178 lines
6.1 KiB
C++
178 lines
6.1 KiB
C++
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra.
|
||
|
//
|
||
|
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||
|
// Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
|
||
|
//
|
||
|
// This Source Code Form is subject to the terms of the Mozilla
|
||
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||
|
|
||
|
#include "main.h"
|
||
|
#include <limits>
|
||
|
#include <Eigen/Eigenvalues>
|
||
|
#include <Eigen/LU>
|
||
|
|
||
|
template<typename MatrixType> bool find_pivot(typename MatrixType::Scalar tol, MatrixType &diffs, Index col=0)
|
||
|
{
|
||
|
bool match = diffs.diagonal().sum() <= tol;
|
||
|
if(match || col==diffs.cols())
|
||
|
{
|
||
|
return match;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
Index n = diffs.cols();
|
||
|
std::vector<std::pair<Index,Index> > transpositions;
|
||
|
for(Index i=col; i<n; ++i)
|
||
|
{
|
||
|
Index best_index(0);
|
||
|
if(diffs.col(col).segment(col,n-i).minCoeff(&best_index) > tol)
|
||
|
break;
|
||
|
|
||
|
best_index += col;
|
||
|
|
||
|
diffs.row(col).swap(diffs.row(best_index));
|
||
|
if(find_pivot(tol,diffs,col+1)) return true;
|
||
|
diffs.row(col).swap(diffs.row(best_index));
|
||
|
|
||
|
// move current pivot to the end
|
||
|
diffs.row(n-(i-col)-1).swap(diffs.row(best_index));
|
||
|
transpositions.push_back(std::pair<Index,Index>(n-(i-col)-1,best_index));
|
||
|
}
|
||
|
// restore
|
||
|
for(Index k=transpositions.size()-1; k>=0; --k)
|
||
|
diffs.row(transpositions[k].first).swap(diffs.row(transpositions[k].second));
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/* Check that two column vectors are approximately equal upto permutations.
|
||
|
* Initially, this method checked that the k-th power sums are equal for all k = 1, ..., vec1.rows(),
|
||
|
* however this strategy is numerically inacurate because of numerical cancellation issues.
|
||
|
*/
|
||
|
template<typename VectorType>
|
||
|
void verify_is_approx_upto_permutation(const VectorType& vec1, const VectorType& vec2)
|
||
|
{
|
||
|
typedef typename VectorType::Scalar Scalar;
|
||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||
|
|
||
|
VERIFY(vec1.cols() == 1);
|
||
|
VERIFY(vec2.cols() == 1);
|
||
|
VERIFY(vec1.rows() == vec2.rows());
|
||
|
|
||
|
Index n = vec1.rows();
|
||
|
RealScalar tol = test_precision<RealScalar>()*test_precision<RealScalar>()*numext::maxi(vec1.squaredNorm(),vec2.squaredNorm());
|
||
|
Matrix<RealScalar,Dynamic,Dynamic> diffs = (vec1.rowwise().replicate(n) - vec2.rowwise().replicate(n).transpose()).cwiseAbs2();
|
||
|
|
||
|
VERIFY( find_pivot(tol, diffs) );
|
||
|
}
|
||
|
|
||
|
|
||
|
template<typename MatrixType> void eigensolver(const MatrixType& m)
|
||
|
{
|
||
|
typedef typename MatrixType::Index Index;
|
||
|
/* this test covers the following files:
|
||
|
ComplexEigenSolver.h, and indirectly ComplexSchur.h
|
||
|
*/
|
||
|
Index rows = m.rows();
|
||
|
Index cols = m.cols();
|
||
|
|
||
|
typedef typename MatrixType::Scalar Scalar;
|
||
|
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||
|
|
||
|
MatrixType a = MatrixType::Random(rows,cols);
|
||
|
MatrixType symmA = a.adjoint() * a;
|
||
|
|
||
|
ComplexEigenSolver<MatrixType> ei0(symmA);
|
||
|
VERIFY_IS_EQUAL(ei0.info(), Success);
|
||
|
VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal());
|
||
|
|
||
|
ComplexEigenSolver<MatrixType> ei1(a);
|
||
|
