arguments from val_stack
directly instead of using vm_vec
,
a not very efficient way.
Better use callfv
instead of callfh
,
callfh
will fetch a vm_hash
from stack and parse it,
making this process slow.
var f=func(x,y){return x+y;}
f(1024,2048);
.number 1024
.number 2048
.symbol x
.symbol y
0x00000000: intg 0x00000001
0x00000001: newf 0x00000007
0x00000002: intl 0x00000003
0x00000003: offset 0x00000001
0x00000004: para 0x00000000 (x)
0x00000005: para 0x00000001 (y)
0x00000006: jmp 0x0000000b
0x00000007: calll 0x00000001
0x00000008: calll 0x00000002
0x00000009: add 0x00000000
0x0000000a: ret 0x00000000
0x0000000b: loadg 0x00000000
0x0000000c: callg 0x00000000
0x0000000d: pnum 0x00000000 (1024)
0x0000000e: pnum 0x00000001 (2048)
0x0000000f: callfv 0x00000002
0x00000010: pop 0x00000000
0x00000011: nop 0x00000000
2021/6/21 update: Now gc will not collect nullptr. And the function of assignment is complete, now these kinds of assignment is allowed:
var f=func()
{
var _=[{_:0},{_:1}];
return func(x)
{
return _[x];
}
}
var m=f();
m(0)._=m(1)._=10;
[0,1,2][1:2][0]=0;
In the old version, parser will check this left-value and tells that these kinds of left-value are not allowed(bad lvalue).
But now it can work.
And you could see its use by reading the code above.
To make sure this assignment works correctly,
codegen will generate byte code by nasal_codegen::call_gen()
instead of nasal_codegen::mcall_gen()
,
and the last child of the ast will be generated by nasal_codegen::mcall_gen()
.
So the bytecode is totally different now:
.number 10
.number 2
.symbol _
.symbol x
0x00000000: intg 0x00000002
0x00000001: newf 0x00000005
0x00000002: intl 0x00000002
0x00000003: offset 0x00000001
0x00000004: jmp 0x00000017
0x00000005: newh 0x00000000
0x00000006: pzero 0x00000000
0x00000007: happ 0x00000000 (_)
0x00000008: newh 0x00000000
0x00000009: pone 0x00000000
0x0000000a: happ 0x00000000 (_)
0x0000000b: newv 0x00000002
0x0000000c: loadl 0x00000001
0x0000000d: newf 0x00000012
0x0000000e: intl 0x00000003
0x0000000f: offset 0x00000002
0x00000010: para 0x00000001 (x)
0x00000011: jmp 0x00000016
0x00000012: calll 0x00000001
0x00000013: calll 0x00000002
0x00000014: callv 0x00000000
0x00000015: ret 0x00000000
0x00000016: ret 0x00000000
0x00000017: loadg 0x00000000
0x00000018: callg 0x00000000
0x00000019: callfv 0x00000000
0x0000001a: loadg 0x00000001
0x0000001b: pnum 0x00000000 (10.000000)
0x0000001c: callg 0x00000001
0x0000001d: pone 0x00000000
0x0000001e: callfv 0x00000001
0x0000001f: mcallh 0x00000000 (_)
0x00000020: meq 0x00000000
0x00000021: callg 0x00000001
0x00000022: pzero 0x00000000
0x00000023: callfv 0x00000001
0x00000024: mcallh 0x00000000 (_)
0x00000025: meq 0x00000000
0x00000026: pop 0x00000000
0x00000027: pzero 0x00000000
0x00000028: pzero 0x00000000
0x00000029: pone 0x00000000
0x0000002a: pnum 0x00000001 (2.000000)
0x0000002b: newv 0x00000003
0x0000002c: slcbeg 0x00000000
0x0000002d: pone 0x00000000
0x0000002e: pnum 0x00000001 (2.000000)
0x0000002f: slc2 0x00000000
0x00000030: slcend 0x00000000
0x00000031: pzero 0x00000000
0x00000032: mcallv 0x00000000
0x00000033: meq 0x00000000
0x00000034: pop 0x00000000
0x00000035: nop 0x00000000
As you could see from the bytecode above,
mcall
/mcallv
/mcallh
operands' using frequency will reduce,
call
/callv
/callh
/callfv
/callfh
at the opposite.
