forked from PulseFocusPlatform/PulseFocusPlatform
127 lines
4.0 KiB
Python
127 lines
4.0 KiB
Python
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
|
|
def tlwhs_to_tlbrs(tlwhs):
|
|
tlbrs = np.copy(tlwhs)
|
|
if len(tlbrs) == 0:
|
|
return tlbrs
|
|
tlbrs[:, 2] += tlwhs[:, 0]
|
|
tlbrs[:, 3] += tlwhs[:, 1]
|
|
return tlbrs
|
|
|
|
|
|
def get_color(idx):
|
|
idx = idx * 3
|
|
color = ((37 * idx) % 255, (17 * idx) % 255, (29 * idx) % 255)
|
|
return color
|
|
|
|
|
|
def resize_image(image, max_size=800):
|
|
if max(image.shape[:2]) > max_size:
|
|
scale = float(max_size) / max(image.shape[:2])
|
|
image = cv2.resize(image, None, fx=scale, fy=scale)
|
|
return image
|
|
|
|
|
|
def plot_tracking(image,
|
|
tlwhs,
|
|
obj_ids,
|
|
scores=None,
|
|
frame_id=0,
|
|
fps=0.,
|
|
ids2=None):
|
|
im = np.ascontiguousarray(np.copy(image))
|
|
im_h, im_w = im.shape[:2]
|
|
|
|
top_view = np.zeros([im_w, im_w, 3], dtype=np.uint8) + 255
|
|
|
|
text_scale = max(1, image.shape[1] / 1600.)
|
|
text_thickness = 2
|
|
line_thickness = max(1, int(image.shape[1] / 500.))
|
|
|
|
radius = max(5, int(im_w / 140.))
|
|
cv2.putText(
|
|
im,
|
|
'frame: %d fps: %.2f num: %d' % (frame_id, fps, len(tlwhs)),
|
|
(0, int(15 * text_scale)),
|
|
cv2.FONT_HERSHEY_PLAIN,
|
|
text_scale, (0, 0, 255),
|
|
thickness=2)
|
|
|
|
for i, tlwh in enumerate(tlwhs):
|
|
x1, y1, w, h = tlwh
|
|
intbox = tuple(map(int, (x1, y1, x1 + w, y1 + h)))
|
|
obj_id = int(obj_ids[i])
|
|
id_text = '{}'.format(int(obj_id))
|
|
if ids2 is not None:
|
|
id_text = id_text + ', {}'.format(int(ids2[i]))
|
|
_line_thickness = 1 if obj_id <= 0 else line_thickness
|
|
color = get_color(abs(obj_id))
|
|
cv2.rectangle(
|
|
im, intbox[0:2], intbox[2:4], color=color, thickness=line_thickness)
|
|
cv2.putText(
|
|
im,
|
|
id_text, (intbox[0], intbox[1] + 30),
|
|
cv2.FONT_HERSHEY_PLAIN,
|
|
text_scale, (0, 0, 255),
|
|
thickness=text_thickness)
|
|
return im
|
|
|
|
|
|
def plot_trajectory(image, tlwhs, track_ids):
|
|
image = image.copy()
|
|
for one_tlwhs, track_id in zip(tlwhs, track_ids):
|
|
color = get_color(int(track_id))
|
|
for tlwh in one_tlwhs:
|
|
x1, y1, w, h = tuple(map(int, tlwh))
|
|
cv2.circle(
|
|
image, (int(x1 + 0.5 * w), int(y1 + h)), 2, color, thickness=2)
|
|
return image
|
|
|
|
|
|
def plot_detections(image, tlbrs, scores=None, color=(255, 0, 0), ids=None):
|
|
im = np.copy(image)
|
|
text_scale = max(1, image.shape[1] / 800.)
|
|
thickness = 2 if text_scale > 1.3 else 1
|
|
for i, det in enumerate(tlbrs):
|
|
x1, y1, x2, y2 = np.asarray(det[:4], dtype=np.int)
|
|
if len(det) >= 7:
|
|
label = 'det' if det[5] > 0 else 'trk'
|
|
if ids is not None:
|
|
text = '{}# {:.2f}: {:d}'.format(label, det[6], ids[i])
|
|
cv2.putText(
|
|
im,
|
|
text, (x1, y1 + 30),
|
|
cv2.FONT_HERSHEY_PLAIN,
|
|
text_scale, (0, 255, 255),
|
|
thickness=thickness)
|
|
else:
|
|
text = '{}# {:.2f}'.format(label, det[6])
|
|
|
|
if scores is not None:
|
|
text = '{:.2f}'.format(scores[i])
|
|
cv2.putText(
|
|
im,
|
|
text, (x1, y1 + 30),
|
|
cv2.FONT_HERSHEY_PLAIN,
|
|
text_scale, (0, 255, 255),
|
|
thickness=thickness)
|
|
|
|
cv2.rectangle(im, (x1, y1), (x2, y2), color, 2)
|
|
return im
|