231 lines
11 KiB
C
231 lines
11 KiB
C
|
/*
|
||
|
* transupp.h
|
||
|
*
|
||
|
* This file was part of the Independent JPEG Group's software:
|
||
|
* Copyright (C) 1997-2019, Thomas G. Lane, Guido Vollbeding.
|
||
|
* libjpeg-turbo Modifications:
|
||
|
* Copyright (C) 2017, D. R. Commander.
|
||
|
* For conditions of distribution and use, see the accompanying README.ijg
|
||
|
* file.
|
||
|
*
|
||
|
* This file contains declarations for image transformation routines and
|
||
|
* other utility code used by the jpegtran sample application. These are
|
||
|
* NOT part of the core JPEG library. But we keep these routines separate
|
||
|
* from jpegtran.c to ease the task of maintaining jpegtran-like programs
|
||
|
* that have other user interfaces.
|
||
|
*
|
||
|
* NOTE: all the routines declared here have very specific requirements
|
||
|
* about when they are to be executed during the reading and writing of the
|
||
|
* source and destination files. See the comments in transupp.c, or see
|
||
|
* jpegtran.c for an example of correct usage.
|
||
|
*/
|
||
|
|
||
|
/* If you happen not to want the image transform support, disable it here */
|
||
|
#ifndef TRANSFORMS_SUPPORTED
|
||
|
#define TRANSFORMS_SUPPORTED 1 /* 0 disables transform code */
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Although rotating and flipping data expressed as DCT coefficients is not
|
||
|
* hard, there is an asymmetry in the JPEG format specification for images
|
||
|
* whose dimensions aren't multiples of the iMCU size. The right and bottom
|
||
|
* image edges are padded out to the next iMCU boundary with junk data; but
|
||
|
* no padding is possible at the top and left edges. If we were to flip
|
||
|
* the whole image including the pad data, then pad garbage would become
|
||
|
* visible at the top and/or left, and real pixels would disappear into the
|
||
|
* pad margins --- perhaps permanently, since encoders & decoders may not
|
||
|
* bother to preserve DCT blocks that appear to be completely outside the
|
||
|
* nominal image area. So, we have to exclude any partial iMCUs from the
|
||
|
* basic transformation.
|
||
|
*
|
||
|
* Transpose is the only transformation that can handle partial iMCUs at the
|
||
|
* right and bottom edges completely cleanly. flip_h can flip partial iMCUs
|
||
|
* at the bottom, but leaves any partial iMCUs at the right edge untouched.
|
||
|
* Similarly flip_v leaves any partial iMCUs at the bottom edge untouched.
|
||
|
* The other transforms are defined as combinations of these basic transforms
|
||
|
* and process edge blocks in a way that preserves the equivalence.
|
||
|
*
|
||
|
* The "trim" option causes untransformable partial iMCUs to be dropped;
|
||
|
* this is not strictly lossless, but it usually gives the best-looking
|
||
|
* result for odd-size images. Note that when this option is active,
|
||
|
* the expected mathematical equivalences between the transforms may not hold.
|
||
|
* (For example, -rot 270 -trim trims only the bottom edge, but -rot 90 -trim
|
||
|
* followed by -rot 180 -trim trims both edges.)
|
||
|
*
|
||
|
* We also offer a lossless-crop option, which discards data outside a given
|
||
|
* image region but losslessly preserves what is inside. Like the rotate and
|
||
|
* flip transforms, lossless crop is restricted by the JPEG format: the upper
|
||
|
* left corner of the selected region must fall on an iMCU boundary. If this
|
||
|
* does not hold for the given crop parameters, we silently move the upper left
|
||
|
* corner up and/or left to make it so, simultaneously increasing the region
|
||
|
* dimensions to keep the lower right crop corner unchanged. (Thus, the
|
||
|
* output image covers at least the requested region, but may cover more.)
|
||
|
* The adjustment of the region dimensions may be optionally disabled.
|
||
|
*
|
||
|
* A complementary lossless wipe option is provided to discard (gray out) data
|
||
|
* inside a given image region while losslessly preserving what is outside.
|
||
|
* A lossless drop option is also provided, which allows another JPEG image to
|
||
|
* be inserted ("dropped") into the source image data at a given position,
|
||
|
* replacing the existing image data at that position. Both the source image
|
||
|
* and the drop image must have the same subsampling level. It is best if they
|
||
|
* also have the same quantization (quality.) Otherwise, the quantization of
|
||
|
* the output image will be adapted to accommodate the higher of the source
|
||
|
* image quality and the drop image quality. The trim option can be used with
|
||
|
* the drop option to requantize the drop image to match the source image.
