forked from p83651209/CPM-9G-8B
153 lines
4.1 KiB
Python
153 lines
4.1 KiB
Python
|
import os
|
|||
|
import struct
|
|||
|
import json
|
|||
|
from typing import List
|
|||
|
|
|||
|
import libcpm
|
|||
|
from flask import Flask, Response, request
|
|||
|
|
|||
|
# from concurrent.futures import ThreadPoolExecutor
|
|||
|
# executor = ThreadPoolExecutor(1)
|
|||
|
|
|||
|
|
|||
|
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1,2,3,4,5,6,7"
|
|||
|
|
|||
|
|
|||
|
def _load_dtype(fp):
|
|||
|
dtype = struct.unpack("B", fp.read(1))[0]
|
|||
|
return dtype
|
|||
|
|
|||
|
def _load_string(fp):
|
|||
|
size = struct.unpack("I", fp.read(4))[0]
|
|||
|
return fp.read(size).decode("utf-8")
|
|||
|
|
|||
|
def _load_tuple(fp):
|
|||
|
ndim = struct.unpack("B", fp.read(1))[0]
|
|||
|
ret = []
|
|||
|
for i in range(ndim):
|
|||
|
ret.append(struct.unpack("I", fp.read(4))[0])
|
|||
|
return tuple(ret)
|
|||
|
|
|||
|
class LocalLoader(libcpm.ModelLoader):
|
|||
|
def __init__(self,
|
|||
|
model_path : str,
|
|||
|
vocab_path : str,
|
|||
|
):
|
|||
|
vocabs = []
|
|||
|
with open(vocab_path, "r") as fin:
|
|||
|
for line in fin:
|
|||
|
if line.startswith("\""):
|
|||
|
vocabs.append(json.loads(line))
|
|||
|
self._vocabs = vocabs
|
|||
|
# print(len(vocabs), "tokens")
|
|||
|
|
|||
|
with open(model_path, "rb") as fp:
|
|||
|
num_parameters = struct.unpack("I", fp.read(4))[0]
|
|||
|
parameters = {}
|
|||
|
for _ in range(num_parameters):
|
|||
|
param_name = "model." + _load_string(fp)
|
|||
|
_ = _load_tuple(fp)
|
|||
|
param_size = struct.unpack("I", fp.read(4))[0]
|
|||
|
_ = _load_dtype(fp)
|
|||
|
param = fp.read(param_size)
|
|||
|
parameters[param_name] = param
|
|||
|
self._parameters = parameters
|
|||
|
|
|||
|
def fetch_parameter(self, name):
|
|||
|
# print(name, len(self._parameters[name]))
|
|||
|
return self._parameters[name]
|
|||
|
|
|||
|
@property
|
|||
|
def num_layers(self):
|
|||
|
return 32
|
|||
|
|
|||
|
@property
|
|||
|
def dim_model(self):
|
|||
|
return 4096
|
|||
|
|
|||
|
@property
|
|||
|
def num_heads(self):
|
|||
|
return 32
|
|||
|
|
|||
|
@property
|
|||
|
def num_kv_heads(self):
|
|||
|
return 32
|
|||
|
|
|||
|
@property
|
|||
|
def dim_head(self):
|
|||
|
return 128
|
|||
|
|
|||
|
@property
|
|||
|
def dim_ff(self):
|
|||
|
return 14336
|
|||
|
|
|||
|
@property
|
|||
|
def tokens(self):
|
|||
|
return self._vocabs
|
|||
|
|
|||
|
@property
|
|||
|
def rope_theta(self):
|
|||
|
return 10000.0
|
|||
|
|
|||
|
|
|||
|
|
|||
|
model = libcpm.CPMCaterpillar(
|
|||
|
#add converted model and vocabs
|
|||
|
LocalLoader(
|
|||
|
"model_8b.ckpt",
|
|||
|
"vocabs.txt",
|
|||
|
),
|
|||
|
memory_limit = 40 << 30,
|
|||
|
)
|
|||
|
|
|||
|
app = Flask(__name__)
|
|||
|
import logging
|
|||
|
logging.basicConfig(filename='error_8b.log',level=logging.DEBUG)
|
|||
|
|
|||
|
@app.route("/llm", methods=["get", "post"])
|
|||
|
def llm():
|
|||
|
content: str = request.json["content"]
|
|||
|
if "params" in request.json:
|
|||
|
params = request.json["params"]
|
|||
|
else:
|
|||
|
params = {}
|
|||
|
# ret = executor.submit(_llm, content).result()
|
|||
|
ret = _llm(content, params)
|
|||
|
return ret
|
|||
|
|
|||
|
def _llm(content, params):
|
|||
|
logging.debug("~ content:\n" + content)
|
|||
|
logging.debug("~ input_params:\n" + json.dumps(params, ensure_ascii=False))
|
|||
|
|
|||
|
def generate_events(content):
|
|||
|
ipt = content.replace("<用户>", "<sep>用户:")
|
|||
|
ipt = ipt.replace("<AI>", "<sep>AI:")
|
|||
|
ipt = ipt.lstrip("<sep>")
|
|||
|
old_ans = ""
|
|||
|
logging.debug("~ ans:")
|
|||
|
true_params = {}
|
|||
|
USING_PARAMS = {"max_length", "repetition_penalty", "ngram_penalty", "seed", "temperature", "top_p", "top_k", "interval"}
|
|||
|
true_params = {}
|
|||
|
for p in USING_PARAMS:
|
|||
|
if p in params:
|
|||
|
true_params[p] = params[p]
|
|||
|
if "max_length" not in true_params:
|
|||
|
true_params["max_length"] = 4096
|
|||
|
|
|||
|
logging.debug("~ true_params:\n" + json.dumps(true_params, ensure_ascii=False))
|
|||
|
for it in model.random_search(ipt, **true_params):
|
|||
|
ans = it["result"]
|
|||
|
if ans is not None:
|
|||
|
return_data = "data:" + json.dumps({"text": ans[len(old_ans):]}, ensure_ascii=False) + "\n\n"
|
|||
|
yield return_data
|
|||
|
logging.debug("return_data[" + return_data.strip() + "]")
|
|||
|
old_ans = ans
|
|||
|
if it["stoped"]:
|
|||
|
break
|
|||
|
logging.debug("\n")
|
|||
|
return Response(generate_events(content), mimetype="text/event-stream")
|
|||
|
|
|||
|
if __name__ == "__main__":
|
|||
|
app.run(host="0.0.0.0", port=8888, debug=True, use_reloader=False)
|
|||
|
|