forked from PulseFocusPlatform/PulseFocusPlatform
657 lines
22 KiB
Python
657 lines
22 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import cv2
|
|
import numpy as np
|
|
import json
|
|
import copy
|
|
import pycocotools
|
|
from pycocotools.coco import COCO
|
|
from .dataset import DetDataset
|
|
from ppdet.core.workspace import register, serializable
|
|
|
|
|
|
@serializable
|
|
class KeypointBottomUpBaseDataset(DetDataset):
|
|
"""Base class for bottom-up datasets.
|
|
|
|
All datasets should subclass it.
|
|
All subclasses should overwrite:
|
|
Methods:`_get_imganno`
|
|
|
|
Args:
|
|
dataset_dir (str): Root path to the dataset.
|
|
anno_path (str): Relative path to the annotation file.
|
|
image_dir (str): Path to a directory where images are held.
|
|
Default: None.
|
|
num_joints (int): keypoint numbers
|
|
transform (composed(operators)): A sequence of data transforms.
|
|
shard (list): [rank, worldsize], the distributed env params
|
|
test_mode (bool): Store True when building test or
|
|
validation dataset. Default: False.
|
|
"""
|
|
|
|
def __init__(self,
|
|
dataset_dir,
|
|
image_dir,
|
|
anno_path,
|
|
num_joints,
|
|
transform=[],
|
|
shard=[0, 1],
|
|
test_mode=False):
|
|
super().__init__(dataset_dir, image_dir, anno_path)
|
|
self.image_info = {}
|
|
self.ann_info = {}
|
|
|
|
self.img_prefix = os.path.join(dataset_dir, image_dir)
|
|
self.transform = transform
|
|
self.test_mode = test_mode
|
|
|
|
self.ann_info['num_joints'] = num_joints
|
|
self.img_ids = []
|
|
|
|
def __len__(self):
|
|
"""Get dataset length."""
|
|
return len(self.img_ids)
|
|
|
|
def _get_imganno(self, idx):
|
|
"""Get anno for a single image."""
|
|
raise NotImplementedError
|
|
|
|
def __getitem__(self, idx):
|
|
"""Prepare image for training given the index."""
|
|
records = copy.deepcopy(self._get_imganno(idx))
|
|
records['image'] = cv2.imread(records['image_file'])
|
|
records['image'] = cv2.cvtColor(records['image'], cv2.COLOR_BGR2RGB)
|
|
records['mask'] = (records['mask'] + 0).astype('uint8')
|
|
records = self.transform(records)
|
|
return records
|
|
|
|
def parse_dataset(self):
|
|
return
|
|
|
|
|
|
@register
|
|
@serializable
|
|
class KeypointBottomUpCocoDataset(KeypointBottomUpBaseDataset):
|
|
"""COCO dataset for bottom-up pose estimation.
|
|
|
|
The dataset loads raw features and apply specified transforms
|
|
to return a dict containing the image tensors and other information.
|
|
|
|
COCO keypoint indexes::
|
|
|
|
0: 'nose',
|
|
1: 'left_eye',
|
|
2: 'right_eye',
|
|
3: 'left_ear',
|
|
4: 'right_ear',
|
|
5: 'left_shoulder',
|
|
6: 'right_shoulder',
|
|
7: 'left_elbow',
|
|
8: 'right_elbow',
|
|
9: 'left_wrist',
|
|
10: 'right_wrist',
|
|
11: 'left_hip',
|
|
12: 'right_hip',
|
|
13: 'left_knee',
|
|
14: 'right_knee',
|
|
15: 'left_ankle',
|
|
16: 'right_ankle'
|
|
|
|
Args:
|
|
dataset_dir (str): Root path to the dataset.
|
|
anno_path (str): Relative path to the annotation file.
|
|
image_dir (str): Path to a directory where images are held.
|
|
Default: None.
|
|
num_joints (int): keypoint numbers
|
|
transform (composed(operators)): A sequence of data transforms.
|
|
shard (list): [rank, worldsize], the distributed env params
|
|
test_mode (bool): Store True when building test or
|
|
validation dataset. Default: False.