|
||
|
*
|
||
|
* We also provide a lossless-resize option, which is kind of a lossless-crop
|
||
|
* operation in the DCT coefficient block domain - it discards higher-order
|
||
|
* coefficients and losslessly preserves lower-order coefficients of a
|
||
|
* sub-block.
|
||
|
*
|
||
|
* Rotate/flip transform, resize, and crop can be requested together in a
|
||
|
* single invocation. The crop is applied last --- that is, the crop region
|
||
|
* is specified in terms of the destination image after transform/resize.
|
||
|
*
|
||
|
* We also offer a "force to grayscale" option, which simply discards the
|
||
|
* chrominance channels of a YCbCr image. This is lossless in the sense that
|
||
|
* the luminance channel is preserved exactly. It's not the same kind of
|
||
|
* thing as the rotate/flip transformations, but it's convenient to handle it
|
||
|
* as part of this package, mainly because the transformation routines have to
|
||
|
* be aware of the option to know how many components to work on.
|
||
|
*/
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Codes for supported types of image transformations.
|
||
|
*/
|
||
|
|
||
|
typedef enum {
|
||
|
JXFORM_NONE, /* no transformation */
|
||
|
JXFORM_FLIP_H, /* horizontal flip */
|
||
|
JXFORM_FLIP_V, /* vertical flip */
|
||
|
JXFORM_TRANSPOSE, /* transpose across UL-to-LR axis */
|
||
|
JXFORM_TRANSVERSE, /* transpose across UR-to-LL axis */
|
||
|
JXFORM_ROT_90, /* 90-degree clockwise rotation */
|
||
|
JXFORM_ROT_180, /* 180-degree rotation */
|
||
|
JXFORM_ROT_270, /* 270-degree clockwise (or 90 ccw) */
|
||
|
JXFORM_WIPE, /* wipe */
|
||
|
JXFORM_DROP /* drop */
|
||
|
} JXFORM_CODE;
|
||
|
|
||
|
/*
|
||
|
* Codes for crop parameters, which can individually be unspecified,
|
||
|
* positive or negative for xoffset or yoffset,
|
||
|
* positive or force or reflect for width or height.
|
||
|
*/
|
||
|
|
||
|
typedef enum {
|
||
|
JCROP_UNSET,
|
||
|
JCROP_POS,
|
||
|
JCROP_NEG,
|
||
|
JCROP_FORCE,
|
||
|
JCROP_REFLECT
|
||
|
} JCROP_CODE;
|
||
|
|
||
|
/*
|
||
|
* Transform parameters struct.
|
||
|
* NB: application must not change any elements of this struct after
|
||
|
* calling jtransform_request_workspace.
|
||
|
*/
|
||
|
|
||
|
typedef struct {
|
||
|
/* Options: set by caller */
|
||
|
JXFORM_CODE transform; /* image transform operator */
|
||
|
boolean perfect; /* if TRUE, fail if partial MCUs are requested */
|
||
|
boolean trim; /* if TRUE, trim partial MCUs as needed */
|
||
|
boolean force_grayscale; /* if TRUE, convert color image to grayscale */
|
||
|
boolean crop; /* if TRUE, crop or wipe source image, or drop */
|
||
|
boolean slow_hflip; /* For best performance, the JXFORM_FLIP_H transform
|
||
|
normally modifies the source coefficients in place.
|
||
|
Setting this to TRUE will instead use a slower,
|
||
|
double-buffered algorithm, which leaves the source
|
||
|
coefficients in tact (necessary if other transformed
|
||
|
images must be generated from the same set of
|
||
|
coefficients. */
|
||
|
|
||
|
/* Crop parameters: application need not set these unless crop is TRUE.
|
||
|
* These can be filled in by jtransform_parse_crop_spec().