And because of the new structure of mcall
,
addr_stack
, a stack used to store the memory address,
is deleted from nasal_vm
,
and now nasal_vm
use nasal_val** mem_addr
to store the memory address.
This will not cause fatal errors because the memory address is used immediately after getting it.
version 7.0 vm (last update 2021/10/8)
2021/6/26 update:
Instruction dispatch is changed from call-threading to computed-goto(with inline function). After changing the way of instruction dispatch, there is a great improvement in nasal_vm. Now vm can run test/bigloop and test/pi in 0.2s! And vm runs test/fib in 0.8s on linux. You could see the time use data below, in Test data section.
This version uses g++ extension "labels as values", which is also supported by clang++. (But i don't know if MSVC supports this)
There is also a change in nasal_gc:
std::vector
global is deleted,
now the global values are all stored on stack(from val_stack+0
to val_stack+intg-1
).
2021/6/29 update:
Add some instructions that execute const values:
op_addc
,op_subc
,op_mulc
,op_divc
,op_lnkc
,op_addeqc
,op_subeqc
,op_muleqc
,op_diveqc
,op_lnkeqc
.
Now the bytecode of test/bigloop.nas seems like this:
.number 4e+006
.number 1
0x00000000: intg 0x00000001
0x00000001: pzero 0x00000000
0x00000002: loadg 0x00000000
0x00000003: callg 0x00000000
0x00000004: pnum 0x00000000 (4000000)
0x00000005: less 0x00000000
0x00000006: jf 0x0000000b
0x00000007: mcallg 0x00000000
0x00000008: addeqc 0x00000001 (1)
0x00000009: pop 0x00000000
0x0000000a: jmp 0x00000003
0x0000000b: nop 0x00000000
And this test file runs in 0.1s after this update. Most of the calculations are accelerated.
Also, assignment bytecode has changed a lot.
Now the first identifier that called in assignment will use op_load
to assign,
instead of op_meq
,op_pop
.
var (a,b)=(1,2);
a=b=0;
.number 2
0x00000000: intg 0x00000002
0x00000001: pone 0x00000000
0x00000002: loadg 0x00000000
0x00000003: pnum 0x00000000 (2)
0x00000004: loadg 0x00000001
0x00000005: pzero 0x00000000
0x00000006: mcallg 0x00000001
0x00000007: meq 0x00000000 (b=2 use meq,pop->a)
0x00000008: loadg 0x00000000 (a=b use loadg)
0x00000009: nop 0x00000000
version 8.0 vm (last update 2022/2/12)
2021/10/8 update:
In this version vm_nil and vm_num now is not managed by nasal_gc
,
this will decrease the usage of gc::alloc
and increase the efficiency of execution.
New value type is added: vm_obj
.
This type is reserved for user to define their own value types.
Related API will be added in the future.
Fully functional closure:
Add new operands that get and set upvalues.
Delete an old operand op_offset
.
2021/10/13 update:
The format of output information of bytecodes changes to this:
0x000002f2: newf 0x2f6
0x000002f3: intl 0x2
0x000002f4: para 0x3e ("x")
0x000002f5: jmp 0x309
0x000002f6: calll 0x1
0x000002f7: lessc 0x0 (2)
0x000002f8: jf 0x2fb
0x000002f9: calll 0x1
0x000002fa: ret
0x000002fb: upval 0x0[0x1]
0x000002fc: upval 0x0[0x1]
0x000002fd: callfv 0x1
0x000002fe: calll 0x1
0x000002ff: subc 0x1d (1)
0x00000300: callfv 0x1
0x00000301: upval 0x0[0x1]
0x00000302: upval 0x0[0x1]
0x00000303: callfv 0x1
0x00000304: calll 0x1
0x00000305: subc 0x0 (2)
0x00000306: callfv 0x1
0x00000307: add
0x00000308: ret
0x00000309: ret
0x0000030a: callfv 0x1
0x0000030b: loadg 0x32
2022/1/22 update:
Delete op_pone
and op_pzero
.