|
|
"""
|
|
|
|
def __init__(self,
|
|
dataset_dir,
|
|
image_dir,
|
|
anno_path,
|
|
num_joints,
|
|
transform=[],
|
|
shard=[0, 1],
|
|
test_mode=False):
|
|
super().__init__(dataset_dir, image_dir, anno_path, num_joints,
|
|
transform, shard, test_mode)
|
|
|
|
ann_file = os.path.join(dataset_dir, anno_path)
|
|
self.coco = COCO(ann_file)
|
|
|
|
self.img_ids = self.coco.getImgIds()
|
|
if not test_mode:
|
|
self.img_ids = [
|
|
img_id for img_id in self.img_ids
|
|
if len(self.coco.getAnnIds(
|
|
imgIds=img_id, iscrowd=None)) > 0
|
|
]
|
|
blocknum = int(len(self.img_ids) / shard[1])
|
|
self.img_ids = self.img_ids[(blocknum * shard[0]):(blocknum * (shard[0]
|
|
+ 1))]
|
|
self.num_images = len(self.img_ids)
|
|
self.id2name, self.name2id = self._get_mapping_id_name(self.coco.imgs)
|
|
self.dataset_name = 'coco'
|
|
|
|
cat_ids = self.coco.getCatIds()
|
|
self.catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)})
|
|
print(f'=> num_images: {self.num_images}')
|
|
|
|
@staticmethod
|
|
def _get_mapping_id_name(imgs):
|
|
"""
|
|
Args:
|
|
imgs (dict): dict of image info.
|
|
|
|
Returns:
|
|
tuple: Image name & id mapping dicts.
|
|
|
|
- id2name (dict): Mapping image id to name.
|
|
- name2id (dict): Mapping image name to id.
|
|
"""
|
|
id2name = {}
|
|
name2id = {}
|
|
for image_id, image in imgs.items():
|
|
file_name = image['file_name']
|
|
id2name[image_id] = file_name
|
|
name2id[file_name] = image_id
|
|
|
|
return id2name, name2id
|
|
|
|
def _get_imganno(self, idx):
|
|
"""Get anno for a single image.
|
|
|
|
Args:
|
|
idx (int): image idx
|
|
|
|
Returns:
|
|
dict: info for model training
|
|
"""
|
|
coco = self.coco
|
|
img_id = self.img_ids[idx]
|
|
ann_ids = coco.getAnnIds(imgIds=img_id)
|
|
anno = coco.loadAnns(ann_ids)
|
|
|
|
mask = self._get_mask(anno, idx)
|
|
anno = [
|
|
obj for obj in anno
|
|
if obj['iscrowd'] == 0 or obj['num_keypoints'] > 0
|
|
]
|
|
|
|
joints, orgsize = self._get_joints(anno, idx)
|
|
|
|
db_rec = {}
|
|
db_rec['im_id'] = img_id
|
|
db_rec['image_file'] = os.path.join(self.img_prefix,
|
|
self.id2name[img_id])
|
|
db_rec['mask'] = mask
|
|
db_rec['joints'] = joints
|
|
db_rec['im_shape'] = orgsize
|
|
|
|
return db_rec
|
|
|
|
def _get_joints(self, anno, idx):
|
|
"""Get joints for all people in an image."""
|
|
num_people = len(anno)
|
|
|
|
joints = np.zeros(
|
|
(num_people, self.ann_info['num_joints'], 3), dtype=np.float32)
|
|
|
|
for i, obj in enumerate(anno):
|
|
joints[i, :self.ann_info['num_joints'], :3] = \
|
|
np.array(obj['keypoints']).reshape([-1, 3])
|
|
|
|
img_info = self.coco.loadImgs(self.img_ids[idx])[0]
|
|
joints[..., 0] /= img_info['width']
|
|
joints[..., 1] /= img_info['height']
|
|
orgsize = np.array([img_info['height'], img_info['width']])
|
|
|
|
return joints, orgsize
|
|
|
|
def _get_mask(self, anno, idx):
|
|
"""Get ignore masks to mask out losses."""
