forked from p83651209/CPM-9G-8B
79 lines
4.1 KiB
Python
79 lines
4.1 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 The OpenBMB team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from collections import OrderedDict
|
|
|
|
import torch
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser(description='Load and save model weights with specified paths.')
|
|
parser.add_argument('--model_path', type=str, required=True, help='Path to the model directory.')
|
|
parser.add_argument('--output_path', type=str, required=True, help='Path to save the new weights.')
|
|
parser.add_argument('--layer_num', type=int, required=True, help='The layers of model')
|
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
src_path = args.model_path
|
|
dst_path = args.output_path
|
|
layer_num = args.layer_num
|
|
|
|
def convert_hf_to_fm9g():
|
|
ckpt = torch.load(src_path)
|
|
new_ckpt = OrderedDict()
|
|
|
|
new_ckpt['input_embedding.weight'] = ckpt['model.embed_tokens.weight']
|
|
new_ckpt["encoder.output_layernorm.weight"] = ckpt['model.norm.weight']
|
|
for i in range(layer_num):
|
|
new_ckpt[f"encoder.layers.{i}.self_att.self_attention.project_q.weight"] = ckpt[f"model.layers.{i}.self_attn.q_proj.weight"]
|
|
new_ckpt[f"encoder.layers.{i}.self_att.self_attention.project_k.weight"] = ckpt[f"model.layers.{i}.self_attn.k_proj.weight"]
|
|
new_ckpt[f"encoder.layers.{i}.self_att.self_attention.project_v.weight"] = ckpt[f"model.layers.{i}.self_attn.v_proj.weight"]
|
|
new_ckpt[f"encoder.layers.{i}.self_att.self_attention.attention_out.weight"] = ckpt[f"model.layers.{i}.self_attn.o_proj.weight"]
|
|
new_ckpt[f"encoder.layers.{i}.self_att.layernorm_before_attention.weight"] = ckpt[f"model.layers.{i}.input_layernorm.weight"]
|
|
new_ckpt[f"encoder.layers.{i}.ffn.layernorm_before_ffn.weight"] = ckpt[f"model.layers.{i}.post_attention_layernorm.weight"]
|
|
|
|
new_ckpt[f"encoder.layers.{i}.ffn.ffn.w_in.w_0.weight"] = ckpt[f'model.layers.{i}.mlp.gate_proj.weight']
|
|
new_ckpt[f"encoder.layers.{i}.ffn.ffn.w_in.w_1.weight"] = ckpt[f'model.layers.{i}.mlp.up_proj.weight']
|
|
new_ckpt[f"encoder.layers.{i}.ffn.ffn.w_out.weight"] = ckpt[f'model.layers.{i}.mlp.down_proj.weight']
|
|
|
|
torch.save(new_ckpt, dst_path)
|
|
|
|
def convert_fm9g_to_hf():
|
|
state = torch.load(src_path)
|
|
new_state = {}
|
|
new_state["model.embed_tokens.weight"] = state["input_embedding.weight"]
|
|
new_state["model.norm.weight"] = state["encoder.output_layernorm.weight"]
|
|
for lid in range(40):
|
|
print(lid)
|
|
new_state[f"model.layers.{lid}.self_attn.q_proj.weight"] = state[f"encoder.layers.{lid}.self_att.self_attention.project_q.weight"]
|
|
new_state[f"model.layers.{lid}.self_attn.k_proj.weight"] = state[f"encoder.layers.{lid}.self_att.self_attention.project_k.weight"]
|
|
new_state[f"model.layers.{lid}.self_attn.v_proj.weight"] = state[f"encoder.layers.{lid}.self_att.self_attention.project_v.weight"]
|
|
|
|
new_state[f"model.layers.{lid}.self_attn.o_proj.weight"] = state[f"encoder.layers.{lid}.self_att.self_attention.attention_out.weight"]
|
|
new_state[f"model.layers.{lid}.mlp.gate_proj.weight"] = state[f"encoder.layers.{lid}.ffn.ffn.w_in.w_0.weight"]
|
|
new_state[f"model.layers.{lid}.mlp.up_proj.weight"] = state[f"encoder.layers.{lid}.ffn.ffn.w_in.w_1.weight"]
|
|
new_state[f"model.layers.{lid}.mlp.down_proj.weight"] = state[f"encoder.layers.{lid}.ffn.ffn.w_out.weight"]
|
|
|
|
new_state[f"model.layers.{lid}.input_layernorm.weight"] = state[f"encoder.layers.{lid}.self_att.layernorm_before_attention.weight"]
|
|
new_state[f"model.layers.{lid}.post_attention_layernorm.weight"] = state[f"encoder.layers.{lid}.ffn.layernorm_before_ffn.weight"]
|
|
del state
|
|
state = None
|
|
torch.save(new_state, f"{dst_path}pytorch_model.bin")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
convert_hf_to_fm9g()
|
|
|