aosp12/bionic/tests/pthread_test.cpp

3022 lines
101 KiB
C++
Raw Normal View History

2023-01-09 17:11:35 +08:00
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include <errno.h>
#include <inttypes.h>
#include <limits.h>
#include <malloc.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <sys/mman.h>
#include <sys/prctl.h>
#include <sys/resource.h>
#include <sys/syscall.h>
#include <time.h>
#include <unistd.h>
#include <unwind.h>
#include <atomic>
#include <future>
#include <vector>
#include <android-base/macros.h>
#include <android-base/parseint.h>
#include <android-base/scopeguard.h>
#include <android-base/silent_death_test.h>
#include <android-base/strings.h>
#include "private/bionic_constants.h"
#include "SignalUtils.h"
#include "utils.h"
using pthread_DeathTest = SilentDeathTest;
TEST(pthread, pthread_key_create) {
pthread_key_t key;
ASSERT_EQ(0, pthread_key_create(&key, nullptr));
ASSERT_EQ(0, pthread_key_delete(key));
// Can't delete a key that's already been deleted.
ASSERT_EQ(EINVAL, pthread_key_delete(key));
}
TEST(pthread, pthread_keys_max) {
// POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX.
ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX);
}
TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) {
int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX);
ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX);
}
TEST(pthread, pthread_key_many_distinct) {
// As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX
// pthread keys, but We should be able to allocate at least this many keys.
int nkeys = PTHREAD_KEYS_MAX / 2;
std::vector<pthread_key_t> keys;
auto scope_guard = android::base::make_scope_guard([&keys] {
for (const auto& key : keys) {
EXPECT_EQ(0, pthread_key_delete(key));
}
});
for (int i = 0; i < nkeys; ++i) {
pthread_key_t key;
// If this fails, it's likely that LIBC_PTHREAD_KEY_RESERVED_COUNT is wrong.
ASSERT_EQ(0, pthread_key_create(&key, nullptr)) << i << " of " << nkeys;
keys.push_back(key);
ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i)));
}
for (int i = keys.size() - 1; i >= 0; --i) {
ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back()));
pthread_key_t key = keys.back();
keys.pop_back();
ASSERT_EQ(0, pthread_key_delete(key));
}
}
TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) {
std::vector<pthread_key_t> keys;
int rv = 0;
// Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should
// be more than we are allowed to allocate now.
for (int i = 0; i < PTHREAD_KEYS_MAX; i++) {
pthread_key_t key;
rv = pthread_key_create(&key, nullptr);
if (rv == EAGAIN) {
break;
}
EXPECT_EQ(0, rv);
keys.push_back(key);
}
// Don't leak keys.
for (const auto& key : keys) {
EXPECT_EQ(0, pthread_key_delete(key));
}
keys.clear();
// We should have eventually reached the maximum number of keys and received
// EAGAIN.
ASSERT_EQ(EAGAIN, rv);
}
TEST(pthread, pthread_key_delete) {
void* expected = reinterpret_cast<void*>(1234);
pthread_key_t key;
ASSERT_EQ(0, pthread_key_create(&key, nullptr));
ASSERT_EQ(0, pthread_setspecific(key, expected));
ASSERT_EQ(expected, pthread_getspecific(key));
ASSERT_EQ(0, pthread_key_delete(key));
// After deletion, pthread_getspecific returns nullptr.
ASSERT_EQ(nullptr, pthread_getspecific(key));
// And you can't use pthread_setspecific with the deleted key.
ASSERT_EQ(EINVAL, pthread_setspecific(key, expected));
}
TEST(pthread, pthread_key_fork) {
void* expected = reinterpret_cast<void*>(1234);
pthread_key_t key;
ASSERT_EQ(0, pthread_key_create(&key, nullptr));
ASSERT_EQ(0, pthread_setspecific(key, expected));
ASSERT_EQ(expected, pthread_getspecific(key));
pid_t pid = fork();
ASSERT_NE(-1, pid) << strerror(errno);
if (pid == 0) {
// The surviving thread inherits all the forking thread's TLS values...
ASSERT_EQ(expected, pthread_getspecific(key));
_exit(99);
}
AssertChildExited(pid, 99);
ASSERT_EQ(expected, pthread_getspecific(key));
ASSERT_EQ(0, pthread_key_delete(key));
}
static void* DirtyKeyFn(void* key) {
return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key));
}
TEST(pthread, pthread_key_dirty) {
pthread_key_t key;
ASSERT_EQ(0, pthread_key_create(&key, nullptr));
size_t stack_size = 640 * 1024;
void* stack = mmap(nullptr, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
ASSERT_NE(MAP_FAILED, stack);
memset(stack, 0xff, stack_size);
pthread_attr_t attr;
ASSERT_EQ(0, pthread_attr_init(&attr));
ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size));
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key));
void* result;
ASSERT_EQ(0, pthread_join(t, &result));
ASSERT_EQ(nullptr, result); // Not ~0!
ASSERT_EQ(0, munmap(stack, stack_size));
ASSERT_EQ(0, pthread_key_delete(key));
}
TEST(pthread, static_pthread_key_used_before_creation) {
#if defined(__BIONIC__)
// See http://b/19625804. The bug is about a static/global pthread key being used before creation.
// So here tests if the static/global default value 0 can be detected as invalid key.
static pthread_key_t key;
ASSERT_EQ(nullptr, pthread_getspecific(key));
ASSERT_EQ(EINVAL, pthread_setspecific(key, nullptr));
ASSERT_EQ(EINVAL, pthread_key_delete(key));
#else
GTEST_SKIP() << "bionic-only test";
#endif
}
static void* IdFn(void* arg) {
return arg;
}
class SpinFunctionHelper {
public:
SpinFunctionHelper() {
SpinFunctionHelper::spin_flag_ = true;
}
~SpinFunctionHelper() {
UnSpin();
}
auto GetFunction() -> void* (*)(void*) {
return SpinFunctionHelper::SpinFn;
}
void UnSpin() {
SpinFunctionHelper::spin_flag_ = false;
}
private:
static void* SpinFn(void*) {
while (spin_flag_) {}
return nullptr;
}
static std::atomic<bool> spin_flag_;
};
// It doesn't matter if spin_flag_ is used in several tests,
// because it is always set to false after each test. Each thread
// loops on spin_flag_ can find it becomes false at some time.
std::atomic<bool> SpinFunctionHelper::spin_flag_;
static void* JoinFn(void* arg) {
return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), nullptr));
}
static void AssertDetached(pthread_t t, bool is_detached) {
pthread_attr_t attr;
ASSERT_EQ(0, pthread_getattr_np(t, &attr));
int detach_state;
ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state));
pthread_attr_destroy(&attr);
ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED));
}
static void MakeDeadThread(pthread_t& t) {
ASSERT_EQ(0, pthread_create(&t, nullptr, IdFn, nullptr));
ASSERT_EQ(0, pthread_join(t, nullptr));
}
TEST(pthread, pthread_create) {
void* expected_result = reinterpret_cast<void*>(123);
// Can we create a thread?
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, nullptr, IdFn, expected_result));
// If we join, do we get the expected value back?
void* result;
ASSERT_EQ(0, pthread_join(t, &result));
ASSERT_EQ(expected_result, result);
}
TEST(pthread, pthread_create_EAGAIN) {
pthread_attr_t attributes;
ASSERT_EQ(0, pthread_attr_init(&attributes));
ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1)));
pthread_t t;
ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, nullptr));
}
TEST(pthread, pthread_no_join_after_detach) {
SpinFunctionHelper spin_helper;
pthread_t t1;
ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr));
// After a pthread_detach...
ASSERT_EQ(0, pthread_detach(t1));
AssertDetached(t1, true);
// ...pthread_join should fail.
ASSERT_EQ(EINVAL, pthread_join(t1, nullptr));
}
TEST(pthread, pthread_no_op_detach_after_join) {
SpinFunctionHelper spin_helper;
pthread_t t1;
ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr));
// If thread 2 is already waiting to join thread 1...
pthread_t t2;
ASSERT_EQ(0, pthread_create(&t2, nullptr, JoinFn, reinterpret_cast<void*>(t1)));
sleep(1); // (Give t2 a chance to call pthread_join.)
#if defined(__BIONIC__)
ASSERT_EQ(EINVAL, pthread_detach(t1));
#else
ASSERT_EQ(0, pthread_detach(t1));
#endif
AssertDetached(t1, false);
spin_helper.UnSpin();
// ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
void* join_result;
ASSERT_EQ(0, pthread_join(t2, &join_result));
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
}
TEST(pthread, pthread_join_self) {
ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), nullptr));
}
struct TestBug37410 {
pthread_t main_thread;
pthread_mutex_t mutex;
static void main() {
TestBug37410 data;
data.main_thread = pthread_self();
ASSERT_EQ(0, pthread_mutex_init(&data.mutex, nullptr));
ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, nullptr, TestBug37410::thread_fn, reinterpret_cast<void*>(&data)));
// Wait for the thread to be running...
ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex));
// ...and exit.
pthread_exit(nullptr);
}
private:
static void* thread_fn(void* arg) {
TestBug37410* data = reinterpret_cast<TestBug37410*>(arg);
// Unlocking data->mutex will cause the main thread to exit, invalidating *data. Save the handle.
pthread_t main_thread = data->main_thread;
// Let the main thread know we're running.
pthread_mutex_unlock(&data->mutex);
// And wait for the main thread to exit.
pthread_join(main_thread, nullptr);
return nullptr;
}
};
// Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to
// run this test (which exits normally) in its own process.
TEST_F(pthread_DeathTest, pthread_bug_37410) {
// http://code.google.com/p/android/issues/detail?id=37410
ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), "");
}
static void* SignalHandlerFn(void* arg) {
sigset64_t wait_set;
sigfillset64(&wait_set);
return reinterpret_cast<void*>(sigwait64(&wait_set, reinterpret_cast<int*>(arg)));
}
TEST(pthread, pthread_sigmask) {
// Check that SIGUSR1 isn't blocked.
sigset_t original_set;
sigemptyset(&original_set);
ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, nullptr, &original_set));
ASSERT_FALSE(sigismember(&original_set, SIGUSR1));
// Block SIGUSR1.
sigset_t set;
sigemptyset(&set);
sigaddset(&set, SIGUSR1);
ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, nullptr));
// Check that SIGUSR1 is blocked.
sigset_t final_set;
sigemptyset(&final_set);
ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, nullptr, &final_set));
ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
// ...and that sigprocmask agrees with pthread_sigmask.
sigemptyset(&final_set);
ASSERT_EQ(0, sigprocmask(SIG_BLOCK, nullptr, &final_set));
ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
// Spawn a thread that calls sigwait and tells us what it received.
pthread_t signal_thread;
int received_signal = -1;
ASSERT_EQ(0, pthread_create(&signal_thread, nullptr, SignalHandlerFn, &received_signal));
// Send that thread SIGUSR1.
pthread_kill(signal_thread, SIGUSR1);
// See what it got.
void* join_result;
ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
ASSERT_EQ(SIGUSR1, received_signal);
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
// Restore the original signal mask.
ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, nullptr));
}
TEST(pthread, pthread_sigmask64_SIGTRMIN) {
// Check that SIGRTMIN isn't blocked.
sigset64_t original_set;
sigemptyset64(&original_set);
ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, nullptr, &original_set));
ASSERT_FALSE(sigismember64(&original_set, SIGRTMIN));
// Block SIGRTMIN.
sigset64_t set;
sigemptyset64(&set);
sigaddset64(&set, SIGRTMIN);
ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, &set, nullptr));
// Check that SIGRTMIN is blocked.
sigset64_t final_set;
sigemptyset64(&final_set);
ASSERT_EQ(0, pthread_sigmask64(SIG_BLOCK, nullptr, &final_set));
ASSERT_TRUE(sigismember64(&final_set, SIGRTMIN));
// ...and that sigprocmask64 agrees with pthread_sigmask64.
sigemptyset64(&final_set);
ASSERT_EQ(0, sigprocmask64(SIG_BLOCK, nullptr, &final_set));
ASSERT_TRUE(sigismember64(&final_set, SIGRTMIN));
// Spawn a thread that calls sigwait64 and tells us what it received.
pthread_t signal_thread;
int received_signal = -1;
ASSERT_EQ(0, pthread_create(&signal_thread, nullptr, SignalHandlerFn, &received_signal));
// Send that thread SIGRTMIN.
pthread_kill(signal_thread, SIGRTMIN);
// See what it got.
void* join_result;
ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
ASSERT_EQ(SIGRTMIN, received_signal);
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
// Restore the original signal mask.
ASSERT_EQ(0, pthread_sigmask64(SIG_SETMASK, &original_set, nullptr));
}
static void test_pthread_setname_np__pthread_getname_np(pthread_t t) {
ASSERT_EQ(0, pthread_setname_np(t, "short"));
char name[32];
ASSERT_EQ(0, pthread_getname_np(t, name, sizeof(name)));
ASSERT_STREQ("short", name);
// The limit is 15 characters --- the kernel's buffer is 16, but includes a NUL.
ASSERT_EQ(0, pthread_setname_np(t, "123456789012345"));
ASSERT_EQ(0, pthread_getname_np(t, name, sizeof(name)));
ASSERT_STREQ("123456789012345", name);
ASSERT_EQ(ERANGE, pthread_setname_np(t, "1234567890123456"));
// The passed-in buffer should be at least 16 bytes.
ASSERT_EQ(0, pthread_getname_np(t, name, 16));
ASSERT_EQ(ERANGE, pthread_getname_np(t, name, 15));
}
TEST(pthread, pthread_setname_np__pthread_getname_np__self) {
test_pthread_setname_np__pthread_getname_np(pthread_self());
}
TEST(pthread, pthread_setname_np__pthread_getname_np__other) {
SpinFunctionHelper spin_helper;
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr));
test_pthread_setname_np__pthread_getname_np(t);
spin_helper.UnSpin();
ASSERT_EQ(0, pthread_join(t, nullptr));
}
// http://b/28051133: a kernel misfeature means that you can't change the
// name of another thread if you've set PR_SET_DUMPABLE to 0.
TEST(pthread, pthread_setname_np__pthread_getname_np__other_PR_SET_DUMPABLE) {
ASSERT_EQ(0, prctl(PR_SET_DUMPABLE, 0)) << strerror(errno);
SpinFunctionHelper spin_helper;
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr));
test_pthread_setname_np__pthread_getname_np(t);
spin_helper.UnSpin();
ASSERT_EQ(0, pthread_join(t, nullptr));
}
TEST_F(pthread_DeathTest, pthread_setname_np__no_such_thread) {
pthread_t dead_thread;
MakeDeadThread(dead_thread);
EXPECT_DEATH(pthread_setname_np(dead_thread, "short 3"),
"invalid pthread_t (.*) passed to pthread_setname_np");
}
TEST_F(pthread_DeathTest, pthread_setname_np__null_thread) {
pthread_t null_thread = 0;
EXPECT_EQ(ENOENT, pthread_setname_np(null_thread, "short 3"));
}
TEST_F(pthread_DeathTest, pthread_getname_np__no_such_thread) {
pthread_t dead_thread;
MakeDeadThread(dead_thread);
char name[64];
EXPECT_DEATH(pthread_getname_np(dead_thread, name, sizeof(name)),
"invalid pthread_t (.*) passed to pthread_getname_np");
}
TEST_F(pthread_DeathTest, pthread_getname_np__null_thread) {
pthread_t null_thread = 0;
char name[64];
EXPECT_EQ(ENOENT, pthread_getname_np(null_thread, name, sizeof(name)));
}
TEST(pthread, pthread_kill__0) {
// Signal 0 just tests that the thread exists, so it's safe to call on ourselves.
ASSERT_EQ(0, pthread_kill(pthread_self(), 0));
}
TEST(pthread, pthread_kill__invalid_signal) {
ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1));
}
static void pthread_kill__in_signal_handler_helper(int signal_number) {
static int count = 0;
ASSERT_EQ(SIGALRM, signal_number);
if (++count == 1) {
// Can we call pthread_kill from a signal handler?
ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
}
}
TEST(pthread, pthread_kill__in_signal_handler) {
ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper);
ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
}
TEST(pthread, pthread_kill__exited_thread) {
static std::promise<pid_t> tid_promise;
pthread_t thread;
ASSERT_EQ(0, pthread_create(&thread, nullptr,
[](void*) -> void* {
tid_promise.set_value(gettid());
return nullptr;
},
nullptr));
pid_t tid = tid_promise.get_future().get();
while (TEMP_FAILURE_RETRY(syscall(__NR_tgkill, getpid(), tid, 0)) != -1) {
continue;
}
ASSERT_EQ(ESRCH, errno);
ASSERT_EQ(ESRCH, pthread_kill(thread, 0));
}
TEST_F(pthread_DeathTest, pthread_detach__no_such_thread) {
pthread_t dead_thread;
MakeDeadThread(dead_thread);
EXPECT_DEATH(pthread_detach(dead_thread),
"invalid pthread_t (.*) passed to pthread_detach");
}
TEST_F(pthread_DeathTest, pthread_detach__null_thread) {
pthread_t null_thread = 0;
EXPECT_EQ(ESRCH, pthread_detach(null_thread));
}
TEST(pthread, pthread_getcpuclockid__clock_gettime) {
SpinFunctionHelper spin_helper;
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr));
clockid_t c;
ASSERT_EQ(0, pthread_getcpuclockid(t, &c));
timespec ts;
ASSERT_EQ(0, clock_gettime(c, &ts));
spin_helper.UnSpin();
ASSERT_EQ(0, pthread_join(t, nullptr));
}
TEST_F(pthread_DeathTest, pthread_getcpuclockid__no_such_thread) {
pthread_t dead_thread;
MakeDeadThread(dead_thread);
clockid_t c;
EXPECT_DEATH(pthread_getcpuclockid(dead_thread, &c),
"invalid pthread_t (.*) passed to pthread_getcpuclockid");
}
TEST_F(pthread_DeathTest, pthread_getcpuclockid__null_thread) {
pthread_t null_thread = 0;
clockid_t c;
EXPECT_EQ(ESRCH, pthread_getcpuclockid(null_thread, &c));
}
TEST_F(pthread_DeathTest, pthread_getschedparam__no_such_thread) {
pthread_t dead_thread;
MakeDeadThread(dead_thread);
int policy;
sched_param param;
EXPECT_DEATH(pthread_getschedparam(dead_thread, &policy, &param),
"invalid pthread_t (.*) passed to pthread_getschedparam");
}
TEST_F(pthread_DeathTest, pthread_getschedparam__null_thread) {
pthread_t null_thread = 0;
int policy;
sched_param param;
EXPECT_EQ(ESRCH, pthread_getschedparam(null_thread, &policy, &param));
}
TEST_F(pthread_DeathTest, pthread_setschedparam__no_such_thread) {
pthread_t dead_thread;
MakeDeadThread(dead_thread);
int policy = 0;
sched_param param;
EXPECT_DEATH(pthread_setschedparam(dead_thread, policy, &param),
"invalid pthread_t (.*) passed to pthread_setschedparam");
}
TEST_F(pthread_DeathTest, pthread_setschedparam__null_thread) {
pthread_t null_thread = 0;
int policy = 0;
sched_param param;
EXPECT_EQ(ESRCH, pthread_setschedparam(null_thread, policy, &param));
}
TEST_F(pthread_DeathTest, pthread_setschedprio__no_such_thread) {
pthread_t dead_thread;
MakeDeadThread(dead_thread);
EXPECT_DEATH(pthread_setschedprio(dead_thread, 123),
"invalid pthread_t (.*) passed to pthread_setschedprio");
}
TEST_F(pthread_DeathTest, pthread_setschedprio__null_thread) {
pthread_t null_thread = 0;
EXPECT_EQ(ESRCH, pthread_setschedprio(null_thread, 123));
}
TEST_F(pthread_DeathTest, pthread_join__no_such_thread) {
pthread_t dead_thread;
MakeDeadThread(dead_thread);
EXPECT_DEATH(pthread_join(dead_thread, nullptr),
"invalid pthread_t (.*) passed to pthread_join");
}
TEST_F(pthread_DeathTest, pthread_join__null_thread) {
pthread_t null_thread = 0;
EXPECT_EQ(ESRCH, pthread_join(null_thread, nullptr));
}
TEST_F(pthread_DeathTest, pthread_kill__no_such_thread) {
pthread_t dead_thread;
MakeDeadThread(dead_thread);
EXPECT_DEATH(pthread_kill(dead_thread, 0),
"invalid pthread_t (.*) passed to pthread_kill");
}
TEST_F(pthread_DeathTest, pthread_kill__null_thread) {
pthread_t null_thread = 0;
EXPECT_EQ(ESRCH, pthread_kill(null_thread, 0));
}
TEST(pthread, pthread_join__multijoin) {
SpinFunctionHelper spin_helper;
pthread_t t1;
ASSERT_EQ(0, pthread_create(&t1, nullptr, spin_helper.GetFunction(), nullptr));
pthread_t t2;
ASSERT_EQ(0, pthread_create(&t2, nullptr, JoinFn, reinterpret_cast<void*>(t1)));
sleep(1); // (Give t2 a chance to call pthread_join.)
// Multiple joins to the same thread should fail.
ASSERT_EQ(EINVAL, pthread_join(t1, nullptr));
spin_helper.UnSpin();
// ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
void* join_result;
ASSERT_EQ(0, pthread_join(t2, &join_result));
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
}
TEST(pthread, pthread_join__race) {
// http://b/11693195 --- pthread_join could return before the thread had actually exited.
// If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread.
for (size_t i = 0; i < 1024; ++i) {
size_t stack_size = 640*1024;
void* stack = mmap(nullptr, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
pthread_attr_t a;
pthread_attr_init(&a);
pthread_attr_setstack(&a, stack, stack_size);
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, &a, IdFn, nullptr));
ASSERT_EQ(0, pthread_join(t, nullptr));
ASSERT_EQ(0, munmap(stack, stack_size));
}
}
static void* GetActualGuardSizeFn(void* arg) {
pthread_attr_t attributes;
pthread_getattr_np(pthread_self(), &attributes);
pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg));
return nullptr;
}
static size_t GetActualGuardSize(const pthread_attr_t& attributes) {
size_t result;
pthread_t t;
pthread_create(&t, &attributes, GetActualGuardSizeFn, &result);
pthread_join(t, nullptr);
return result;
}
static void* GetActualStackSizeFn(void* arg) {
pthread_attr_t attributes;
pthread_getattr_np(pthread_self(), &attributes);
pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg));
return nullptr;
}
static size_t GetActualStackSize(const pthread_attr_t& attributes) {
size_t result;
pthread_t t;
pthread_create(&t, &attributes, GetActualStackSizeFn, &result);
pthread_join(t, nullptr);
return result;
}
TEST(pthread, pthread_attr_setguardsize_tiny) {
pthread_attr_t attributes;
ASSERT_EQ(0, pthread_attr_init(&attributes));
// No such thing as too small: will be rounded up to one page by pthread_create.
ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128));
size_t guard_size;
ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
ASSERT_EQ(128U, guard_size);
ASSERT_EQ(4096U, GetActualGuardSize(attributes));
}
TEST(pthread, pthread_attr_setguardsize_reasonable) {
pthread_attr_t attributes;
ASSERT_EQ(0, pthread_attr_init(&attributes));
// Large enough and a multiple of the page size.
ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024));
size_t guard_size;
ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
ASSERT_EQ(32*1024U, guard_size);
ASSERT_EQ(32*1024U, GetActualGuardSize(attributes));
}
TEST(pthread, pthread_attr_setguardsize_needs_rounding) {
pthread_attr_t attributes;
ASSERT_EQ(0, pthread_attr_init(&attributes));
// Large enough but not a multiple of the page size.
ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1));
size_t guard_size;
ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
ASSERT_EQ(32*1024U + 1, guard_size);
ASSERT_EQ(36*1024U, GetActualGuardSize(attributes));
}
TEST(pthread, pthread_attr_setguardsize_enormous) {
pthread_attr_t attributes;
ASSERT_EQ(0, pthread_attr_init(&attributes));
// Larger than the stack itself. (Historically we mistakenly carved
// the guard out of the stack itself, rather than adding it after the
// end.)
ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024*1024));
size_t guard_size;
ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
ASSERT_EQ(32*1024*1024U, guard_size);
ASSERT_EQ(32*1024*1024U, GetActualGuardSize(attributes));
}
TEST(pthread, pthread_attr_setstacksize) {
pthread_attr_t attributes;
ASSERT_EQ(0, pthread_attr_init(&attributes));
// Get the default stack size.
size_t default_stack_size;
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size));
// Too small.
ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128));
size_t stack_size;
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
ASSERT_EQ(default_stack_size, stack_size);
ASSERT_GE(GetActualStackSize(attributes), default_stack_size);
// Large enough and a multiple of the page size; may be rounded up by pthread_create.
ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024));
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
ASSERT_EQ(32*1024U, stack_size);
ASSERT_GE(GetActualStackSize(attributes), 32*1024U);
// Large enough but not aligned; will be rounded up by pthread_create.
ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1));
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
ASSERT_EQ(32*1024U + 1, stack_size);
#if defined(__BIONIC__)
ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1);
#else // __BIONIC__
// glibc rounds down, in violation of POSIX. They document this in their BUGS section.
ASSERT_EQ(GetActualStackSize(attributes), 32*1024U);
#endif // __BIONIC__
}
TEST(pthread, pthread_rwlockattr_smoke) {
pthread_rwlockattr_t attr;
ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
int pshared_value_array[] = {PTHREAD_PROCESS_PRIVATE, PTHREAD_PROCESS_SHARED};
for (size_t i = 0; i < sizeof(pshared_value_array) / sizeof(pshared_value_array[0]); ++i) {
ASSERT_EQ(0, pthread_rwlockattr_setpshared(&attr, pshared_value_array[i]));
int pshared;
ASSERT_EQ(0, pthread_rwlockattr_getpshared(&attr, &pshared));
ASSERT_EQ(pshared_value_array[i], pshared);
}
int kind_array[] = {PTHREAD_RWLOCK_PREFER_READER_NP,
PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP};
for (size_t i = 0; i < sizeof(kind_array) / sizeof(kind_array[0]); ++i) {
ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_array[i]));
int kind;
ASSERT_EQ(0, pthread_rwlockattr_getkind_np(&attr, &kind));
ASSERT_EQ(kind_array[i], kind);
}
ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
}
TEST(pthread, pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER) {
pthread_rwlock_t lock1 = PTHREAD_RWLOCK_INITIALIZER;
pthread_rwlock_t lock2;
ASSERT_EQ(0, pthread_rwlock_init(&lock2, nullptr));
ASSERT_EQ(0, memcmp(&lock1, &lock2, sizeof(lock1)));
}
TEST(pthread, pthread_rwlock_smoke) {
pthread_rwlock_t l;
ASSERT_EQ(0, pthread_rwlock_init(&l, nullptr));
// Single read lock
ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
// Multiple read lock
ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
// Write lock
ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
// Try writer lock
ASSERT_EQ(0, pthread_rwlock_trywrlock(&l));
ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l));
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
// Try reader lock
ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
// Try writer lock after unlock
ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
// EDEADLK in "read after write"
ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l));
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
// EDEADLK in "write after write"
ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l));
ASSERT_EQ(0, pthread_rwlock_unlock(&l));
ASSERT_EQ(0, pthread_rwlock_destroy(&l));
}
struct RwlockWakeupHelperArg {
pthread_rwlock_t lock;
enum Progress {
LOCK_INITIALIZED,
LOCK_WAITING,
LOCK_RELEASED,
LOCK_ACCESSED,
LOCK_TIMEDOUT,
};
std::atomic<Progress> progress;
std::atomic<pid_t> tid;
std::function<int (pthread_rwlock_t*)> trylock_function;
std::function<int (pthread_rwlock_t*)> lock_function;
std::function<int (pthread_rwlock_t*, const timespec*)> timed_lock_function;
clockid_t clock;
};
static void pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg* arg) {
arg->tid = gettid();
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
ASSERT_EQ(0, arg->lock_function(&arg->lock));
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
}
static void test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t*)> lock_function) {
RwlockWakeupHelperArg wakeup_arg;
ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
wakeup_arg.tid = 0;
wakeup_arg.trylock_function = &pthread_rwlock_trywrlock;
wakeup_arg.lock_function = lock_function;
pthread_t thread;
ASSERT_EQ(0, pthread_create(&thread, nullptr,
reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
WaitUntilThreadSleep(wakeup_arg.tid);
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
ASSERT_EQ(0, pthread_join(thread, nullptr));
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
}
TEST(pthread, pthread_rwlock_reader_wakeup_writer) {
test_pthread_rwlock_reader_wakeup_writer(pthread_rwlock_wrlock);
}
TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait) {
timespec ts;
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
ts.tv_sec += 1;
test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) {
return pthread_rwlock_timedwrlock(lock, &ts);
});
}
TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait_monotonic_np) {
#if defined(__BIONIC__)
timespec ts;
ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
ts.tv_sec += 1;
test_pthread_rwlock_reader_wakeup_writer(
[&](pthread_rwlock_t* lock) { return pthread_rwlock_timedwrlock_monotonic_np(lock, &ts); });
#else // __BIONIC__
GTEST_SKIP() << "pthread_rwlock_timedwrlock_monotonic_np not available";
#endif // __BIONIC__
}
TEST(pthread, pthread_rwlock_reader_wakeup_writer_clockwait) {
#if defined(__BIONIC__)
timespec ts;
ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
ts.tv_sec += 1;
test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) {
return pthread_rwlock_clockwrlock(lock, CLOCK_MONOTONIC, &ts);
});
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
ts.tv_sec += 1;
test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) {
return pthread_rwlock_clockwrlock(lock, CLOCK_REALTIME, &ts);
});
#else // __BIONIC__
GTEST_SKIP() << "pthread_rwlock_clockwrlock not available";
#endif // __BIONIC__
}
static void test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t*)> lock_function) {
RwlockWakeupHelperArg wakeup_arg;
ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
wakeup_arg.tid = 0;
wakeup_arg.trylock_function = &pthread_rwlock_tryrdlock;
wakeup_arg.lock_function = lock_function;
pthread_t thread;
ASSERT_EQ(0, pthread_create(&thread, nullptr,
reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
WaitUntilThreadSleep(wakeup_arg.tid);
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
ASSERT_EQ(0, pthread_join(thread, nullptr));
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
}
TEST(pthread, pthread_rwlock_writer_wakeup_reader) {
test_pthread_rwlock_writer_wakeup_reader(pthread_rwlock_rdlock);
}
TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait) {
timespec ts;
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
ts.tv_sec += 1;
test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) {
return pthread_rwlock_timedrdlock(lock, &ts);
});
}
TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait_monotonic_np) {
#if defined(__BIONIC__)
timespec ts;
ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
ts.tv_sec += 1;
test_pthread_rwlock_writer_wakeup_reader(
[&](pthread_rwlock_t* lock) { return pthread_rwlock_timedrdlock_monotonic_np(lock, &ts); });
#else // __BIONIC__
GTEST_SKIP() << "pthread_rwlock_timedrdlock_monotonic_np not available";
#endif // __BIONIC__
}
TEST(pthread, pthread_rwlock_writer_wakeup_reader_clockwait) {
#if defined(__BIONIC__)
timespec ts;
ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
ts.tv_sec += 1;
test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) {
return pthread_rwlock_clockrdlock(lock, CLOCK_MONOTONIC, &ts);
});
ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
ts.tv_sec += 1;
test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) {
return pthread_rwlock_clockrdlock(lock, CLOCK_REALTIME, &ts);
});
#else // __BIONIC__
GTEST_SKIP() << "pthread_rwlock_clockrdlock not available";
#endif // __BIONIC__
}
static void pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg* arg) {
arg->tid = gettid();
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
timespec ts;
ASSERT_EQ(0, clock_gettime(arg->clock, &ts));
ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
ts.tv_nsec = -1;
ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
ts.tv_nsec = NS_PER_S;
ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
ts.tv_nsec = NS_PER_S - 1;
ts.tv_sec = -1;
ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
ASSERT_EQ(0, clock_gettime(arg->clock, &ts));
ts.tv_sec += 1;
ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, arg->progress);
arg->progress = RwlockWakeupHelperArg::LOCK_TIMEDOUT;
}
static void pthread_rwlock_timedrdlock_timeout_helper(
clockid_t clock, int (*lock_function)(pthread_rwlock_t* __rwlock, const timespec* __timeout)) {
RwlockWakeupHelperArg wakeup_arg;
ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
wakeup_arg.tid = 0;
wakeup_arg.trylock_function = &pthread_rwlock_tryrdlock;
wakeup_arg.timed_lock_function = lock_function;
wakeup_arg.clock = clock;
pthread_t thread;
ASSERT_EQ(0, pthread_create(&thread, nullptr,
reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
WaitUntilThreadSleep(wakeup_arg.tid);
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
ASSERT_EQ(0, pthread_join(thread, nullptr));
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