|
|
coco = self.coco
|
|
img_info = coco.loadImgs(self.img_ids[idx])[0]
|
|
|
|
m = np.zeros((img_info['height'], img_info['width']), dtype=np.float32)
|
|
|
|
for obj in anno:
|
|
if 'segmentation' in obj:
|
|
if obj['iscrowd']:
|
|
rle = pycocotools.mask.frPyObjects(obj['segmentation'],
|
|
img_info['height'],
|
|
img_info['width'])
|
|
m += pycocotools.mask.decode(rle)
|
|
elif obj['num_keypoints'] == 0:
|
|
rles = pycocotools.mask.frPyObjects(obj['segmentation'],
|
|
img_info['height'],
|
|
img_info['width'])
|
|
for rle in rles:
|
|
m += pycocotools.mask.decode(rle)
|
|
|
|
return m < 0.5
|
|
|
|
|
|
@register
|
|
@serializable
|
|
class KeypointBottomUpCrowdPoseDataset(KeypointBottomUpCocoDataset):
|
|
"""CrowdPose dataset for bottom-up pose estimation.
|
|
|
|
The dataset loads raw features and apply specified transforms
|
|
to return a dict containing the image tensors and other information.
|
|
|
|
CrowdPose keypoint indexes::
|
|
|
|
0: 'left_shoulder',
|
|
1: 'right_shoulder',
|
|
2: 'left_elbow',
|
|
3: 'right_elbow',
|
|
4: 'left_wrist',
|
|
5: 'right_wrist',
|
|
6: 'left_hip',
|
|
7: 'right_hip',
|
|
8: 'left_knee',
|
|
9: 'right_knee',
|
|
10: 'left_ankle',
|
|
11: 'right_ankle',
|
|
12: 'top_head',
|
|
13: 'neck'
|
|
|
|
Args:
|
|
dataset_dir (str): Root path to the dataset.
|
|
anno_path (str): Relative path to the annotation file.
|
|
image_dir (str): Path to a directory where images are held.
|
|
Default: None.
|
|
num_joints (int): keypoint numbers
|
|
transform (composed(operators)): A sequence of data transforms.
|
|
shard (list): [rank, worldsize], the distributed env params
|
|
test_mode (bool): Store True when building test or
|
|
validation dataset. Default: False.
|
|
"""
|
|
|
|
def __init__(self,
|
|
dataset_dir,
|
|
image_dir,
|
|
anno_path,
|
|
num_joints,
|
|
transform=[],
|
|
shard=[0, 1],
|
|
test_mode=False):
|
|
super().__init__(dataset_dir, image_dir, anno_path, num_joints,
|
|
transform, shard, test_mode)
|
|
|
|
ann_file = os.path.join(dataset_dir, anno_path)
|
|
|
|
self.coco = COCO(ann_file)
|
|
|
|
self.img_ids = self.coco.getImgIds()
|
|
if not test_mode:
|
|
self.img_ids = [
|
|
img_id for img_id in self.img_ids
|
|
if len(self.coco.getAnnIds(
|
|
imgIds=img_id, iscrowd=None)) > 0
|
|
]
|
|
blocknum = int(len(self.img_ids) / shard[1])
|
|
self.img_ids = self.img_ids[(blocknum * shard[0]):(blocknum * (shard[0]
|
|
+ 1))]
|
|
self.num_images = len(self.img_ids)
|
|
self.id2name, self.name2id = self._get_mapping_id_name(self.coco.imgs)
|
|
|
|
self.dataset_name = 'crowdpose'
|
|
print('=> num_images: {}'.format(self.num_images))
|
|
|
|
|
|
@serializable
|
|
class KeypointTopDownBaseDataset(DetDataset):
|
|
"""Base class for top_down datasets.
|
|
|
|
All datasets should subclass it.
|
|
All subclasses should overwrite:
|
|
Methods:`_get_db`
|
|
|
|
Args:
|
|
dataset_dir (str): Root path to the dataset.
|
|
image_dir (str): Path to a directory where images are held.
|
|
anno_path (str): Relative path to the annotation file.
|
|
num_joints (int): keypoint numbers
|
|
transform (composed(operators)): A sequence of data transforms.
