forked from p83651209/CPM-9G-8B
155 lines
4.7 KiB
Bash
155 lines
4.7 KiB
Bash
#!/bin/bash
|
|
|
|
deepspeed --include localhost:0,1,2,3,4,5,6,7 --master_port 21666 src/train.py \
|
|
--stage sft \
|
|
--model_name_or_path /mnt/diskhd/Backup/DownloadModel/2b_sft_model/ \
|
|
--do_train \
|
|
--dataset TACO \
|
|
--template jiuge \
|
|
--finetuning_type full \
|
|
--output_dir TACO \
|
|
--per_device_train_batch_size 14 \
|
|
--gradient_accumulation_steps 6 \
|
|
--lr_scheduler_type cosine \
|
|
--logging_step 1 \
|
|
--save_steps 300 \
|
|
--lr_scheduler_type cosine_with_restarts \
|
|
--warmup_ratio 0.001 \
|
|
--optim adamw_torch \
|
|
--learning_rate 2e-5 \
|
|
--num_train_epochs 2.0 \
|
|
--plot_loss \
|
|
--bf16 \
|
|
--gradient_checkpointing \
|
|
--report_to tensorboard \
|
|
--deepspeed deepspeed_configs/zero2.json \
|
|
--cutoff_len 2048
|
|
|
|
deepspeed --include localhost:0,1,2,3,4,5,6,7 --master_port 21666 src/train.py \
|
|
--stage sft \
|
|
--model_name_or_path /mnt/diskhd/Backup/DownloadModel/2b_sft_model/ \
|
|
--do_train \
|
|
--dataset Tested-143k-Python-Alpaca \
|
|
--template jiuge \
|
|
--finetuning_type full \
|
|
--output_dir Tested-143k-Python-Alpaca \
|
|
--per_device_train_batch_size 14 \
|
|
--gradient_accumulation_steps 6 \
|
|
--lr_scheduler_type cosine \
|
|
--logging_step 1 \
|
|
--save_steps 300 \
|
|
--lr_scheduler_type cosine_with_restarts \
|
|
--warmup_ratio 0.001 \
|
|
--optim adamw_torch \
|
|
--learning_rate 2e-5 \
|
|
--num_train_epochs 2.0 \
|
|
--plot_loss \
|
|
--bf16 \
|
|
--gradient_checkpointing \
|
|
--report_to tensorboard \
|
|
--deepspeed deepspeed_configs/zero2.json \
|
|
--cutoff_len 2048
|
|
|
|
deepspeed --include localhost:0,1,2,3,4,5,6,7 --master_port 21666 src/train.py \
|
|
--stage sft \
|
|
--model_name_or_path /mnt/diskhd/Backup/DownloadModel/2b_sft_model/ \
|
|
--do_train \
|
|
--dataset UltraInteract_sft \
|
|
--template jiuge \
|
|
--finetuning_type full \
|
|
--output_dir UltraInteract_sft \
|
|
--per_device_train_batch_size 14 \
|
|
--gradient_accumulation_steps 6 \
|
|
--lr_scheduler_type cosine \
|
|
--logging_step 1 \
|
|
--save_steps 300 \
|
|
--lr_scheduler_type cosine_with_restarts \
|
|
--warmup_ratio 0.001 \
|
|
--optim adamw_torch \
|
|
--learning_rate 2e-5 \
|
|
--num_train_epochs 2.0 \
|
|
--plot_loss \
|
|
--bf16 \
|
|
--gradient_checkpointing \
|
|
--report_to tensorboard \
|
|
--deepspeed deepspeed_configs/zero2.json \
|
|
--cutoff_len 2048
|
|
|
|
|
|
deepspeed --include localhost:0,1,2,3,4,5,6,7 --master_port 21666 src/train.py \
|
|
--stage sft \
|
|
--model_name_or_path /mnt/diskhd/Backup/DownloadModel/2b_sft_model/ \
|
|
--do_train \
|
|
--dataset code_instructions_120k_alpaca \
|
|
--template jiuge \
|
|
--finetuning_type full \
|
|
--output_dir code_instructions_120k_alpaca \
|
|
--per_device_train_batch_size 14 \
|
|
--gradient_accumulation_steps 6 \
|
|
--lr_scheduler_type cosine \
|
|
--logging_step 1 \
|
|
--save_steps 300 \
|
|
--lr_scheduler_type cosine_with_restarts \
|
|
--warmup_ratio 0.001 \
|
|
--optim adamw_torch \
|
|
--learning_rate 2e-5 \
|
|
--num_train_epochs 2.0 \
|
|
--plot_loss \
|
|
--bf16 \
|
|
--gradient_checkpointing \
|
|
--report_to tensorboard \
|
|
--deepspeed deepspeed_configs/zero2.json \
|
|
--cutoff_len 2048
|
|
|
|
|
|
deepspeed --include localhost:0,1,2,3,4,5,6,7 --master_port 21666 src/train.py \
|
|
--stage sft \
|
|
--model_name_or_path /mnt/diskhd/Backup/DownloadModel/2b_sft_model/ \
|
|
--do_train \
|
|
--dataset CodeExercise-Python-27k \
|
|
--template jiuge \
|
|
--finetuning_type full \
|
|
--output_dir CodeExercise-Python-27k \
|
|
--per_device_train_batch_size 14 \
|
|
--gradient_accumulation_steps 6 \
|
|
--lr_scheduler_type cosine \
|
|
--logging_step 1 \
|
|
--save_steps 300 \
|
|
--lr_scheduler_type cosine_with_restarts \
|
|
--warmup_ratio 0.001 \
|
|
--optim adamw_torch \
|
|
--learning_rate 2e-5 \
|
|
--num_train_epochs 2.0 \
|
|
--plot_loss \
|
|
--bf16 \
|
|
--gradient_checkpointing \
|
|
--report_to tensorboard \
|
|
--deepspeed deepspeed_configs/zero2.json \
|
|
--cutoff_len 2048
|
|
|
|
|
|
deepspeed --include localhost:0,1,2,3,4,5,6,7 --master_port 21666 src/train.py \
|
|
--stage sft \
|
|
--model_name_or_path /mnt/diskhd/Backup/DownloadModel/2b_sft_model/ \
|
|
--do_train \
|
|
--dataset CodeNet4Repair \
|
|
--template jiuge \
|
|
--finetuning_type full \
|
|
--output_dir CodeNet4Repair \
|
|
--per_device_train_batch_size 14 \
|
|
--gradient_accumulation_steps 6 \
|
|
--lr_scheduler_type cosine \
|
|
--logging_step 1 \
|
|
--save_steps 300 \
|
|
--lr_scheduler_type cosine_with_restarts \
|
|
--warmup_ratio 0.001 \
|
|
--optim adamw_torch \
|
|
--learning_rate 2e-5 \
|
|
--num_train_epochs 2.0 \
|
|
--plot_loss \
|
|
--bf16 \
|
|
--gradient_checkpointing \
|
|
--report_to tensorboard \
|
|
--deepspeed deepspeed_configs/zero2.json \
|
|
--cutoff_len 2048
|