forked from PulseFocusPlatform/PulseFocusPlatform
182 lines
5.6 KiB
Python
182 lines
5.6 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import os
|
|
import cv2
|
|
import time
|
|
import paddle
|
|
import numpy as np
|
|
|
|
__all__ = [
|
|
'Timer',
|
|
'Detection',
|
|
'load_det_results',
|
|
'preprocess_reid',
|
|
'get_crops',
|
|
'clip_box',
|
|
'scale_coords',
|
|
]
|
|
|
|
|
|
class Timer(object):
|
|
"""
|
|
This class used to compute and print the current FPS while evaling.
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.total_time = 0.
|
|
self.calls = 0
|
|
self.start_time = 0.
|
|
self.diff = 0.
|
|
self.average_time = 0.
|
|
self.duration = 0.
|
|
|
|
def tic(self):
|
|
# using time.time instead of time.clock because time time.clock
|
|
# does not normalize for multithreading
|
|
self.start_time = time.time()
|
|
|
|
def toc(self, average=True):
|
|
self.diff = time.time() - self.start_time
|
|
self.total_time += self.diff
|
|
self.calls += 1
|
|
self.average_time = self.total_time / self.calls
|
|
if average:
|
|
self.duration = self.average_time
|
|
else:
|
|
self.duration = self.diff
|
|
return self.duration
|
|
|
|
def clear(self):
|
|
self.total_time = 0.
|
|
self.calls = 0
|
|
self.start_time = 0.
|
|
self.diff = 0.
|
|
self.average_time = 0.
|
|
self.duration = 0.
|
|
|
|
|
|
class Detection(object):
|
|
"""
|
|
This class represents a bounding box detection in a single image.
|
|
|
|
Args:
|
|
tlwh (ndarray): Bounding box in format `(top left x, top left y,
|
|
width, height)`.
|
|
confidence (ndarray): Detector confidence score.
|
|
feature (Tensor): A feature vector that describes the object
|
|
contained in this image.
|
|
"""
|
|
|
|
def __init__(self, tlwh, confidence, feature):
|
|
self.tlwh = np.asarray(tlwh, dtype=np.float32)
|
|
self.confidence = np.asarray(confidence, dtype=np.float32)
|
|
self.feature = feature.numpy()
|
|
|
|
def to_tlbr(self):
|
|
"""
|
|
Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
|
|
`(top left, bottom right)`.
|
|
"""
|
|
ret = self.tlwh.copy()
|
|
ret[2:] += ret[:2]
|
|
return ret
|
|
|
|
def to_xyah(self):
|
|
"""
|
|
Convert bounding box to format `(center x, center y, aspect ratio,
|
|
height)`, where the aspect ratio is `width / height`.
|
|
"""
|
|
ret = self.tlwh.copy()
|
|
ret[:2] += ret[2:] / 2
|
|
ret[2] /= ret[3]
|
|
return ret
|
|
|
|
|
|
def load_det_results(det_file, num_frames):
|
|
assert os.path.exists(det_file) and os.path.isfile(det_file), \
|
|
'Error: det_file: {} not exist or not a file.'.format(det_file)
|
|
labels = np.loadtxt(det_file, dtype='float32', delimiter=',')
|
|
results_list = []
|
|
for frame_i in range(0, num_frames):
|
|
results = {'bbox': [], 'score': []}
|
|
lables_with_frame = labels[labels[:, 0] == frame_i + 1]
|
|
for l in lables_with_frame:
|
|
results['bbox'].append(l[2:6])
|
|
results['score'].append(l[6])
|
|
results_list.append(results)
|
|
return results_list
|
|
|
|
|
|
def scale_coords(coords, input_shape, im_shape, scale_factor):
|
|
im_shape = im_shape.numpy()[0]
|
|
ratio = scale_factor.numpy()[0][0]
|
|
img0_shape = [int(im_shape[0] / ratio), int(im_shape[1] / ratio)]
|
|
|
|
pad_w = (input_shape[1] - round(img0_shape[1] * ratio)) / 2
|
|
pad_h = (input_shape[0] - round(img0_shape[0] * ratio)) / 2
|
|
coords[:, 0::2] -= pad_w
|
|
coords[:, 1::2] -= pad_h
|
|
coords[:, 0:4] /= paddle.to_tensor(ratio)
|
|
coords[:, :4] = paddle.clip(coords[:, :4], min=0, max=coords[:, :4].max())
|
|
return coords.round()
|
|
|
|
|
|
def clip_box(xyxy, input_shape, im_shape, scale_factor):
|
|
im_shape = im_shape.numpy()[0]
|
|
ratio = scale_factor.numpy()[0][0]
|
|
img0_shape = [int(im_shape[0] / ratio), int(im_shape[1] / ratio)]
|
|
|
|
xyxy[:, 0::2] = paddle.clip(xyxy[:, 0::2], min=0, max=img0_shape[1])
|
|
xyxy[:, 1::2] = paddle.clip(xyxy[:, 1::2], min=0, max=img0_shape[0])
|
|
return xyxy
|
|
|
|
|
|
def get_crops(xyxy, ori_img, pred_scores, w, h):
|
|
crops = []
|
|
keep_scores = []
|
|
xyxy = xyxy.numpy().astype(np.int64)
|
|
ori_img = ori_img.numpy()
|
|
ori_img = np.squeeze(ori_img, axis=0).transpose(1, 0, 2)
|
|
pred_scores = pred_scores.numpy()
|
|
for i, bbox in enumerate(xyxy):
|
|
if bbox[2] <= bbox[0] or bbox[3] <= bbox[1]:
|
|
continue
|
|
crop = ori_img[bbox[0]:bbox[2], bbox[1]:bbox[3], :]
|
|
crops.append(crop)
|
|
keep_scores.append(pred_scores[i])
|
|
if len(crops) == 0:
|
|
return [], []
|
|
crops = preprocess_reid(crops, w, h)
|
|
return crops, keep_scores
|
|
|
|
|
|
def preprocess_reid(imgs,
|
|
w=64,
|
|
h=192,
|
|
mean=[0.485, 0.456, 0.406],
|
|
std=[0.229, 0.224, 0.225]):
|
|
im_batch = []
|
|
for img in imgs:
|
|
img = cv2.resize(img, (w, h))
|
|
img = img[:, :, ::-1].astype('float32').transpose((2, 0, 1)) / 255
|
|
img_mean = np.array(mean).reshape((3, 1, 1))
|
|
img_std = np.array(std).reshape((3, 1, 1))
|
|
img -= img_mean
|
|
img /= img_std
|
|
img = np.expand_dims(img, axis=0)
|
|
im_batch.append(img)
|
|
im_batch = np.concatenate(im_batch, 0)
|
|
return im_batch
|