|
|
"""
|
|
|
|
def __init__(self,
|
|
dataset_dir,
|
|
image_dir,
|
|
anno_path,
|
|
num_joints,
|
|
transform=[]):
|
|
super().__init__(dataset_dir, image_dir, anno_path)
|
|
self.image_info = {}
|
|
self.ann_info = {}
|
|
|
|
self.img_prefix = os.path.join(dataset_dir, image_dir)
|
|
self.transform = transform
|
|
|
|
self.ann_info['num_joints'] = num_joints
|
|
self.db = []
|
|
|
|
def __len__(self):
|
|
"""Get dataset length."""
|
|
return len(self.db)
|
|
|
|
def _get_db(self):
|
|
"""Get a sample"""
|
|
raise NotImplementedError
|
|
|
|
def __getitem__(self, idx):
|
|
"""Prepare sample for training given the index."""
|
|
records = copy.deepcopy(self.db[idx])
|
|
records['image'] = cv2.imread(records['image_file'], cv2.IMREAD_COLOR |
|
|
cv2.IMREAD_IGNORE_ORIENTATION)
|
|
records['image'] = cv2.cvtColor(records['image'], cv2.COLOR_BGR2RGB)
|
|
records['score'] = records['score'] if 'score' in records else 1
|
|
records = self.transform(records)
|
|
# print('records', records)
|
|
return records
|
|
|
|
|
|
@register
|
|
@serializable
|
|
class KeypointTopDownCocoDataset(KeypointTopDownBaseDataset):
|
|
"""COCO dataset for top-down pose estimation.
|
|
|
|
The dataset loads raw features and apply specified transforms
|
|
to return a dict containing the image tensors and other information.
|
|
|
|
COCO keypoint indexes:
|
|
|
|
0: 'nose',
|
|
1: 'left_eye',
|
|
2: 'right_eye',
|
|
3: 'left_ear',
|
|
4: 'right_ear',
|
|
5: 'left_shoulder',
|
|
6: 'right_shoulder',
|
|
7: 'left_elbow',
|
|
8: 'right_elbow',
|
|
9: 'left_wrist',
|
|
10: 'right_wrist',
|
|
11: 'left_hip',
|
|
12: 'right_hip',
|
|
13: 'left_knee',
|
|
14: 'right_knee',
|
|
15: 'left_ankle',
|
|
16: 'right_ankle'
|
|
|
|
Args:
|
|
dataset_dir (str): Root path to the dataset.
|
|
image_dir (str): Path to a directory where images are held.
|
|
anno_path (str): Relative path to the annotation file.
|
|
num_joints (int): Keypoint numbers
|
|
trainsize (list):[w, h] Image target size
|
|
transform (composed(operators)): A sequence of data transforms.
|
|
bbox_file (str): Path to a detection bbox file
|
|
Default: None.
|
|
use_gt_bbox (bool): Whether to use ground truth bbox
|
|
Default: True.
|
|
pixel_std (int): The pixel std of the scale
|
|
Default: 200.
|
|
image_thre (float): The threshold to filter the detection box
|
|
Default: 0.0.
|
|
"""
|
|
|
|
def __init__(self,
|
|
dataset_dir,
|
|
image_dir,
|
|
anno_path,
|
|
num_joints,
|
|
trainsize,
|
|
transform=[],
|
|
bbox_file=None,
|
|
use_gt_bbox=True,
|
|
pixel_std=200,
|
|
image_thre=0.0):
|
|
super().__init__(dataset_dir, image_dir, anno_path, num_joints,
|
|
transform)
|
|
|
|
self.bbox_file = bbox_file
|
|
self.use_gt_bbox = use_gt_bbox
|
|
self.trainsize = trainsize
|
|
self.pixel_std = pixel_std
|
|
self.image_thre = image_thre
|
|
self.dataset_name = 'coco'
|
|
|
|
def parse_dataset(self):
|
|
if self.use_gt_bbox:
|
|
self.db = self._load_coco_keypoint_annotations()
|
|
else:
|
|
self.db = self._load_coco_person_detection_results()
|
|
|
|
def _load_coco_keypoint_annotations(self):
|
|
coco = COCO(self.get_anno())
|
|
img_ids = coco.getImgIds()
|
|
gt_db = []
|
|
for index in img_ids:
|
|
im_ann = coco.loadImgs(index)[0]
|
|
width = im_ann['width']
|
|
height = im_ann['height']