Both of them are meaningless and will be replaced by op_pnum
.
version 9.0 vm (last update 2022/5/18)
2022/2/12 update:
Local values now are stored on stack.
So function calling will be faster than before.
Because in v8.0 when calling a function,
new vm_vec
will be allocated by nasal_gc
, this makes gc doing mark-sweep too many times and spends a quite lot of time.
In test file test/bf.nas
, it takes too much time to test the file because this file has too many function calls(see test data below in table version 8.0 (R9-5900HX ubuntu-WSL 2022/1/23)
).
Upvalue now is generated when creating first new function in the local scope, using vm_vec
.
And after that when creating new functions, they share the same upvalue, and the upvalue will synchronize with the local scope each time creating a new function.
2022/3/27 update:
In this month's updates we change upvalue from vm_vec
to vm_upval
,
a special gc-managed object,
which has almost the same structure of that upvalue object in another programming language Lua
.
Today we change the output format of bytecode.
New output format looks like objdump
:
0x0000029b: 0a 00 00 00 00 newh
func <0x29c>:
0x0000029c: 0b 00 00 02 a0 newf 0x2a0
0x0000029d: 02 00 00 00 02 intl 0x2
0x0000029e: 0d 00 00 00 66 para 0x66 ("libname")
0x0000029f: 32 00 00 02 a2 jmp 0x2a2
0x000002a0: 40 00 00 00 42 callb 0x42 <__dlopen@0x41dc40>
0x000002a1: 4a 00 00 00 00 ret
<0x29c>;
0x000002a2: 0c 00 00 00 67 happ 0x67 ("dlopen")
func <0x2a3>:
0x000002a3: 0b 00 00 02 a8 newf 0x2a8
0x000002a4: 02 00 00 00 03 intl 0x3
0x000002a5: 0d 00 00 00 68 para 0x68 ("lib")
0x000002a6: 0d 00 00 00 69 para 0x69 ("sym")
0x000002a7: 32 00 00 02 aa jmp 0x2aa
0x000002a8: 40 00 00 00 43 callb 0x43 <__dlsym@0x41df00>
0x000002a9: 4a 00 00 00 00 ret
<0x2a3>;
0x000002aa: 0c 00 00 00 6a happ 0x6a ("dlsym")
version 10.0 vm (latest)
2022/5/19 update:
Now we add coroutine in this runtime:
var coroutine={
create: func(function){return __cocreate;},
resume: func(co) {return __coresume;},
yield: func(args...) {return __coyield; },
status: func(co) {return __costatus;},
running:func() {return __corun; }
};
coroutine.create
is used to create a new coroutine object using a function.
But this coroutine will not run immediately.
coroutine.resume
is used to continue running a coroutine.
coroutine.yield
is used to interrupt the running of a coroutine and throw some values.
These values will be accepted and returned by coroutine.resume
.
And coroutine.yield
it self returns vm_nil
in the coroutine function.
coroutine.status
is used to see the status of a coroutine.
There are 3 types of status:suspended
means waiting for running,running
means is running,dead
means finished running.
coroutine.running
is used to judge if there is a coroutine running now.
CAUTION: coroutine should not be created or running inside another coroutine.
We will explain how resume and yield work here:
When op_callb
is called, the stack frame is like this:
+----------------------------+(main stack)
| old pc(vm_ret) | <- top[0]
+----------------------------+
| old localr(vm_addr) | <- top[-1]
+----------------------------+
| old upvalr(vm_upval) | <- top[-2]
+----------------------------+
| local scope(nasal_ref) |
| ... |
+----------------------------+ <- local pointer stored in localr
| old funcr(vm_func) | <- old function stored in funcr
+----------------------------+
In op_callb
's progress, next step the stack frame is:
+----------------------------+(main stack)
| nil(vm_nil) | <- push nil
+----------------------------+
| old pc(vm_ret) |
+----------------------------+
| old localr(vm_addr) |
+----------------------------+
| old upvalr(vm_upval) |
+----------------------------+
| local scope(nasal_ref) |
| ... |
+----------------------------+ <- local pointer stored in localr
| old funcr(vm_func) | <- old function stored in funcr
+----------------------------+
Then we call resume
, this function will change stack.