}
TEST(pthread, pthread_rwlock_timedrdlock_timeout) {
pthread_rwlock_timedrdlock_timeout_helper(CLOCK_REALTIME, pthread_rwlock_timedrdlock);
}
TEST(pthread, pthread_rwlock_timedrdlock_monotonic_np_timeout) {
#if defined(__BIONIC__)
pthread_rwlock_timedrdlock_timeout_helper(CLOCK_MONOTONIC,
pthread_rwlock_timedrdlock_monotonic_np);
#else // __BIONIC__
GTEST_SKIP() << "pthread_rwlock_timedrdlock_monotonic_np not available";
#endif // __BIONIC__
}
TEST(pthread, pthread_rwlock_clockrdlock_monotonic_timeout) {
#if defined(__BIONIC__)
pthread_rwlock_timedrdlock_timeout_helper(
CLOCK_MONOTONIC, [](pthread_rwlock_t* __rwlock, const timespec* __timeout) {
return pthread_rwlock_clockrdlock(__rwlock, CLOCK_MONOTONIC, __timeout);
});
#else // __BIONIC__
GTEST_SKIP() << "pthread_rwlock_clockrdlock not available";
#endif // __BIONIC__
}
TEST(pthread, pthread_rwlock_clockrdlock_realtime_timeout) {
#if defined(__BIONIC__)
pthread_rwlock_timedrdlock_timeout_helper(
CLOCK_REALTIME, [](pthread_rwlock_t* __rwlock, const timespec* __timeout) {
return pthread_rwlock_clockrdlock(__rwlock, CLOCK_REALTIME, __timeout);
});
#else // __BIONIC__
GTEST_SKIP() << "pthread_rwlock_clockrdlock not available";
#endif // __BIONIC__
}
TEST(pthread, pthread_rwlock_clockrdlock_invalid) {
#if defined(__BIONIC__)
pthread_rwlock_t lock = PTHREAD_RWLOCK_INITIALIZER;
timespec ts;
EXPECT_EQ(EINVAL, pthread_rwlock_clockrdlock(&lock, CLOCK_PROCESS_CPUTIME_ID, &ts));
#else // __BIONIC__
GTEST_SKIP() << "pthread_rwlock_clockrdlock not available";
#endif // __BIONIC__
}
static void pthread_rwlock_timedwrlock_timeout_helper(
clockid_t clock, int (*lock_function)(pthread_rwlock_t* __rwlock, const timespec* __timeout)) {
RwlockWakeupHelperArg wakeup_arg;
ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
wakeup_arg.tid = 0;
wakeup_arg.trylock_function = &pthread_rwlock_trywrlock;
wakeup_arg.timed_lock_function = lock_function;
wakeup_arg.clock = clock;
pthread_t thread;
ASSERT_EQ(0, pthread_create(&thread, nullptr,
reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
WaitUntilThreadSleep(wakeup_arg.tid);
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
ASSERT_EQ(0, pthread_join(thread, nullptr));
ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
}
TEST(pthread, pthread_rwlock_timedwrlock_timeout) {
pthread_rwlock_timedwrlock_timeout_helper(CLOCK_REALTIME, pthread_rwlock_timedwrlock);
}
TEST(pthread, pthread_rwlock_timedwrlock_monotonic_np_timeout) {
#if defined(__BIONIC__)
pthread_rwlock_timedwrlock_timeout_helper(CLOCK_MONOTONIC,
pthread_rwlock_timedwrlock_monotonic_np);
#else // __BIONIC__
GTEST_SKIP() << "pthread_rwlock_timedwrlock_monotonic_np not available";
#endif // __BIONIC__
}
TEST(pthread, pthread_rwlock_clockwrlock_monotonic_timeout) {
#if defined(__BIONIC__)
pthread_rwlock_timedwrlock_timeout_helper(
CLOCK_MONOTONIC, [](pthread_rwlock_t* __rwlock, const timespec* __timeout) {
return pthread_rwlock_clockwrlock(__rwlock, CLOCK_MONOTONIC, __timeout);
});
#else // __BIONIC__
GTEST_SKIP() << "pthread_rwlock_clockwrlock not available";
#endif // __BIONIC__
}
TEST(pthread, pthread_rwlock_clockwrlock_realtime_timeout) {
#if defined(__BIONIC__)
pthread_rwlock_timedwrlock_timeout_helper(
CLOCK_REALTIME, [](pthread_rwlock_t* __rwlock, const timespec* __timeout) {
return pthread_rwlock_clockwrlock(__rwlock, CLOCK_REALTIME, __timeout);
});
#else // __BIONIC__
GTEST_SKIP() << "pthread_rwlock_clockwrlock not available";
#endif // __BIONIC__
}
TEST(pthread, pthread_rwlock_clockwrlock_invalid) {
#if defined(__BIONIC__)
pthread_rwlock_t lock = PTHREAD_RWLOCK_INITIALIZER;
timespec ts;
EXPECT_EQ(EINVAL, pthread_rwlock_clockwrlock(&lock, CLOCK_PROCESS_CPUTIME_ID, &ts));
#else // __BIONIC__
GTEST_SKIP() << "pthread_rwlock_clockrwlock not available";
#endif // __BIONIC__
}
class RwlockKindTestHelper {
private:
struct ThreadArg {
RwlockKindTestHelper* helper;
std::atomic<pid_t>& tid;
ThreadArg(RwlockKindTestHelper* helper, std::atomic<pid_t>& tid)
: helper(helper), tid(tid) { }
};
public:
pthread_rwlock_t lock;
public:
explicit RwlockKindTestHelper(int kind_type) {
InitRwlock(kind_type);
}
~RwlockKindTestHelper() {
DestroyRwlock();
}
void CreateWriterThread(pthread_t& thread, std::atomic<pid_t>& tid) {
tid = 0;
ThreadArg* arg = new ThreadArg(this, tid);
ASSERT_EQ(0, pthread_create(&thread, nullptr,
reinterpret_cast<void* (*)(void*)>(WriterThreadFn), arg));
}
void CreateReaderThread(pthread_t& thread, std::atomic<pid_t>& tid) {
tid = 0;
ThreadArg* arg = new ThreadArg(this, tid);
ASSERT_EQ(0, pthread_create(&thread, nullptr,
reinterpret_cast<void* (*)(void*)>(ReaderThreadFn), arg));
}
private:
void InitRwlock(int kind_type) {
pthread_rwlockattr_t attr;
ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_type));
ASSERT_EQ(0, pthread_rwlock_init(&lock, &attr));
ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
}
void DestroyRwlock() {
ASSERT_EQ(0, pthread_rwlock_destroy(&lock));
}
static void WriterThreadFn(ThreadArg* arg) {
arg->tid = gettid();
RwlockKindTestHelper* helper = arg->helper;
ASSERT_EQ(0, pthread_rwlock_wrlock(&helper->lock));
ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
delete arg;
}
static void ReaderThreadFn(ThreadArg* arg) {
arg->tid = gettid();
RwlockKindTestHelper* helper = arg->helper;
ASSERT_EQ(0, pthread_rwlock_rdlock(&helper->lock));
ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
delete arg;
}
};
TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP) {
RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_READER_NP);
ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
pthread_t writer_thread;
std::atomic<pid_t> writer_tid;
helper.CreateWriterThread(writer_thread, writer_tid);
WaitUntilThreadSleep(writer_tid);
pthread_t reader_thread;
std::atomic<pid_t> reader_tid;
helper.CreateReaderThread(reader_thread, reader_tid);
ASSERT_EQ(0, pthread_join(reader_thread, nullptr));
ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
ASSERT_EQ(0, pthread_join(writer_thread, nullptr));
}
TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) {
RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
pthread_t writer_thread;
std::atomic<pid_t> writer_tid;
helper.CreateWriterThread(writer_thread, writer_tid);
WaitUntilThreadSleep(writer_tid);
pthread_t reader_thread;
std::atomic<pid_t> reader_tid;
helper.CreateReaderThread(reader_thread, reader_tid);
WaitUntilThreadSleep(reader_tid);
ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
ASSERT_EQ(0, pthread_join(writer_thread, nullptr));
ASSERT_EQ(0, pthread_join(reader_thread, nullptr));
}
static int g_once_fn_call_count = 0;
static void OnceFn() {
++g_once_fn_call_count;
}
TEST(pthread, pthread_once_smoke) {
pthread_once_t once_control = PTHREAD_ONCE_INIT;
ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
ASSERT_EQ(1, g_once_fn_call_count);
}
static std::string pthread_once_1934122_result = "";
static void Routine2() {
pthread_once_1934122_result += "2";
}
static void Routine1() {
pthread_once_t once_control_2 = PTHREAD_ONCE_INIT;
pthread_once_1934122_result += "1";
pthread_once(&once_control_2, &Routine2);
}
TEST(pthread, pthread_once_1934122) {
// Very old versions of Android couldn't call pthread_once from a
// pthread_once init routine. http://b/1934122.
pthread_once_t once_control_1 = PTHREAD_ONCE_INIT;
ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1));
ASSERT_EQ("12", pthread_once_1934122_result);
}
static int g_atfork_prepare_calls = 0;
static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 1; }
static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 2; }
static int g_atfork_parent_calls = 0;
static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 1; }
static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 2; }
static int g_atfork_child_calls = 0;
static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 1; }
static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 2; }
TEST(pthread, pthread_atfork_smoke) {
ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1));
ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2));
pid_t pid = fork();
ASSERT_NE(-1, pid) << strerror(errno);
// Child and parent calls are made in the order they were registered.
if (pid == 0) {
ASSERT_EQ(12, g_atfork_child_calls);
_exit(0);
}
ASSERT_EQ(12, g_atfork_parent_calls);
// Prepare calls are made in the reverse order.
ASSERT_EQ(21, g_atfork_prepare_calls);
AssertChildExited(pid, 0);
}
TEST(pthread, pthread_attr_getscope) {
pthread_attr_t attr;
ASSERT_EQ(0, pthread_attr_init(&attr));
int scope;
ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope));
ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope);
}
TEST(pthread, pthread_condattr_init) {
pthread_condattr_t attr;
pthread_condattr_init(&attr);
clockid_t clock;
ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
ASSERT_EQ(CLOCK_REALTIME, clock);
int pshared;
ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
}
TEST(pthread, pthread_condattr_setclock) {
pthread_condattr_t attr;
pthread_condattr_init(&attr);
ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME));
clockid_t clock;
ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
ASSERT_EQ(CLOCK_REALTIME, clock);
ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
ASSERT_EQ(CLOCK_MONOTONIC, clock);
ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID));
}
TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) {
#if defined(__BIONIC__)
pthread_condattr_t attr;
pthread_condattr_init(&attr);
ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
pthread_cond_t cond_var;
ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr));
ASSERT_EQ(0, pthread_cond_signal(&cond_var));
ASSERT_EQ(0, pthread_cond_broadcast(&cond_var));
attr = static_cast<pthread_condattr_t>(*reinterpret_cast<uint32_t*>(cond_var.__private));
clockid_t clock;
ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
ASSERT_EQ(CLOCK_MONOTONIC, clock);
int pshared;
ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
#else // !defined(__BIONIC__)
GTEST_SKIP() << "bionic-only test";
#endif // !defined(__BIONIC__)
}
class pthread_CondWakeupTest : public ::testing::Test {
protected:
pthread_mutex_t mutex;
pthread_cond_t cond;
enum Progress {
INITIALIZED,
WAITING,
SIGNALED,
FINISHED,
};
std::atomic<Progress> progress;
pthread_t thread;
std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function;
protected:
void SetUp() override {
ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
}
void InitCond(clockid_t clock=CLOCK_REALTIME) {
pthread_condattr_t attr;
ASSERT_EQ(0, pthread_condattr_init(&attr));
ASSERT_EQ(0, pthread_condattr_setclock(&attr, clock));
ASSERT_EQ(0, pthread_cond_init(&cond, &attr));
ASSERT_EQ(0, pthread_condattr_destroy(&attr));
}
void StartWaitingThread(
std::function<int(pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function) {
progress = INITIALIZED;
this->wait_function = wait_function;
ASSERT_EQ(0, pthread_create(&thread, nullptr, reinterpret_cast<void* (*)(void*)>(WaitThreadFn),
this));
while (progress != WAITING) {
usleep(5000);
}