|
||
|
*/
|
||
|
JDIMENSION crop_width; /* Width of selected region */
|
||
|
JCROP_CODE crop_width_set; /* (force-disables adjustment) */
|
||
|
JDIMENSION crop_height; /* Height of selected region */
|
||
|
JCROP_CODE crop_height_set; /* (force-disables adjustment) */
|
||
|
JDIMENSION crop_xoffset; /* X offset of selected region */
|
||
|
JCROP_CODE crop_xoffset_set; /* (negative measures from right edge) */
|
||
|
JDIMENSION crop_yoffset; /* Y offset of selected region */
|
||
|
JCROP_CODE crop_yoffset_set; /* (negative measures from bottom edge) */
|
||
|
|
||
|
/* Drop parameters: set by caller for drop request */
|
||
|
j_decompress_ptr drop_ptr;
|
||
|
jvirt_barray_ptr *drop_coef_arrays;
|
||
|
|
||
|
/* Internal workspace: caller should not touch these */
|
||
|
int num_components; /* # of components in workspace */
|
||
|
jvirt_barray_ptr *workspace_coef_arrays; /* workspace for transformations */
|
||
|
JDIMENSION output_width; /* cropped destination dimensions */
|
||
|
JDIMENSION output_height;
|
||
|
JDIMENSION x_crop_offset; /* destination crop offsets measured in iMCUs */
|
||
|
JDIMENSION y_crop_offset;
|
||
|
JDIMENSION drop_width; /* drop/wipe dimensions measured in iMCUs */
|
||
|
JDIMENSION drop_height;
|
||
|
int iMCU_sample_width; /* destination iMCU size */
|
||
|
int iMCU_sample_height;
|
||
|
} jpeg_transform_info;
|
||
|
|
||
|
|
||
|
#if TRANSFORMS_SUPPORTED
|
||
|
|
||
|
/* Parse a crop specification (written in X11 geometry style) */
|
||
|
EXTERN(boolean) jtransform_parse_crop_spec(jpeg_transform_info *info,
|
||
|
const char *spec);
|
||
|
/* Request any required workspace */
|
||
|
EXTERN(boolean) jtransform_request_workspace(j_decompress_ptr srcinfo,
|
||
|
jpeg_transform_info *info);
|
||
|
/* Adjust output image parameters */
|
||
|
EXTERN(jvirt_barray_ptr *) jtransform_adjust_parameters
|
||
|
(j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
|
||
|
jvirt_barray_ptr *src_coef_arrays, jpeg_transform_info *info);
|
||
|
/* Execute the actual transformation, if any */
|
||
|
EXTERN(void) jtransform_execute_transform(j_decompress_ptr srcinfo,
|
||
|
j_compress_ptr dstinfo,
|
||
|
jvirt_barray_ptr *src_coef_arrays,
|
||
|
jpeg_transform_info *info);
|
||
|
/* Determine whether lossless transformation is perfectly
|
||
|
* possible for a specified image and transformation.
|
||
|
*/
|
||
|
EXTERN(boolean) jtransform_perfect_transform(JDIMENSION image_width,
|
||
|
JDIMENSION image_height,
|
||
|
int MCU_width, int MCU_height,
|
||
|
JXFORM_CODE transform);
|
||
|
|
||
|
/* jtransform_execute_transform used to be called
|
||
|
* jtransform_execute_transformation, but some compilers complain about
|
||
|
* routine names that long. This macro is here to avoid breaking any
|
||
|
* old source code that uses the original name...
|
||
|
*/
|
||
|
#define jtransform_execute_transformation jtransform_execute_transform
|
||
|
|
||
|
#endif /* TRANSFORMS_SUPPORTED */
|
||
|
|
||
|
|
||
|
/*
|
||
|
* Support for copying optional markers from source to destination file.
|
||
|
*/
|
||
|
|
||
|
typedef enum {
|
||
|
JCOPYOPT_NONE, /* copy no optional markers */
|
||
|
JCOPYOPT_COMMENTS, /* copy only comment (COM) markers */
|
||
|
JCOPYOPT_ALL, /* copy all optional markers */
|
||
|
JCOPYOPT_ALL_EXCEPT_ICC /* copy all optional markers except APP2 */
|
||
|
} JCOPY_OPTION;
|
||
|
|
||
|
#define JCOPYOPT_DEFAULT JCOPYOPT_COMMENTS /* recommended default */
|
||
|
|
||
|
/* Setup decompression object to save desired markers in memory */
|
||
|
EXTERN(void) jcopy_markers_setup(j_decompress_ptr srcinfo,
|
||
|
JCOPY_OPTION option);
|
||
|
/* Copy markers saved in the given source object to the destination object */
|
||
|
EXTERN(void) jcopy_markers_execute(j_decompress_ptr srcinfo,
|
||
|
j_compress_ptr dstinfo,
|
||
|
JCOPY_OPTION option);
|