VERIFY_IS_EQUAL(ei1.info(), Success);
|
||
|
VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal());
|
||
|
// Note: If MatrixType is real then a.eigenvalues() uses EigenSolver and thus
|
||
|
// another algorithm so results may differ slightly
|
||
|
verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues());
|
||
|
|
||
|
ComplexEigenSolver<MatrixType> ei2;
|
||
|
ei2.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a);
|
||
|
VERIFY_IS_EQUAL(ei2.info(), Success);
|
||
|
VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors());
|
||
|
VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues());
|
||
|
if (rows > 2) {
|
||
|
ei2.setMaxIterations(1).compute(a);
|
||
|
VERIFY_IS_EQUAL(ei2.info(), NoConvergence);
|
||
|
VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1);
|
||
|
}
|
||
|
|
||
|
ComplexEigenSolver<MatrixType> eiNoEivecs(a, false);
|
||
|
VERIFY_IS_EQUAL(eiNoEivecs.info(), Success);
|
||
|
VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues());
|
||
|
|
||
|
// Regression test for issue #66
|
||
|
MatrixType z = MatrixType::Zero(rows,cols);
|
||
|
ComplexEigenSolver<MatrixType> eiz(z);
|
||
|
VERIFY((eiz.eigenvalues().cwiseEqual(0)).all());
|
||
|
|
||
|
MatrixType id = MatrixType::Identity(rows, cols);
|
||
|
VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1));
|
||
|
|
||
|
if (rows > 1 && rows < 20)
|
||
|
{
|
||
|
// Test matrix with NaN
|
||
|
a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN();
|
||
|
ComplexEigenSolver<MatrixType> eiNaN(a);
|
||
|
VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence);
|
||
|
}
|
||
|
|
||
|
// regression test for bug 1098
|
||
|
{
|
||
|
ComplexEigenSolver<MatrixType> eig(a.adjoint() * a);
|
||
|
eig.compute(a.adjoint() * a);
|
||
|
}
|
||
|
|
||
|
// regression test for bug 478
|
||
|
{
|
||
|
a.setZero();
|
||
|
ComplexEigenSolver<MatrixType> ei3(a);
|
||
|
VERIFY_IS_EQUAL(ei3.info(), Success);
|
||
|
VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(),RealScalar(1));
|
||
|
VERIFY((ei3.eigenvectors().transpose()*ei3.eigenvectors().transpose()).eval().isIdentity());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m)
|
||
|
{
|
||
|
ComplexEigenSolver<MatrixType> eig;
|
||
|
VERIFY_RAISES_ASSERT(eig.eigenvectors());
|
||
|
VERIFY_RAISES_ASSERT(eig.eigenvalues());
|
||
|
|
||
|
MatrixType a = MatrixType::Random(m.rows(),m.cols());
|
||
|
eig.compute(a, false);
|
||
|
VERIFY_RAISES_ASSERT(eig.eigenvectors());
|
||
|
}
|
||
|
|
||
|
void test_eigensolver_complex()
|
||
|
{
|
||
|
int s = 0;
|
||
|
for(int i = 0; i < g_repeat; i++) {
|
||
|
CALL_SUBTEST_1( eigensolver(Matrix4cf()) );
|
||
|
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
|
||
|
CALL_SUBTEST_2( eigensolver(MatrixXcd(s,s)) );
|
||
|
CALL_SUBTEST_3( eigensolver(Matrix<std::complex<float>, 1, 1>()) );
|
||
|
CALL_SUBTEST_4( eigensolver(Matrix3f()) );
|
||
|
TEST_SET_BUT_UNUSED_VARIABLE(s)
|
||
|
}
|
||
|
CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4cf()) );
|
||
|
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4);
|
||
|
CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXcd(s,s)) );
|
||
|
CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<std::complex<float>, 1, 1>()) );
|
||
|
CALL_SUBTEST_4( eigensolver_verify_assert(Matrix3f()) );
|
||
|
|
||
|
// Test problem size constructors
|
||
|
CALL_SUBTEST_5(ComplexEigenSolver<MatrixXf> tmp(s));
|
||
|
|
||
|
TEST_SET_BUT_UNUSED_VARIABLE(s)
|
||
|
}
|