usleep(5000);
}
void RunTimedTest(
clockid_t clock,
std::function<int(pthread_cond_t* cond, pthread_mutex_t* mutex, const timespec* timeout)>
wait_function) {
timespec ts;
ASSERT_EQ(0, clock_gettime(clock, &ts));
ts.tv_sec += 1;
StartWaitingThread([&wait_function, &ts](pthread_cond_t* cond, pthread_mutex_t* mutex) {
return wait_function(cond, mutex, &ts);
});
progress = SIGNALED;
ASSERT_EQ(0, pthread_cond_signal(&cond));
}
void RunTimedTest(clockid_t clock, std::function<int(pthread_cond_t* cond, pthread_mutex_t* mutex,
clockid_t clock, const timespec* timeout)>
wait_function) {
RunTimedTest(clock, [clock, &wait_function](pthread_cond_t* cond, pthread_mutex_t* mutex,
const timespec* timeout) {
return wait_function(cond, mutex, clock, timeout);
});
}
void TearDown() override {
ASSERT_EQ(0, pthread_join(thread, nullptr));
ASSERT_EQ(FINISHED, progress);
ASSERT_EQ(0, pthread_cond_destroy(&cond));
ASSERT_EQ(0, pthread_mutex_destroy(&mutex));
}
private:
static void WaitThreadFn(pthread_CondWakeupTest* test) {
ASSERT_EQ(0, pthread_mutex_lock(&test->mutex));
test->progress = WAITING;
while (test->progress == WAITING) {
ASSERT_EQ(0, test->wait_function(&test->cond, &test->mutex));
}
ASSERT_EQ(SIGNALED, test->progress);
test->progress = FINISHED;
ASSERT_EQ(0, pthread_mutex_unlock(&test->mutex));
}
};
TEST_F(pthread_CondWakeupTest, signal_wait) {
InitCond();
StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
return pthread_cond_wait(cond, mutex);
});
progress = SIGNALED;
ASSERT_EQ(0, pthread_cond_signal(&cond));
}
TEST_F(pthread_CondWakeupTest, broadcast_wait) {
InitCond();
StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
return pthread_cond_wait(cond, mutex);
});
progress = SIGNALED;
ASSERT_EQ(0, pthread_cond_broadcast(&cond));
}
TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_REALTIME) {
InitCond(CLOCK_REALTIME);
RunTimedTest(CLOCK_REALTIME, pthread_cond_timedwait);
}
TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC) {
InitCond(CLOCK_MONOTONIC);
RunTimedTest(CLOCK_MONOTONIC, pthread_cond_timedwait);
}
TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC_np) {
#if defined(__BIONIC__)
InitCond(CLOCK_REALTIME);
RunTimedTest(CLOCK_MONOTONIC, pthread_cond_timedwait_monotonic_np);
#else // __BIONIC__
GTEST_SKIP() << "pthread_cond_timedwait_monotonic_np not available";
#endif // __BIONIC__
}
TEST_F(pthread_CondWakeupTest, signal_clockwait_monotonic_monotonic) {
#if defined(__BIONIC__)
InitCond(CLOCK_MONOTONIC);
RunTimedTest(CLOCK_MONOTONIC, pthread_cond_clockwait);
#else // __BIONIC__
GTEST_SKIP() << "pthread_cond_clockwait not available";
#endif // __BIONIC__
}
TEST_F(pthread_CondWakeupTest, signal_clockwait_monotonic_realtime) {
#if defined(__BIONIC__)
InitCond(CLOCK_MONOTONIC);
RunTimedTest(CLOCK_REALTIME, pthread_cond_clockwait);
#else // __BIONIC__
GTEST_SKIP() << "pthread_cond_clockwait not available";
#endif // __BIONIC__
}
TEST_F(pthread_CondWakeupTest, signal_clockwait_realtime_monotonic) {
#if defined(__BIONIC__)
InitCond(CLOCK_REALTIME);
RunTimedTest(CLOCK_MONOTONIC, pthread_cond_clockwait);
#else // __BIONIC__
GTEST_SKIP() << "pthread_cond_clockwait not available";
#endif // __BIONIC__
}
TEST_F(pthread_CondWakeupTest, signal_clockwait_realtime_realtime) {
#if defined(__BIONIC__)
InitCond(CLOCK_REALTIME);
RunTimedTest(CLOCK_REALTIME, pthread_cond_clockwait);
#else // __BIONIC__
GTEST_SKIP() << "pthread_cond_clockwait not available";
#endif // __BIONIC__
}
static void pthread_cond_timedwait_timeout_helper(bool init_monotonic, clockid_t clock,
int (*wait_function)(pthread_cond_t* __cond,
pthread_mutex_t* __mutex,
const timespec* __timeout)) {
pthread_mutex_t mutex;
ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
pthread_cond_t cond;
if (init_monotonic) {
pthread_condattr_t attr;
pthread_condattr_init(&attr);
ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
clockid_t clock;
ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
ASSERT_EQ(CLOCK_MONOTONIC, clock);
ASSERT_EQ(0, pthread_cond_init(&cond, &attr));
} else {
ASSERT_EQ(0, pthread_cond_init(&cond, nullptr));
}
ASSERT_EQ(0, pthread_mutex_lock(&mutex));
timespec ts;
ASSERT_EQ(0, clock_gettime(clock, &ts));
ASSERT_EQ(ETIMEDOUT, wait_function(&cond, &mutex, &ts));
ts.tv_nsec = -1;
ASSERT_EQ(EINVAL, wait_function(&cond, &mutex, &ts));
ts.tv_nsec = NS_PER_S;
ASSERT_EQ(EINVAL, wait_function(&cond, &mutex, &ts));
ts.tv_nsec = NS_PER_S - 1;
ts.tv_sec = -1;
ASSERT_EQ(ETIMEDOUT, wait_function(&cond, &mutex, &ts));
ASSERT_EQ(0, pthread_mutex_unlock(&mutex));
}
TEST(pthread, pthread_cond_timedwait_timeout) {
pthread_cond_timedwait_timeout_helper(false, CLOCK_REALTIME, pthread_cond_timedwait);
}
TEST(pthread, pthread_cond_timedwait_monotonic_np_timeout) {
#if defined(__BIONIC__)
pthread_cond_timedwait_timeout_helper(false, CLOCK_MONOTONIC, pthread_cond_timedwait_monotonic_np);
pthread_cond_timedwait_timeout_helper(true, CLOCK_MONOTONIC, pthread_cond_timedwait_monotonic_np);
#else // __BIONIC__
GTEST_SKIP() << "pthread_cond_timedwait_monotonic_np not available";
#endif // __BIONIC__
}
TEST(pthread, pthread_cond_clockwait_timeout) {
#if defined(__BIONIC__)
pthread_cond_timedwait_timeout_helper(
false, CLOCK_MONOTONIC,
[](pthread_cond_t* __cond, pthread_mutex_t* __mutex, const timespec* __timeout) {
return pthread_cond_clockwait(__cond, __mutex, CLOCK_MONOTONIC, __timeout);
});
pthread_cond_timedwait_timeout_helper(
true, CLOCK_MONOTONIC,
[](pthread_cond_t* __cond, pthread_mutex_t* __mutex, const timespec* __timeout) {
return pthread_cond_clockwait(__cond, __mutex, CLOCK_MONOTONIC, __timeout);
});
pthread_cond_timedwait_timeout_helper(
false, CLOCK_REALTIME,
[](pthread_cond_t* __cond, pthread_mutex_t* __mutex, const timespec* __timeout) {
return pthread_cond_clockwait(__cond, __mutex, CLOCK_REALTIME, __timeout);
});
pthread_cond_timedwait_timeout_helper(
true, CLOCK_REALTIME,
[](pthread_cond_t* __cond, pthread_mutex_t* __mutex, const timespec* __timeout) {
return pthread_cond_clockwait(__cond, __mutex, CLOCK_REALTIME, __timeout);
});
#else // __BIONIC__
GTEST_SKIP() << "pthread_cond_clockwait not available";
#endif // __BIONIC__
}
TEST(pthread, pthread_cond_clockwait_invalid) {
#if defined(__BIONIC__)
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
timespec ts;
EXPECT_EQ(EINVAL, pthread_cond_clockwait(&cond, &mutex, CLOCK_PROCESS_CPUTIME_ID, &ts));
#else // __BIONIC__
GTEST_SKIP() << "pthread_cond_clockwait not available";
#endif // __BIONIC__
}
TEST(pthread, pthread_attr_getstack__main_thread) {
// This test is only meaningful for the main thread, so make sure we're running on it!
ASSERT_EQ(getpid(), syscall(__NR_gettid));
// Get the main thread's attributes.
pthread_attr_t attributes;
ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
// Check that we correctly report that the main thread has no guard page.
size_t guard_size;
ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
ASSERT_EQ(0U, guard_size); // The main thread has no guard page.
// Get the stack base and the stack size (both ways).
void* stack_base;
size_t stack_size;
ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
size_t stack_size2;
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
// The two methods of asking for the stack size should agree.
EXPECT_EQ(stack_size, stack_size2);
#if defined(__BIONIC__)
// Find stack in /proc/self/maps using a pointer to the stack.
//
// We do not use "[stack]" label because in native-bridge environment it is not
// guaranteed to point to the right stack. A native bridge implementation may
// keep separate stack for the guest code.
void* maps_stack_hi = nullptr;
std::vector<map_record> maps;
ASSERT_TRUE(Maps::parse_maps(&maps));
uintptr_t stack_address = reinterpret_cast<uintptr_t>(untag_address(&maps_stack_hi));
for (const auto& map : maps) {
if (map.addr_start <= stack_address && map.addr_end > stack_address){
maps_stack_hi = reinterpret_cast<void*>(map.addr_end);
break;
}
}
// The high address of the /proc/self/maps stack region should equal stack_base + stack_size.
// Remember that the stack grows down (and is mapped in on demand), so the low address of the
// region isn't very interesting.
EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size);
// The stack size should correspond to RLIMIT_STACK.
rlimit rl;
ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl));
uint64_t original_rlim_cur = rl.rlim_cur;
if (rl.rlim_cur == RLIM_INFINITY) {
rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB.
}
EXPECT_EQ(rl.rlim_cur, stack_size);
auto guard = android::base::make_scope_guard([&rl, original_rlim_cur]() {
rl.rlim_cur = original_rlim_cur;
ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
});
//
// What if RLIMIT_STACK is smaller than the stack's current extent?
//
rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already.
rl.rlim_max = RLIM_INFINITY;
ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
EXPECT_EQ(stack_size, stack_size2);
ASSERT_EQ(1024U, stack_size);
//
// What if RLIMIT_STACK isn't a whole number of pages?
//
rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages.
rl.rlim_max = RLIM_INFINITY;
ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
EXPECT_EQ(stack_size, stack_size2);
ASSERT_EQ(6666U, stack_size);
#endif
}
struct GetStackSignalHandlerArg {
volatile bool done;
void* signal_stack_base;
size_t signal_stack_size;
void* main_stack_base;
size_t main_stack_size;
};
static GetStackSignalHandlerArg getstack_signal_handler_arg;
static void getstack_signal_handler(int sig) {
ASSERT_EQ(SIGUSR1, sig);
// Use sleep() to make current thread be switched out by the kernel to provoke the error.
sleep(1);
pthread_attr_t attr;
ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
void* stack_base;
size_t stack_size;
ASSERT_EQ(0, pthread_attr_getstack(&attr, &stack_base, &stack_size));
// Verify if the stack used by the signal handler is the alternate stack just registered.
ASSERT_LE(getstack_signal_handler_arg.signal_stack_base, &attr);
ASSERT_LT(static_cast<void*>(untag_address(&attr)),
static_cast<char*>(getstack_signal_handler_arg.signal_stack_base) +
getstack_signal_handler_arg.signal_stack_size);
// Verify if the main thread's stack got in the signal handler is correct.
ASSERT_EQ(getstack_signal_handler_arg.main_stack_base, stack_base);
ASSERT_LE(getstack_signal_handler_arg.main_stack_size, stack_size);
getstack_signal_handler_arg.done = true;
}
// The previous code obtained the main thread's stack by reading the entry in
// /proc/self/task/<pid>/maps that was labeled [stack]. Unfortunately, on x86/x86_64, the kernel
// relies on sp0 in task state segment(tss) to label the stack map with [stack]. If the kernel
// switches a process while the main thread is in an alternate stack, then the kernel will label
// the wrong map with [stack]. This test verifies that when the above situation happens, the main
// thread's stack is found correctly.
TEST(pthread, pthread_attr_getstack_in_signal_handler) {
// This test is only meaningful for the main thread, so make sure we're running on it!