As we can see, coroutine stack already has some values on it,
but if we first enter it, the stack top will be vm_ret
, and the return pc
is 0
.
So for safe running, resume
will return gc.top[0]
.
op_callb
will do top[0]=resume()
, so the value does not change.
+----------------------------+(coroutine stack)
| pc:0(vm_ret) | <- now gc.top[0]
+----------------------------+
When we call yield
, the function will do like this.
And we find that op_callb
has put the nil
at the top.
but where is the returned local[1]
sent?
+----------------------------+(coroutine stack)
| nil(vm_nil) | <- push nil
+----------------------------+
| old pc(vm_ret) |
+----------------------------+
| old localr(vm_addr) |
+----------------------------+
| old upvalr(vm_upval) |
+----------------------------+
| local scope(nasal_ref) |
| ... |
+----------------------------+ <- local pointer stored in localr
| old funcr(vm_func) | <- old function stored in funcr
+----------------------------+
When builtin_coyield
is finished, the stack is set to main stack,
and the returned local[1]
in fact is set to the top of the main stack by op_callb
:
+----------------------------+(main stack)
| return_value(nasal_ref) |
+----------------------------+
| old pc(vm_ret) |
+----------------------------+
| old localr(vm_addr) |
+----------------------------+
| old upvalr(vm_upval) |
+----------------------------+
| local scope(nasal_ref) |
| ... |
+----------------------------+ <- local pointer stored in localr
| old funcr(vm_func) | <- old function stored in funcr
+----------------------------+
so the main progress feels the value on the top is the returned value of resume
.
but in fact the resume
's returned value is set on coroutine stack.
so we conclude this:
resume (main->coroutine) return coroutine.top[0]. coroutine.top[0] = coroutine.top[0];
yield (coroutine->main) return a vector. main.top[0] = vector;
Benchmark
version 6.5 (i5-8250U windows10 2021/6/19)
running time and gc time:
file | call gc | total time | gc time |
---|---|---|---|
pi.nas | 12000049 | 0.593s | 0.222s |
fib.nas | 10573747 | 2.838s | 0.187s |
bp.nas | 4419829 | 1.99s | 0.18s |
bigloop.nas | 4000000 | 0.419s | 0.039s |
mandelbrot.nas | 1044630 | 0.433s | 0.041s |
life.nas | 817112 | 8.557s | 0.199s |
ascii-art.nas | 45612 | 0.48s | 0.027s |
calc.nas | 8089 | 0.068s | 0.006s |
quick_sort.nas | 2768 | 0.107s | 0s |
bfs.nas | 2471 | 1.763s | 0.003s |
operands calling frequency:
file | 1st | 2nd | 3rd | 4th | 5th |
---|---|---|---|---|---|
pi.nas | callg | pop | mcallg | pnum | pone |
fib.nas | calll | pnum | callg | less | jf |
bp.nas | calll | callg | pop | callv | addeq |
bigloop.nas | pnum | less | jf | callg | pone |
mandelbrot.nas | callg | mult | loadg | pnum | pop |
life.nas | calll | callv | pnum | jf | callg |
ascii-art.nas | calll | pop | mcalll | callg | callb |
calc.nas | calll | pop | pstr | mcalll | jmp |
quick_sort.nas | calll | pop | jt | jf | less |
bfs.nas | calll | pop | callv | mcalll | jf |
operands calling total times:
file | 1st | 2nd | 3rd | 4th | 5th |
---|---|---|---|---|---|
pi.nas | 6000004 | 6000003 | 6000000 | 4000005 | 4000002 |
fib.nas | 17622792 | 10573704 | 7049218 | 7049155 | 7049155 |
bp.nas | 7081480 | 4227268 | 2764676 | 2617112 | 2065441 |
bigloop.nas | 4000001 | 4000001 | 4000001 | 4000001 | 4000000 |
mandelbrot.nas | 1519632 | 563856 | 290641 | 286795 | 284844 |
life.nas | 2114371 | 974244 | 536413 | 534794 | 489743 |
ascii-art.nas | 37906 | 22736 | 22402 | 18315 | 18292 |
calc.nas | 191 | 124 | 109 | 99 | 87 |
quick_sort.nas | 16226 | 5561 | 4144 | 3524 | 2833 |
bfs.nas | 24707 | 16297 | 14606 | 14269 | 8672 |
