forked from p83651209/CPM-9G-8B
Update README.md
This commit is contained in:
parent
02470ecb9e
commit
336a3c2e3e
15
README.md
15
README.md
|
@ -1,9 +1,16 @@
|
||||||
# 九格百亿级通用基础大模型
|
# 九格通用基础大模型
|
||||||
|
## 简介
|
||||||
|
启元九格大模型由启元实验室牵头,联合清华大学、哈尔滨工业大学、中国科学院计算技术研究所、北京大学、南开大学等优势单位共同研制。具有高效训练与推理和高效适配与部署的技术特点,具备文本问答、文本分类、机器翻译、文本摘要等自然语言处理能力。
|
||||||
|
|
||||||
启元九格大模型由启元实验室牵头,联合清华大学、哈尔滨工业大学、中国科学院计算技术研究所、北京大学、南开大学等优势单位共同研制。该版本通用大模型参数量为80亿,具有高效训练与推理和高效适配与部署的技术特点,具备文本问答、文本分类、机器翻译、文本摘要等自然语言处理能力。
|
## 最新消息
|
||||||
|
- 本次启元九格开源两个参数级别模型,分别是百亿级通用基础大模型为8B(80亿)和端侧模型2B(20亿参数)具体的模型训练、推理等内容见:[QUICK START](https://www.osredm.com/jiuyuan/CPM-9G-8B/tree/FM_9G/quick_start_clean/readmes/quick_start.md)
|
||||||
启元九格开源2个参数级别模型,分别是百亿级通用基础大模型为8B(80亿)和端侧模型2B(20亿参数)具体的模型训练、推理等内容见:[quick start](https://www.osredm.com/jiuyuan/CPM-9G-8B/tree/FM_9G/quick_start_clean/readmes/quick_start.md)
|
- 若还在使用旧版本的九格模型训练和推理,请切换分支到[master](https://www.osredm.com/jiuyuan/CPM-9G-8B/tree/master/quick_start_clean/readmes/README_ALL.md)
|
||||||
|
|
||||||
|
## 版本更新内容
|
||||||
|
具体的迭代信息如下:
|
||||||
|
- 训练:升级了训练代码,提升GPU利用率和并行化,并且2B模型能兼容transformers中的tokenizer(LlamaTokenizerFast)
|
||||||
|
- 推理:支持vllm进行模型推理和部署,可以接入langchain、openai等部署方式;同时可以将端侧模型可以支持GGUF等多种部署格式的部署
|
||||||
|
- LORA代码暂未实现至新版本代码框架中,预计八月份完成,若需要LORA训练,请切换分支至master
|
||||||
|
|
||||||
# 迈向通用智能的大模型技术系列课程
|
# 迈向通用智能的大模型技术系列课程
|
||||||
系列课程全方位介绍人工智能和大模型技术的基础知识和前沿课题,理论学习和实践应用相结合。课程既有“人工智能与大模型通论”和“神经网络与预训练模型”等基础知识,也有“九格大模型生态体系”和“领域大模型实战”等实战主题,基本内容包括大模型训练、微调、知识增强、伦理安全、多模态、具身智能、自主智能体等话题,高级选题包括多语言处理、面向科学研究的大模型应用、高效计算技术、评测与数据科学等话题。课程旨在通过一系列精心设计的单元为学习者提供大型通用人工智能的学习之旅。
|
系列课程全方位介绍人工智能和大模型技术的基础知识和前沿课题,理论学习和实践应用相结合。课程既有“人工智能与大模型通论”和“神经网络与预训练模型”等基础知识,也有“九格大模型生态体系”和“领域大模型实战”等实战主题,基本内容包括大模型训练、微调、知识增强、伦理安全、多模态、具身智能、自主智能体等话题,高级选题包括多语言处理、面向科学研究的大模型应用、高效计算技术、评测与数据科学等话题。课程旨在通过一系列精心设计的单元为学习者提供大型通用人工智能的学习之旅。
|
||||||
|
|
Loading…
Reference in New Issue