ASSERT_EQ(getpid(), syscall(__NR_gettid));
const size_t sig_stack_size = 16 * 1024;
void* sig_stack = mmap(nullptr, sig_stack_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS,
-1, 0);
ASSERT_NE(MAP_FAILED, sig_stack);
stack_t ss;
ss.ss_sp = sig_stack;
ss.ss_size = sig_stack_size;
ss.ss_flags = 0;
stack_t oss;
ASSERT_EQ(0, sigaltstack(&ss, &oss));
pthread_attr_t attr;
ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
void* main_stack_base;
size_t main_stack_size;
ASSERT_EQ(0, pthread_attr_getstack(&attr, &main_stack_base, &main_stack_size));
ScopedSignalHandler handler(SIGUSR1, getstack_signal_handler, SA_ONSTACK);
getstack_signal_handler_arg.done = false;
getstack_signal_handler_arg.signal_stack_base = sig_stack;
getstack_signal_handler_arg.signal_stack_size = sig_stack_size;
getstack_signal_handler_arg.main_stack_base = main_stack_base;
getstack_signal_handler_arg.main_stack_size = main_stack_size;
kill(getpid(), SIGUSR1);
ASSERT_EQ(true, getstack_signal_handler_arg.done);
ASSERT_EQ(0, sigaltstack(&oss, nullptr));
ASSERT_EQ(0, munmap(sig_stack, sig_stack_size));
}
static void pthread_attr_getstack_18908062_helper(void*) {
char local_variable;
pthread_attr_t attributes;
pthread_getattr_np(pthread_self(), &attributes);
void* stack_base;
size_t stack_size;
pthread_attr_getstack(&attributes, &stack_base, &stack_size);
// Test whether &local_variable is in [stack_base, stack_base + stack_size).
ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable);
ASSERT_LT(untag_address(&local_variable), reinterpret_cast<char*>(stack_base) + stack_size);
}
// Check whether something on stack is in the range of
// [stack_base, stack_base + stack_size). see b/18908062.
TEST(pthread, pthread_attr_getstack_18908062) {
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, nullptr,
reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper),
nullptr));
ASSERT_EQ(0, pthread_join(t, nullptr));
}
#if defined(__BIONIC__)
static pthread_mutex_t pthread_gettid_np_mutex = PTHREAD_MUTEX_INITIALIZER;
static void* pthread_gettid_np_helper(void* arg) {
*reinterpret_cast<pid_t*>(arg) = gettid();
// Wait for our parent to call pthread_gettid_np on us before exiting.
pthread_mutex_lock(&pthread_gettid_np_mutex);
pthread_mutex_unlock(&pthread_gettid_np_mutex);
return nullptr;
}
#endif
TEST(pthread, pthread_gettid_np) {
#if defined(__BIONIC__)
ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self()));
// Ensure the other thread doesn't exit until after we've called
// pthread_gettid_np on it.
pthread_mutex_lock(&pthread_gettid_np_mutex);
pid_t t_gettid_result;
pthread_t t;
pthread_create(&t, nullptr, pthread_gettid_np_helper, &t_gettid_result);
pid_t t_pthread_gettid_np_result = pthread_gettid_np(t);
// Release the other thread and wait for it to exit.
pthread_mutex_unlock(&pthread_gettid_np_mutex);
ASSERT_EQ(0, pthread_join(t, nullptr));
ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result);
#else
GTEST_SKIP() << "pthread_gettid_np not available";
#endif
}
static size_t cleanup_counter = 0;
static void AbortCleanupRoutine(void*) {
abort();
}
static void CountCleanupRoutine(void*) {
++cleanup_counter;
}
static void PthreadCleanupTester() {
pthread_cleanup_push(CountCleanupRoutine, nullptr);
pthread_cleanup_push(CountCleanupRoutine, nullptr);
pthread_cleanup_push(AbortCleanupRoutine, nullptr);
pthread_cleanup_pop(0); // Pop the abort without executing it.
pthread_cleanup_pop(1); // Pop one count while executing it.
ASSERT_EQ(1U, cleanup_counter);
// Exit while the other count is still on the cleanup stack.
pthread_exit(nullptr);
// Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced.
pthread_cleanup_pop(0);
}
static void* PthreadCleanupStartRoutine(void*) {
PthreadCleanupTester();
return nullptr;
}
TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) {
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, nullptr, PthreadCleanupStartRoutine, nullptr));
ASSERT_EQ(0, pthread_join(t, nullptr));
ASSERT_EQ(2U, cleanup_counter);
}
TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) {
ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT);
}
TEST(pthread, pthread_mutexattr_gettype) {
pthread_mutexattr_t attr;
ASSERT_EQ(0, pthread_mutexattr_init(&attr));
int attr_type;
ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type);
ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type);
ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type);
ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
}
TEST(pthread, pthread_mutexattr_protocol) {
pthread_mutexattr_t attr;
ASSERT_EQ(0, pthread_mutexattr_init(&attr));
int protocol;
ASSERT_EQ(0, pthread_mutexattr_getprotocol(&attr, &protocol));
ASSERT_EQ(PTHREAD_PRIO_NONE, protocol);
for (size_t repeat = 0; repeat < 2; ++repeat) {
for (int set_protocol : {PTHREAD_PRIO_NONE, PTHREAD_PRIO_INHERIT}) {
ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, set_protocol));
ASSERT_EQ(0, pthread_mutexattr_getprotocol(&attr, &protocol));
ASSERT_EQ(protocol, set_protocol);
}
}
}
struct PthreadMutex {
pthread_mutex_t lock;
explicit PthreadMutex(int mutex_type, int protocol = PTHREAD_PRIO_NONE) {
init(mutex_type, protocol);
}
~PthreadMutex() {
destroy();
}
private:
void init(int mutex_type, int protocol) {
pthread_mutexattr_t attr;
ASSERT_EQ(0, pthread_mutexattr_init(&attr));
ASSERT_EQ(0, pthread_mutexattr_settype(&attr, mutex_type));
ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, protocol));
ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
}
void destroy() {
ASSERT_EQ(0, pthread_mutex_destroy(&lock));
}
DISALLOW_COPY_AND_ASSIGN(PthreadMutex);
};
static int UnlockFromAnotherThread(pthread_mutex_t* mutex) {
pthread_t thread;
pthread_create(&thread, nullptr, [](void* mutex_voidp) -> void* {
pthread_mutex_t* mutex = static_cast<pthread_mutex_t*>(mutex_voidp);
intptr_t result = pthread_mutex_unlock(mutex);
return reinterpret_cast<void*>(result);
}, mutex);
void* result;
EXPECT_EQ(0, pthread_join(thread, &result));
return reinterpret_cast<intptr_t>(result);
};
static void TestPthreadMutexLockNormal(int protocol) {
PthreadMutex m(PTHREAD_MUTEX_NORMAL, protocol);
ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
if (protocol == PTHREAD_PRIO_INHERIT) {
ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock));
}
ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
}
static void TestPthreadMutexLockErrorCheck(int protocol) {
PthreadMutex m(PTHREAD_MUTEX_ERRORCHECK, protocol);
ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock));
ASSERT_EQ(EDEADLK, pthread_mutex_lock(&m.lock));
ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
if (protocol == PTHREAD_PRIO_NONE) {
ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
} else {
ASSERT_EQ(EDEADLK, pthread_mutex_trylock(&m.lock));
}
ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
}
static void TestPthreadMutexLockRecursive(int protocol) {
PthreadMutex m(PTHREAD_MUTEX_RECURSIVE, protocol);
ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock));
ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
ASSERT_EQ(EPERM, UnlockFromAnotherThread(&m.lock));
ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
}
TEST(pthread, pthread_mutex_lock_NORMAL) {
TestPthreadMutexLockNormal(PTHREAD_PRIO_NONE);
}
TEST(pthread, pthread_mutex_lock_ERRORCHECK) {
TestPthreadMutexLockErrorCheck(PTHREAD_PRIO_NONE);
}
TEST(pthread, pthread_mutex_lock_RECURSIVE) {
TestPthreadMutexLockRecursive(PTHREAD_PRIO_NONE);
}
TEST(pthread, pthread_mutex_lock_pi) {
TestPthreadMutexLockNormal(PTHREAD_PRIO_INHERIT);
TestPthreadMutexLockErrorCheck(PTHREAD_PRIO_INHERIT);
TestPthreadMutexLockRecursive(PTHREAD_PRIO_INHERIT);
}
TEST(pthread, pthread_mutex_pi_count_limit) {
#if defined(__BIONIC__) && !defined(__LP64__)
// Bionic only supports 65536 pi mutexes in 32-bit programs.
pthread_mutexattr_t attr;
ASSERT_EQ(0, pthread_mutexattr_init(&attr));
ASSERT_EQ(0, pthread_mutexattr_setprotocol(&attr, PTHREAD_PRIO_INHERIT));
std::vector<pthread_mutex_t> mutexes(65536);
// Test if we can use 65536 pi mutexes at the same time.
// Run 2 times to check if freed pi mutexes can be recycled.
for (int repeat = 0; repeat < 2; ++repeat) {
for (auto& m : mutexes) {
ASSERT_EQ(0, pthread_mutex_init(&m, &attr));
}
pthread_mutex_t m;
ASSERT_EQ(ENOMEM, pthread_mutex_init(&m, &attr));
for (auto& m : mutexes) {
ASSERT_EQ(0, pthread_mutex_lock(&m));
}
for (auto& m : mutexes) {
ASSERT_EQ(0, pthread_mutex_unlock(&m));
}
for (auto& m : mutexes) {
ASSERT_EQ(0, pthread_mutex_destroy(&m));
}
}
ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
#else
GTEST_SKIP() << "pi mutex count not limited to 64Ki";
#endif
}
TEST(pthread, pthread_mutex_init_same_as_static_initializers) {
pthread_mutex_t lock_normal = PTHREAD_MUTEX_INITIALIZER;
PthreadMutex m1(PTHREAD_MUTEX_NORMAL);
ASSERT_EQ(0, memcmp(&lock_normal, &m1.lock, sizeof(pthread_mutex_t)));
pthread_mutex_destroy(&lock_normal);
pthread_mutex_t lock_errorcheck = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
PthreadMutex m2(PTHREAD_MUTEX_ERRORCHECK);
ASSERT_EQ(0, memcmp(&lock_errorcheck, &m2.lock, sizeof(pthread_mutex_t)));
pthread_mutex_destroy(&lock_errorcheck);
pthread_mutex_t lock_recursive = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
PthreadMutex m3(PTHREAD_MUTEX_RECURSIVE);
ASSERT_EQ(0, memcmp(&lock_recursive, &m3.lock, sizeof(pthread_mutex_t)));
ASSERT_EQ(0, pthread_mutex_destroy(&lock_recursive));
}
class MutexWakeupHelper {
private:
PthreadMutex m;
enum Progress {
LOCK_INITIALIZED,
LOCK_WAITING,
LOCK_RELEASED,
LOCK_ACCESSED
};
std::atomic<Progress> progress;
std::atomic<pid_t> tid;
static void thread_fn(MutexWakeupHelper* helper) {
helper->tid = gettid();
ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
helper->progress = LOCK_WAITING;
ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
ASSERT_EQ(LOCK_RELEASED, helper->progress);
ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));
helper->progress = LOCK_ACCESSED;
}
public:
explicit MutexWakeupHelper(int mutex_type) : m(mutex_type) {
}
void test() {
ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
progress = LOCK_INITIALIZED;
tid = 0;
pthread_t thread;
ASSERT_EQ(0, pthread_create(&thread, nullptr,
reinterpret_cast<void* (*)(void*)>(MutexWakeupHelper::thread_fn), this));
WaitUntilThreadSleep(tid);
ASSERT_EQ(LOCK_WAITING, progress);
progress = LOCK_RELEASED;
ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
ASSERT_EQ(0, pthread_join(thread, nullptr));
ASSERT_EQ(LOCK_ACCESSED, progress);
}
};
TEST(pthread, pthread_mutex_NORMAL_wakeup) {
MutexWakeupHelper helper(PTHREAD_MUTEX_NORMAL);
helper.test();
}
TEST(pthread, pthread_mutex_ERRORCHECK_wakeup) {
MutexWakeupHelper helper(PTHREAD_MUTEX_ERRORCHECK);
helper.test();
}
TEST(pthread, pthread_mutex_RECURSIVE_wakeup) {
MutexWakeupHelper helper(PTHREAD_MUTEX_RECURSIVE);
helper.test();
}
static int GetThreadPriority(pid_t tid) {
// sched_getparam() returns the static priority of a thread, which can't reflect a thread's
// priority after priority inheritance. So read /proc/<pid>/stat to get the dynamic priority.