version 7.0 (i5-8250U ubuntu-WSL on windows10 2021/6/29)
running time:
file | total time | info |
---|---|---|
pi.nas | 0.15625s | great improvement |
fib.nas | 0.75s | great improvement |
bp.nas | 0.4218s(7162 epoch) | good improvement |
bigloop.nas | 0.09375s | great improvement |
mandelbrot.nas | 0.0312s | great improvement |
life.nas | 8.80s(windows) 1.25(ubuntu WSL) | little improvement |
ascii-art.nas | 0.015s | little improvement |
calc.nas | 0.0468s | little improvement |
quick_sort.nas | 0s | great improvement |
bfs.nas | 0.0156s | great improvement |
version 8.0 (R9-5900HX ubuntu-WSL 2022/1/23)
running time:
file | total time | info |
---|---|---|
bf.nas | 1100.19s | |
mandel.nas | 28.98s | |
life.nas | 0.56s | 0.857s(windows) |
ycombinator.nas | 0.64s | |
fib.nas | 0.28s | |
bfs.nas | 0.156s | random result |
pi.nas | 0.0625s | |
bigloop.nas | 0.047s | |
calc.nas | 0.03125s | changed test file |
mandelbrot.nas | 0.0156s | |
ascii-art.nas | 0s | |
quick_sort.nas | 0s |
version 9.0 (R9-5900HX ubuntu-WSL 2022/2/13)
running time:
file | total time | info |
---|---|---|
bf.nas | 276.55s | great improvement |
mandel.nas | 28.16s | |
ycombinator.nas | 0.59s | |
life.nas | 0.2s | 0.649s(windows) |
fib.nas | 0.234s | little improvement |
bfs.nas | 0.14s | random result |
pi.nas | 0.0625s | |
bigloop.nas | 0.047s | |
calc.nas | 0.0469s | changed test file |
quick_sort.nas | 0.016s | changed test file:100->1e4 |
mandelbrot.nas | 0.0156s | |
ascii-art.nas | 0s |
bf.nas
is a very interesting test file that there is a brainfuck interpreter written in nasal.
And we use this bf interpreter to draw a mandelbrot set.
In 2022/2/17 update we added \e
into the lexer. And the bfcolored.nas
uses this special ASCII code. Here is the result:
Difference Between Andy's and This Interpreter
1. must use var
to define variables
This interpreter uses more strict syntax to make sure it is easier for you to program and debug.
In Andy's interpreter:
import("lib.nas");
foreach(i;[0,1,2,3])
print(i)
This program can run normally with output 0 1 2 3. But take a look at the iterator 'i', this symbol is defined in foreach without using keyword 'var'. I think this design will make programmers filling confused. This is ambiguous that programmers maybe difficult to find the 'i' is defined here. Without 'var', programmers may think this 'i' is defined anywhere else.
So in this new interpreter i use a more strict syntax to force users to use 'var' to define iterator of forindex and foreach. If you forget to add the keyword 'var', and you haven't defined this symbol before, you will get this:
[code] test.nas:2 undefined symbol "i".
foreach(i;[0,1,2,3])
[code] test.nas:3 undefined symbol "i".
print(i)
2. (now supported) couldn't use variables before definitions
(Outdated: this is now supported) Also there's another difference. In Andy's interpreter:
var a=func {print(b);}
var b=1;
a();
This program runs normally with output 1. But in this new interpreter, it will get:
[code] test.nas:1 undefined symbol "b".
var a=func {print(b);}
This difference is caused by different kinds of ways of lexical analysis. In most script language interpreters, they use dynamic analysis to check if this symbol is defined yet. However, this kind of analysis is at the cost of lower efficiency. To make sure the interpreter runs at higher efficiency, i choose static analysis to manage the memory space of each symbol. By this way, runtime will never need to check if a symbol exists or not. But this causes a difference. You will get an error of 'undefined symbol', instead of nothing happening in most script language interpreters.