|
|
file_name = im_ann['file_name']
|
|
im_id = int(im_ann["id"])
|
|
|
|
annIds = coco.getAnnIds(imgIds=index, iscrowd=False)
|
|
objs = coco.loadAnns(annIds)
|
|
|
|
valid_objs = []
|
|
for obj in objs:
|
|
x, y, w, h = obj['bbox']
|
|
x1 = np.max((0, x))
|
|
y1 = np.max((0, y))
|
|
x2 = np.min((width - 1, x1 + np.max((0, w - 1))))
|
|
y2 = np.min((height - 1, y1 + np.max((0, h - 1))))
|
|
if obj['area'] > 0 and x2 >= x1 and y2 >= y1:
|
|
obj['clean_bbox'] = [x1, y1, x2 - x1, y2 - y1]
|
|
valid_objs.append(obj)
|
|
objs = valid_objs
|
|
|
|
rec = []
|
|
for obj in objs:
|
|
if max(obj['keypoints']) == 0:
|
|
continue
|
|
|
|
joints = np.zeros(
|
|
(self.ann_info['num_joints'], 3), dtype=np.float)
|
|
joints_vis = np.zeros(
|
|
(self.ann_info['num_joints'], 3), dtype=np.float)
|
|
for ipt in range(self.ann_info['num_joints']):
|
|
joints[ipt, 0] = obj['keypoints'][ipt * 3 + 0]
|
|
joints[ipt, 1] = obj['keypoints'][ipt * 3 + 1]
|
|
joints[ipt, 2] = 0
|
|
t_vis = obj['keypoints'][ipt * 3 + 2]
|
|
if t_vis > 1:
|
|
t_vis = 1
|
|
joints_vis[ipt, 0] = t_vis
|
|
joints_vis[ipt, 1] = t_vis
|
|
joints_vis[ipt, 2] = 0
|
|
|
|
center, scale = self._box2cs(obj['clean_bbox'][:4])
|
|
rec.append({
|
|
'image_file': os.path.join(self.img_prefix, file_name),
|
|
'center': center,
|
|
'scale': scale,
|
|
'joints': joints,
|
|
'joints_vis': joints_vis,
|
|
'im_id': im_id,
|
|
})
|
|
gt_db.extend(rec)
|
|
|
|
return gt_db
|
|
|
|
def _box2cs(self, box):
|
|
x, y, w, h = box[:4]
|
|
center = np.zeros((2), dtype=np.float32)
|
|
center[0] = x + w * 0.5
|
|
center[1] = y + h * 0.5
|
|
aspect_ratio = self.trainsize[0] * 1.0 / self.trainsize[1]
|
|
|
|
if w > aspect_ratio * h:
|
|
h = w * 1.0 / aspect_ratio
|
|
elif w < aspect_ratio * h:
|
|
w = h * aspect_ratio
|
|
scale = np.array(
|
|
[w * 1.0 / self.pixel_std, h * 1.0 / self.pixel_std],
|
|
dtype=np.float32)
|
|
if center[0] != -1:
|
|
scale = scale * 1.25
|
|
|
|
return center, scale
|
|
|
|
def _load_coco_person_detection_results(self):
|
|
all_boxes = None
|
|
bbox_file_path = os.path.join(self.dataset_dir, self.bbox_file)
|
|
with open(bbox_file_path, 'r') as f:
|
|
all_boxes = json.load(f)
|
|
|
|
if not all_boxes:
|
|
print('=> Load %s fail!' % bbox_file_path)
|
|
return None
|
|
|
|
kpt_db = []
|
|
for n_img in range(0, len(all_boxes)):
|
|
det_res = all_boxes[n_img]
|
|
if det_res['category_id'] != 1:
|
|
continue
|
|
file_name = det_res[
|
|
'filename'] if 'filename' in det_res else '%012d.jpg' % det_res[
|
|
'image_id']
|
|
img_name = os.path.join(self.img_prefix, file_name)
|
|
box = det_res['bbox']
|
|
score = det_res['score']
|
|
im_id = int(det_res['image_id'])
|
|
|
|
if score < self.image_thre:
|
|
continue
|
|
|
|
center, scale = self._box2cs(box)
|
|
joints = np.zeros((self.ann_info['num_joints'], 3), dtype=np.float)
|
|
joints_vis = np.ones(
|
|
(self.ann_info['num_joints'], 3), dtype=np.float)
|
|
kpt_db.append({
|
|
'image_file': img_name,
|
|
'im_id': im_id,
|
|
'center': center,
|
|
'scale': scale,
|
|
'score': score,
|
|
'joints': joints,
|
|
'joints_vis': joints_vis,
|
|
})
|
|
|
|
return kpt_db
|
|
|
|
|
|
@register
|
|
@serializable
|
|
class KeypointTopDownMPIIDataset(KeypointTopDownBaseDataset):
|
|
"""MPII dataset for topdown pose estimation.