std::string filename = android::base::StringPrintf("/proc/%d/stat", tid);
std::string content;
int result = INT_MAX;
if (!android::base::ReadFileToString(filename, &content)) {
return result;
}
std::vector<std::string> strs = android::base::Split(content, " ");
if (strs.size() < 18) {
return result;
}
if (!android::base::ParseInt(strs[17], &result)) {
return INT_MAX;
}
return result;
}
class PIMutexWakeupHelper {
private:
PthreadMutex m;
int protocol;
enum Progress {
LOCK_INITIALIZED,
LOCK_CHILD_READY,
LOCK_WAITING,
LOCK_RELEASED,
};
std::atomic<Progress> progress;
std::atomic<pid_t> main_tid;
std::atomic<pid_t> child_tid;
PthreadMutex start_thread_m;
static void thread_fn(PIMutexWakeupHelper* helper) {
helper->child_tid = gettid();
ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
ASSERT_EQ(0, setpriority(PRIO_PROCESS, gettid(), 1));
ASSERT_EQ(21, GetThreadPriority(gettid()));
ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
helper->progress = LOCK_CHILD_READY;
ASSERT_EQ(0, pthread_mutex_lock(&helper->start_thread_m.lock));
ASSERT_EQ(0, pthread_mutex_unlock(&helper->start_thread_m.lock));
WaitUntilThreadSleep(helper->main_tid);
ASSERT_EQ(LOCK_WAITING, helper->progress);
if (helper->protocol == PTHREAD_PRIO_INHERIT) {
ASSERT_EQ(20, GetThreadPriority(gettid()));
} else {
ASSERT_EQ(21, GetThreadPriority(gettid()));
}
helper->progress = LOCK_RELEASED;
ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));
}
public:
explicit PIMutexWakeupHelper(int mutex_type, int protocol)
: m(mutex_type, protocol), protocol(protocol), start_thread_m(PTHREAD_MUTEX_NORMAL) {
}
void test() {
ASSERT_EQ(0, pthread_mutex_lock(&start_thread_m.lock));
main_tid = gettid();
ASSERT_EQ(20, GetThreadPriority(main_tid));
progress = LOCK_INITIALIZED;
child_tid = 0;
pthread_t thread;
ASSERT_EQ(0, pthread_create(&thread, nullptr,
reinterpret_cast<void* (*)(void*)>(PIMutexWakeupHelper::thread_fn), this));
WaitUntilThreadSleep(child_tid);
ASSERT_EQ(LOCK_CHILD_READY, progress);
ASSERT_EQ(0, pthread_mutex_unlock(&start_thread_m.lock));
progress = LOCK_WAITING;
ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
ASSERT_EQ(LOCK_RELEASED, progress);
ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
ASSERT_EQ(0, pthread_join(thread, nullptr));
}
};
TEST(pthread, pthread_mutex_pi_wakeup) {
for (int type : {PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_RECURSIVE, PTHREAD_MUTEX_ERRORCHECK}) {
for (int protocol : {PTHREAD_PRIO_INHERIT}) {
PIMutexWakeupHelper helper(type, protocol);
helper.test();
}
}
}
TEST(pthread, pthread_mutex_owner_tid_limit) {
#if defined(__BIONIC__) && !defined(__LP64__)
FILE* fp = fopen("/proc/sys/kernel/pid_max", "r");
ASSERT_TRUE(fp != nullptr);
long pid_max;
ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max));
fclose(fp);
// Bionic's pthread_mutex implementation on 32-bit devices uses 16 bits to represent owner tid.
ASSERT_LE(pid_max, 65536);
#else
GTEST_SKIP() << "pthread_mutex supports 32-bit tid";
#endif
}
static void pthread_mutex_timedlock_helper(clockid_t clock,
int (*lock_function)(pthread_mutex_t* __mutex,
const timespec* __timeout)) {
pthread_mutex_t m;
ASSERT_EQ(0, pthread_mutex_init(&m, nullptr));
// If the mutex is already locked, pthread_mutex_timedlock should time out.
ASSERT_EQ(0, pthread_mutex_lock(&m));
timespec ts;
ASSERT_EQ(0, clock_gettime(clock, &ts));
ASSERT_EQ(ETIMEDOUT, lock_function(&m, &ts));
ts.tv_nsec = -1;
ASSERT_EQ(EINVAL, lock_function(&m, &ts));
ts.tv_nsec = NS_PER_S;
ASSERT_EQ(EINVAL, lock_function(&m, &ts));
ts.tv_nsec = NS_PER_S - 1;
ts.tv_sec = -1;
ASSERT_EQ(ETIMEDOUT, lock_function(&m, &ts));
// If the mutex is unlocked, pthread_mutex_timedlock should succeed.
ASSERT_EQ(0, pthread_mutex_unlock(&m));
ASSERT_EQ(0, clock_gettime(clock, &ts));
ts.tv_sec += 1;
ASSERT_EQ(0, lock_function(&m, &ts));
ASSERT_EQ(0, pthread_mutex_unlock(&m));
ASSERT_EQ(0, pthread_mutex_destroy(&m));
}
TEST(pthread, pthread_mutex_timedlock) {
pthread_mutex_timedlock_helper(CLOCK_REALTIME, pthread_mutex_timedlock);
}
TEST(pthread, pthread_mutex_timedlock_monotonic_np) {
#if defined(__BIONIC__)
pthread_mutex_timedlock_helper(CLOCK_MONOTONIC, pthread_mutex_timedlock_monotonic_np);
#else // __BIONIC__
GTEST_SKIP() << "pthread_mutex_timedlock_monotonic_np not available";
#endif // __BIONIC__
}
TEST(pthread, pthread_mutex_clocklock) {
#if defined(__BIONIC__)
pthread_mutex_timedlock_helper(
CLOCK_MONOTONIC, [](pthread_mutex_t* __mutex, const timespec* __timeout) {
return pthread_mutex_clocklock(__mutex, CLOCK_MONOTONIC, __timeout);
});
pthread_mutex_timedlock_helper(
CLOCK_REALTIME, [](pthread_mutex_t* __mutex, const timespec* __timeout) {
return pthread_mutex_clocklock(__mutex, CLOCK_REALTIME, __timeout);
});
#else // __BIONIC__
GTEST_SKIP() << "pthread_mutex_clocklock not available";
#endif // __BIONIC__
}
static void pthread_mutex_timedlock_pi_helper(clockid_t clock,
int (*lock_function)(pthread_mutex_t* __mutex,
const timespec* __timeout)) {
PthreadMutex m(PTHREAD_MUTEX_NORMAL, PTHREAD_PRIO_INHERIT);
timespec ts;
clock_gettime(clock, &ts);
ts.tv_sec += 1;
ASSERT_EQ(0, lock_function(&m.lock, &ts));
struct ThreadArgs {
clockid_t clock;
int (*lock_function)(pthread_mutex_t* __mutex, const timespec* __timeout);
PthreadMutex& m;
};
ThreadArgs thread_args = {
.clock = clock,
.lock_function = lock_function,
.m = m,
};
auto ThreadFn = [](void* arg) -> void* {
auto args = static_cast<ThreadArgs*>(arg);
timespec ts;
clock_gettime(args->clock, &ts);
ts.tv_sec += 1;
intptr_t result = args->lock_function(&args->m.lock, &ts);
return reinterpret_cast<void*>(result);
};
pthread_t thread;
ASSERT_EQ(0, pthread_create(&thread, nullptr, ThreadFn, &thread_args));
void* result;
ASSERT_EQ(0, pthread_join(thread, &result));
ASSERT_EQ(ETIMEDOUT, reinterpret_cast<intptr_t>(result));
ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
}
TEST(pthread, pthread_mutex_timedlock_pi) {
pthread_mutex_timedlock_pi_helper(CLOCK_REALTIME, pthread_mutex_timedlock);
}
TEST(pthread, pthread_mutex_timedlock_monotonic_np_pi) {
#if defined(__BIONIC__)
pthread_mutex_timedlock_pi_helper(CLOCK_MONOTONIC, pthread_mutex_timedlock_monotonic_np);
#else // __BIONIC__
GTEST_SKIP() << "pthread_mutex_timedlock_monotonic_np not available";
#endif // __BIONIC__
}
TEST(pthread, pthread_mutex_clocklock_pi) {
#if defined(__BIONIC__)
pthread_mutex_timedlock_pi_helper(
CLOCK_MONOTONIC, [](pthread_mutex_t* __mutex, const timespec* __timeout) {
return pthread_mutex_clocklock(__mutex, CLOCK_MONOTONIC, __timeout);
});
pthread_mutex_timedlock_pi_helper(
CLOCK_REALTIME, [](pthread_mutex_t* __mutex, const timespec* __timeout) {
return pthread_mutex_clocklock(__mutex, CLOCK_REALTIME, __timeout);
});
#else // __BIONIC__
GTEST_SKIP() << "pthread_mutex_clocklock not available";
#endif // __BIONIC__
}
TEST(pthread, pthread_mutex_clocklock_invalid) {
#if defined(__BIONIC__)
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
timespec ts;
EXPECT_EQ(EINVAL, pthread_mutex_clocklock(&mutex, CLOCK_PROCESS_CPUTIME_ID, &ts));
#else // __BIONIC__
GTEST_SKIP() << "pthread_mutex_clocklock not available";
#endif // __BIONIC__
}
TEST_F(pthread_DeathTest, pthread_mutex_using_destroyed_mutex) {
#if defined(__BIONIC__)
pthread_mutex_t m;
ASSERT_EQ(0, pthread_mutex_init(&m, nullptr));
ASSERT_EQ(0, pthread_mutex_destroy(&m));
ASSERT_EXIT(pthread_mutex_lock(&m), ::testing::KilledBySignal(SIGABRT),
"pthread_mutex_lock called on a destroyed mutex");
ASSERT_EXIT(pthread_mutex_unlock(&m), ::testing::KilledBySignal(SIGABRT),
"pthread_mutex_unlock called on a destroyed mutex");
ASSERT_EXIT(pthread_mutex_trylock(&m), ::testing::KilledBySignal(SIGABRT),
"pthread_mutex_trylock called on a destroyed mutex");
timespec ts;
ASSERT_EXIT(pthread_mutex_timedlock(&m, &ts), ::testing::KilledBySignal(SIGABRT),
"pthread_mutex_timedlock called on a destroyed mutex");
ASSERT_EXIT(pthread_mutex_timedlock_monotonic_np(&m, &ts), ::testing::KilledBySignal(SIGABRT),
"pthread_mutex_timedlock_monotonic_np called on a destroyed mutex");
ASSERT_EXIT(pthread_mutex_clocklock(&m, CLOCK_MONOTONIC, &ts), ::testing::KilledBySignal(SIGABRT),
"pthread_mutex_clocklock called on a destroyed mutex");
ASSERT_EXIT(pthread_mutex_clocklock(&m, CLOCK_REALTIME, &ts), ::testing::KilledBySignal(SIGABRT),
"pthread_mutex_clocklock called on a destroyed mutex");
ASSERT_EXIT(pthread_mutex_clocklock(&m, CLOCK_PROCESS_CPUTIME_ID, &ts),
::testing::KilledBySignal(SIGABRT),
"pthread_mutex_clocklock called on a destroyed mutex");
ASSERT_EXIT(pthread_mutex_destroy(&m), ::testing::KilledBySignal(SIGABRT),
"pthread_mutex_destroy called on a destroyed mutex");
#else
GTEST_SKIP() << "bionic-only test";
#endif
}
class StrictAlignmentAllocator {
public:
void* allocate(size_t size, size_t alignment) {
char* p = new char[size + alignment * 2];
allocated_array.push_back(p);
while (!is_strict_aligned(p, alignment)) {
++p;
}
return p;
}
~StrictAlignmentAllocator() {
for (const auto& p : allocated_array) {
delete[] p;
}
}
private:
bool is_strict_aligned(char* p, size_t alignment) {
return (reinterpret_cast<uintptr_t>(p) % (alignment * 2)) == alignment;
}
std::vector<char*> allocated_array;
};
TEST(pthread, pthread_types_allow_four_bytes_alignment) {
#if defined(__BIONIC__)
// For binary compatibility with old version, we need to allow 4-byte aligned data for pthread types.