This change is controversial among FGPRC's members. So maybe in the future i will use dynamic analysis again to cater to the habits of senior programmers.
(2021/8/3 update) Now i use scanning ast twice to reload symbols. So this difference does not exist from this update. But a new difference is that if you call a variable before defining it, you'll get nil instead of 'undefined error'.
3. default dynamic arguments not supported
In this new interpreter,
function doesn't put dynamic arguments into vector arg
automatically.
So if you use arg
without definition,
you'll get an error of undefined symbol
.
Trace Back Info
When the interpreter crashes, it will print trace back information:
1. native function die
Function die
is used to throw error and crash immediately.
func()
{
println("hello");
die("error occurred this line");
return;
}();
hello
[vm] error: error occurred this line
[vm] native function error.
trace back:
0x000000ac: 40 00 00 00 25 callb 0x25 <__die@0x41afc0> (lib.nas:131)
0x000004f6: 3e 00 00 00 01 callfv 0x1 (a.nas:4)
0x000004fa: 3e 00 00 00 00 callfv 0x0 (a.nas:6)
vm stack(0x7fffcd21bc68<sp+80>, limit 10, total 12):
0x0000005b | null |
0x0000005a | pc | 0x4f6
0x00000059 | addr | 0x7fffcd21bc78
0x00000058 | nil |
0x00000057 | str | <0x138ff60> error occurred t...
0x00000056 | nil |
0x00000055 | func | <0x13445b0> entry:0x4f0
0x00000054 | pc | 0x4fa
0x00000053 | addr | 0x0
0x00000052 | nil |
2. stack overflow crash info
Here is an example of stack overflow:
func(f){
return f(f);
}(
func(f){
f(f);
}
)();
[vm] stack overflow
trace back:
0x000004fb: 3e 00 00 00 01 callfv 0x1 (a.nas:5)
0x000004fb: 1349 same call(s)
0x000004f3: 3e 00 00 00 01 callfv 0x1 (a.nas:2)
0x000004ff: 3e 00 00 00 01 callfv 0x1 (a.nas:3)
vm stack(0x7fffd3781d58<sp+80>, limit 10, total 8108):
0x00001ffb | func | <0x15f8d90> entry:0x4f9
0x00001ffa | func | <0x15f8d90> entry:0x4f9
0x00001ff9 | pc | 0x4fb
0x00001ff8 | addr | 0x7fffd37a1748
0x00001ff7 | nil |
0x00001ff6 | func | <0x15f8d90> entry:0x4f9
0x00001ff5 | nil |
0x00001ff4 | func | <0x15f8d90> entry:0x4f9
0x00001ff3 | pc | 0x4fb
0x00001ff2 | addr | 0x7fffd37a16e8
3. normal vm error crash info
Error will be thrown if there's a fatal error when executing:
func(){
return 0;
}()[1];
[vm] callv: must call a vector/hash/string
trace back:
0x000004f4: 3b 00 00 00 00 callv 0x0 (a.nas:3)
vm stack(0x7fffff539c28<sp+80>, limit 10, total 1):
0x00000050 | num | 0
4. detailed crash info
Use command -d
or --detail
the trace back info will show more details:
hello
[vm] error: error occurred this line
[vm] native function error.
trace back:
0x000000ac: 40 00 00 00 25 callb 0x25 <__die@0x41afc0> (lib.nas:131)
0x000004f6: 3e 00 00 00 01 callfv 0x1 (a.nas:4)
0x000004fa: 3e 00 00 00 00 callfv 0x0 (a.nas:6)
vm stack(0x7ffff42f3d08<sp+80>, limit 10, total 12):
0x0000005b | null |
0x0000005a | pc | 0x4f6
0x00000059 | addr | 0x7ffff42f3d18
0x00000058 | nil |
0x00000057 | str | <0x1932480> error occurred t...