|
|
|
|
The dataset loads raw features and apply specified transforms
|
|
to return a dict containing the image tensors and other information.
|
|
|
|
MPII keypoint indexes::
|
|
|
|
0: 'right_ankle',
|
|
1: 'right_knee',
|
|
2: 'right_hip',
|
|
3: 'left_hip',
|
|
4: 'left_knee',
|
|
5: 'left_ankle',
|
|
6: 'pelvis',
|
|
7: 'thorax',
|
|
8: 'upper_neck',
|
|
9: 'head_top',
|
|
10: 'right_wrist',
|
|
11: 'right_elbow',
|
|
12: 'right_shoulder',
|
|
13: 'left_shoulder',
|
|
14: 'left_elbow',
|
|
15: 'left_wrist',
|
|
|
|
Args:
|
|
dataset_dir (str): Root path to the dataset.
|
|
image_dir (str): Path to a directory where images are held.
|
|
anno_path (str): Relative path to the annotation file.
|
|
num_joints (int): Keypoint numbers
|
|
trainsize (list):[w, h] Image target size
|
|
transform (composed(operators)): A sequence of data transforms.
|
|
"""
|
|
|
|
def __init__(self,
|
|
dataset_dir,
|
|
image_dir,
|
|
anno_path,
|
|
num_joints,
|
|
transform=[]):
|
|
super().__init__(dataset_dir, image_dir, anno_path, num_joints,
|
|
transform)
|
|
|
|
self.dataset_name = 'mpii'
|
|
|
|
def parse_dataset(self):
|
|
with open(self.get_anno()) as anno_file:
|
|
anno = json.load(anno_file)
|
|
|
|
gt_db = []
|
|
for a in anno:
|
|
image_name = a['image']
|
|
im_id = a['image_id'] if 'image_id' in a else int(
|
|
os.path.splitext(image_name)[0])
|
|
|
|
c = np.array(a['center'], dtype=np.float)
|
|
s = np.array([a['scale'], a['scale']], dtype=np.float)
|
|
|
|
# Adjust center/scale slightly to avoid cropping limbs
|
|
if c[0] != -1:
|
|
c[1] = c[1] + 15 * s[1]
|
|
s = s * 1.25
|
|
c = c - 1
|
|
|
|
joints = np.zeros((self.ann_info['num_joints'], 3), dtype=np.float)
|
|
joints_vis = np.zeros(
|
|
(self.ann_info['num_joints'], 3), dtype=np.float)
|
|
if 'joints' in a:
|
|
joints_ = np.array(a['joints'])
|
|
joints_[:, 0:2] = joints_[:, 0:2] - 1
|
|
joints_vis_ = np.array(a['joints_vis'])
|
|
assert len(joints_) == self.ann_info[
|
|
'num_joints'], 'joint num diff: {} vs {}'.format(
|
|
len(joints_), self.ann_info['num_joints'])
|
|
|
|
joints[:, 0:2] = joints_[:, 0:2]
|
|
joints_vis[:, 0] = joints_vis_[:]
|
|
joints_vis[:, 1] = joints_vis_[:]
|
|
|
|
gt_db.append({
|
|
'image_file': os.path.join(self.img_prefix, image_name),
|
|
'im_id': im_id,
|
|
'center': c,
|
|
'scale': s,
|
|
'joints': joints,
|
|
'joints_vis': joints_vis
|
|
})
|
|
self.db = gt_db
|