forked from PulseFocusPlatform/PulseFocusPlatform
162 lines
4.6 KiB
Python
162 lines
4.6 KiB
Python
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import os
|
|
import sys
|
|
|
|
# add python path of PadleDetection to sys.path
|
|
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
|
|
if parent_path not in sys.path:
|
|
sys.path.append(parent_path)
|
|
|
|
# ignore warning log
|
|
import warnings
|
|
warnings.filterwarnings('ignore')
|
|
import glob
|
|
|
|
import paddle
|
|
from ppdet.core.workspace import load_config, merge_config
|
|
from ppdet.engine import Trainer
|
|
from ppdet.utils.check import check_gpu, check_version, check_config
|
|
from ppdet.utils.cli import ArgsParser
|
|
from ppdet.slim import build_slim_model
|
|
|
|
from ppdet.utils.logger import setup_logger
|
|
logger = setup_logger('train')
|
|
|
|
|
|
def parse_args():
|
|
parser = ArgsParser()
|
|
parser.add_argument(
|
|
"--infer_dir",
|
|
type=str,
|
|
default=None,
|
|
help="Directory for images to perform inference on.")
|
|
parser.add_argument(
|
|
"--infer_img",
|
|
type=str,
|
|
default=None,
|
|
help="Image path, has higher priority over --infer_dir")
|
|
parser.add_argument(
|
|
"--output_dir",
|
|
type=str,
|
|
default="output",
|
|
help="Directory for storing the output visualization files.")
|
|
parser.add_argument(
|
|
"--draw_threshold",
|
|
type=float,
|
|
default=0.5,
|
|
help="Threshold to reserve the result for visualization.")
|
|
parser.add_argument(
|
|
"--slim_config",
|
|
default=None,
|
|
type=str,
|
|
help="Configuration file of slim method.")
|
|
parser.add_argument(
|
|
"--use_vdl",
|
|
type=bool,
|
|
default=False,
|
|
help="Whether to record the data to VisualDL.")
|
|
parser.add_argument(
|
|
'--vdl_log_dir',
|
|
type=str,
|
|
default="vdl_log_dir/image",
|
|
help='VisualDL logging directory for image.')
|
|
parser.add_argument(
|
|
"--save_txt",
|
|
type=bool,
|
|
default=False,
|
|
help="Whether to save inference result in txt.")
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
def get_test_images(infer_dir, infer_img):
|
|
"""
|
|
Get image path list in TEST mode
|
|
"""
|
|
assert infer_img is not None or infer_dir is not None, \
|
|
"--infer_img or --infer_dir should be set"
|
|
assert infer_img is None or os.path.isfile(infer_img), \
|
|
"{} is not a file".format(infer_img)
|
|
assert infer_dir is None or os.path.isdir(infer_dir), \
|
|
"{} is not a directory".format(infer_dir)
|
|
|
|
# infer_img has a higher priority
|
|
if infer_img and os.path.isfile(infer_img):
|
|
return [infer_img]
|
|
|
|
images = set()
|
|
infer_dir = os.path.abspath(infer_dir)
|
|
assert os.path.isdir(infer_dir), \
|
|
"infer_dir {} is not a directory".format(infer_dir)
|
|
exts = ['jpg', 'jpeg', 'png', 'bmp']
|
|
exts += [ext.upper() for ext in exts]
|
|
for ext in exts:
|
|
images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
|
|
images = list(images)
|
|
|
|
assert len(images) > 0, "no image found in {}".format(infer_dir)
|
|
logger.info("Found {} inference images in total.".format(len(images)))
|
|
|
|
return images
|
|
|
|
|
|
def run(FLAGS, cfg):
|
|
# build trainer
|
|
trainer = Trainer(cfg, mode='test')
|
|
|
|
# load weights
|
|
trainer.load_weights(cfg.weights)
|
|
|
|
# get inference images
|
|
images = get_test_images(FLAGS.infer_dir, FLAGS.infer_img)
|
|
|
|
# inference
|
|
trainer.predict(
|
|
images,
|
|
draw_threshold=FLAGS.draw_threshold,
|
|
output_dir=FLAGS.output_dir,
|
|
save_txt=FLAGS.save_txt)
|
|
|
|
|
|
def main():
|
|
FLAGS = parse_args()
|
|
cfg = load_config(FLAGS.config)
|
|
cfg['use_vdl'] = FLAGS.use_vdl
|
|
cfg['vdl_log_dir'] = FLAGS.vdl_log_dir
|
|
merge_config(FLAGS.opt)
|
|
|
|
place = paddle.set_device('gpu' if cfg.use_gpu else 'cpu')
|
|
|
|
if 'norm_type' in cfg and cfg['norm_type'] == 'sync_bn' and not cfg.use_gpu:
|
|
cfg['norm_type'] = 'bn'
|
|
|
|
if FLAGS.slim_config:
|
|
cfg = build_slim_model(cfg, FLAGS.slim_config, mode='test')
|
|
|
|
check_config(cfg)
|
|
check_gpu(cfg.use_gpu)
|
|
check_version()
|
|
|
|
run(FLAGS, cfg)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|