0x00000056 | nil |
0x00000055 | func | <0x18e6ad0> entry:0x4f0
0x00000054 | pc | 0x4fa
0x00000053 | addr | 0x0
0x00000052 | nil |
registers(main):
[ pc ] | pc | 0xac
[ global ] | addr | 0x7ffff42f3808
[ localr ] | addr | 0x7ffff42f3d68
[ memr ] | addr | 0x0
[ funcr ] | func | <0x18fbe50> entry:0xac
[ upvalr ] | nil |
[ canary ] | addr | 0x7ffff43137f8
[ top ] | addr | 0x7ffff42f3db8
global(0x7ffff42f3808<sp+0>):
0x00000000 | func | <0x18d62d0> entry:0x5
0x00000001 | func | <0x18d7e40> entry:0xc
...
0x00000031 | func | <0x18f6ad0> entry:0x237
0x00000032 | hash | <0x191f780> {14 val}
0x00000033 | func | <0x18df660> entry:0x29b
0x00000034 | hash | <0x191f7a0> {9 val}
0x00000035 | hash | <0x191f7c0> {18 val}
...
0x00000039 | hash | <0x191f840> {1 val}
0x0000003a | num | 0.0174533
...
0x00000049 | num | 57.2958
0x0000004a | func | <0x18e6490> entry:0x489
...
0x0000004e | func | <0x18e6710> entry:0x4c2
0x0000004f | hash | <0x191f8b0> {5 val}
local(0x7ffff42f3d68<sp+86>):
0x00000000 | nil |
0x00000001 | str | <0x1932480> error occurred t...
Debugger
In nasal v8.0
we added a debugger.
Now we could see both source code and bytecode when testing program.
Use command ./nasal -dbg xxx.nas
to use the debugger,
and the debugger will print this:
[debug] nasal debug mode
input 'h' to get help
source code:
--> import("lib.nas");
var fib=func(x)
{
if(x<2) return x;
return fib(x-1)+fib(x-2);
}
for(var i=0;i<31;i+=1)
print(fib(i),'\n');
next bytecode:
--> 0x00000000: 01 00 00 00 4f intg 0x4f (a.nas:0)
0x00000001: 0b 00 00 00 05 newf 0x5 (lib.nas:5)
0x00000002: 02 00 00 00 02 intl 0x2 (lib.nas:5)
0x00000003: 0d 00 00 00 00 para 0x0 ("filename") (lib.nas:5)
0x00000004: 32 00 00 00 07 jmp 0x7 (lib.nas:5)
0x00000005: 40 00 00 00 24 callb 0x24 <__import@0x419b20> (lib.nas:6)
0x00000006: 4a 00 00 00 00 ret 0x0 (lib.nas:6)
0x00000007: 03 00 00 00 00 loadg 0x0 (lib.nas:5)
vm stack(0x7fffe05e3190<sp+79>, limit 5, total 0)
>>
If want help, input h
to get help.
>> h
When running the debugger, you could see what is on stack. This will help you debugging or learning how the vm works:
source code:
import("lib.nas");
var fib=func(x)
{
--> if(x<2) return x;
return fib(x-1)+fib(x-2);
}
for(var i=0;i<31;i+=1)
print(fib(i),'\n');
next bytecode:
0x00000458: 4a 00 00 00 00 ret 0x0 (lib.nas:463)
0x00000459: 03 00 00 00 4c loadg 0x4c (lib.nas:463)
0x0000045a: 0b 00 00 04 5e newf 0x45e (a.nas:2)
0x0000045b: 02 00 00 00 02 intl 0x2 (a.nas:2)
0x0000045c: 0d 00 00 00 1c para 0x1c ("x") (a.nas:2)
0x0000045d: 32 00 00 04 6d jmp 0x46d (a.nas:2)
--> 0x0000045e: 39 00 00 00 01 calll 0x1 (a.nas:4)
0x0000045f: 2d 00 00 00 02 lessc 0x2 (2) (a.nas:4)
vm stack(0x7fffe05e3190<sp+79>, limit 5, total 6):
0x00000054 | pc | 0x476
0x00000053 | addr | 0x0
0x00000052 | num | 0
0x00000051 | nil |
0x00000050 | nil |
>>