StrictAlignmentAllocator allocator;
pthread_mutex_t* mutex = reinterpret_cast<pthread_mutex_t*>(
allocator.allocate(sizeof(pthread_mutex_t), 4));
ASSERT_EQ(0, pthread_mutex_init(mutex, nullptr));
ASSERT_EQ(0, pthread_mutex_lock(mutex));
ASSERT_EQ(0, pthread_mutex_unlock(mutex));
ASSERT_EQ(0, pthread_mutex_destroy(mutex));
pthread_cond_t* cond = reinterpret_cast<pthread_cond_t*>(
allocator.allocate(sizeof(pthread_cond_t), 4));
ASSERT_EQ(0, pthread_cond_init(cond, nullptr));
ASSERT_EQ(0, pthread_cond_signal(cond));
ASSERT_EQ(0, pthread_cond_broadcast(cond));
ASSERT_EQ(0, pthread_cond_destroy(cond));
pthread_rwlock_t* rwlock = reinterpret_cast<pthread_rwlock_t*>(
allocator.allocate(sizeof(pthread_rwlock_t), 4));
ASSERT_EQ(0, pthread_rwlock_init(rwlock, nullptr));
ASSERT_EQ(0, pthread_rwlock_rdlock(rwlock));
ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
ASSERT_EQ(0, pthread_rwlock_wrlock(rwlock));
ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
ASSERT_EQ(0, pthread_rwlock_destroy(rwlock));
#else
GTEST_SKIP() << "bionic-only test";
#endif
}
TEST(pthread, pthread_mutex_lock_null_32) {
#if defined(__BIONIC__) && !defined(__LP64__)
// For LP32, the pthread lock/unlock functions allow a NULL mutex and return
// EINVAL in that case: http://b/19995172.
//
// We decorate the public defintion with _Nonnull so that people recompiling
// their code with get a warning and might fix their bug, but need to pass
// NULL here to test that we remain compatible.
pthread_mutex_t* null_value = nullptr;
ASSERT_EQ(EINVAL, pthread_mutex_lock(null_value));
#else
GTEST_SKIP() << "32-bit bionic-only test";
#endif
}
TEST(pthread, pthread_mutex_unlock_null_32) {
#if defined(__BIONIC__) && !defined(__LP64__)
// For LP32, the pthread lock/unlock functions allow a NULL mutex and return
// EINVAL in that case: http://b/19995172.
//
// We decorate the public defintion with _Nonnull so that people recompiling
// their code with get a warning and might fix their bug, but need to pass
// NULL here to test that we remain compatible.
pthread_mutex_t* null_value = nullptr;
ASSERT_EQ(EINVAL, pthread_mutex_unlock(null_value));
#else
GTEST_SKIP() << "32-bit bionic-only test";
#endif
}
TEST_F(pthread_DeathTest, pthread_mutex_lock_null_64) {
#if defined(__BIONIC__) && defined(__LP64__)
pthread_mutex_t* null_value = nullptr;
ASSERT_EXIT(pthread_mutex_lock(null_value), testing::KilledBySignal(SIGSEGV), "");
#else
GTEST_SKIP() << "64-bit bionic-only test";
#endif
}
TEST_F(pthread_DeathTest, pthread_mutex_unlock_null_64) {
#if defined(__BIONIC__) && defined(__LP64__)
pthread_mutex_t* null_value = nullptr;
ASSERT_EXIT(pthread_mutex_unlock(null_value), testing::KilledBySignal(SIGSEGV), "");
#else
GTEST_SKIP() << "64-bit bionic-only test";
#endif
}
extern _Unwind_Reason_Code FrameCounter(_Unwind_Context* ctx, void* arg);
static volatile bool signal_handler_on_altstack_done;
__attribute__((__noinline__))
static void signal_handler_backtrace() {
// Check if we have enough stack space for unwinding.
int count = 0;
_Unwind_Backtrace(FrameCounter, &count);
ASSERT_GT(count, 0);
}
__attribute__((__noinline__))
static void signal_handler_logging() {
// Check if we have enough stack space for logging.
std::string s(2048, '*');
GTEST_LOG_(INFO) << s;
signal_handler_on_altstack_done = true;
}
__attribute__((__noinline__))
static void signal_handler_snprintf() {
// Check if we have enough stack space for snprintf to a PATH_MAX buffer, plus some extra.
char buf[PATH_MAX + 2048];
ASSERT_GT(snprintf(buf, sizeof(buf), "/proc/%d/status", getpid()), 0);
}
static void SignalHandlerOnAltStack(int signo, siginfo_t*, void*) {
ASSERT_EQ(SIGUSR1, signo);
signal_handler_backtrace();
signal_handler_logging();
signal_handler_snprintf();
}
TEST(pthread, big_enough_signal_stack) {
signal_handler_on_altstack_done = false;
ScopedSignalHandler handler(SIGUSR1, SignalHandlerOnAltStack, SA_SIGINFO | SA_ONSTACK);
kill(getpid(), SIGUSR1);
ASSERT_TRUE(signal_handler_on_altstack_done);
}
TEST(pthread, pthread_barrierattr_smoke) {
pthread_barrierattr_t attr;
ASSERT_EQ(0, pthread_barrierattr_init(&attr));
int pshared;
ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
ASSERT_EQ(0, pthread_barrierattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
ASSERT_EQ(0, pthread_barrierattr_destroy(&attr));
}
struct BarrierTestHelperData {
size_t thread_count;
pthread_barrier_t barrier;
std::atomic<int> finished_mask;
std::atomic<int> serial_thread_count;
size_t iteration_count;
std::atomic<size_t> finished_iteration_count;
BarrierTestHelperData(size_t thread_count, size_t iteration_count)
: thread_count(thread_count), finished_mask(0), serial_thread_count(0),
iteration_count(iteration_count), finished_iteration_count(0) {
}
};
struct BarrierTestHelperArg {
int id;
BarrierTestHelperData* data;
};
static void BarrierTestHelper(BarrierTestHelperArg* arg) {
for (size_t i = 0; i < arg->data->iteration_count; ++i) {
int result = pthread_barrier_wait(&arg->data->barrier);
if (result == PTHREAD_BARRIER_SERIAL_THREAD) {
arg->data->serial_thread_count++;
} else {
ASSERT_EQ(0, result);
}
int mask = arg->data->finished_mask.fetch_or(1 << arg->id);
mask |= 1 << arg->id;
if (mask == ((1 << arg->data->thread_count) - 1)) {
ASSERT_EQ(1, arg->data->serial_thread_count);
arg->data->finished_iteration_count++;
arg->data->finished_mask = 0;
arg->data->serial_thread_count = 0;
}
}
}
TEST(pthread, pthread_barrier_smoke) {
const size_t BARRIER_ITERATION_COUNT = 10;
const size_t BARRIER_THREAD_COUNT = 10;
BarrierTestHelperData data(BARRIER_THREAD_COUNT, BARRIER_ITERATION_COUNT);
ASSERT_EQ(0, pthread_barrier_init(&data.barrier, nullptr, data.thread_count));
std::vector<pthread_t> threads(data.thread_count);
std::vector<BarrierTestHelperArg> args(threads.size());
for (size_t i = 0; i < threads.size(); ++i) {
args[i].id = i;
args[i].data = &data;
ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
reinterpret_cast<void* (*)(void*)>(BarrierTestHelper), &args[i]));
}
for (size_t i = 0; i < threads.size(); ++i) {
ASSERT_EQ(0, pthread_join(threads[i], nullptr));
}
ASSERT_EQ(data.iteration_count, data.finished_iteration_count);
ASSERT_EQ(0, pthread_barrier_destroy(&data.barrier));
}
struct BarrierDestroyTestArg {
std::atomic<int> tid;
pthread_barrier_t* barrier;
};
static void BarrierDestroyTestHelper(BarrierDestroyTestArg* arg) {
arg->tid = gettid();
ASSERT_EQ(0, pthread_barrier_wait(arg->barrier));
}
TEST(pthread, pthread_barrier_destroy) {
pthread_barrier_t barrier;
ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, 2));
pthread_t thread;
BarrierDestroyTestArg arg;
arg.tid = 0;
arg.barrier = &barrier;
ASSERT_EQ(0, pthread_create(&thread, nullptr,
reinterpret_cast<void* (*)(void*)>(BarrierDestroyTestHelper), &arg));
WaitUntilThreadSleep(arg.tid);
ASSERT_EQ(EBUSY, pthread_barrier_destroy(&barrier));
ASSERT_EQ(PTHREAD_BARRIER_SERIAL_THREAD, pthread_barrier_wait(&barrier));
// Verify if the barrier can be destroyed directly after pthread_barrier_wait().
ASSERT_EQ(0, pthread_barrier_destroy(&barrier));
ASSERT_EQ(0, pthread_join(thread, nullptr));
#if defined(__BIONIC__)
ASSERT_EQ(EINVAL, pthread_barrier_destroy(&barrier));
#endif
}
struct BarrierOrderingTestHelperArg {
pthread_barrier_t* barrier;
size_t* array;
size_t array_length;
size_t id;
};
void BarrierOrderingTestHelper(BarrierOrderingTestHelperArg* arg) {
const size_t ITERATION_COUNT = 10000;
for (size_t i = 1; i <= ITERATION_COUNT; ++i) {
arg->array[arg->id] = i;
int result = pthread_barrier_wait(arg->barrier);
ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
for (size_t j = 0; j < arg->array_length; ++j) {
ASSERT_EQ(i, arg->array[j]);
}
result = pthread_barrier_wait(arg->barrier);
ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
}
}
TEST(pthread, pthread_barrier_check_ordering) {
const size_t THREAD_COUNT = 4;
pthread_barrier_t barrier;
ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, THREAD_COUNT));
size_t array[THREAD_COUNT];
std::vector<pthread_t> threads(THREAD_COUNT);
std::vector<BarrierOrderingTestHelperArg> args(THREAD_COUNT);
for (size_t i = 0; i < THREAD_COUNT; ++i) {
args[i].barrier = &barrier;
args[i].array = array;
args[i].array_length = THREAD_COUNT;
args[i].id = i;
ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
reinterpret_cast<void* (*)(void*)>(BarrierOrderingTestHelper),
&args[i]));
}
for (size_t i = 0; i < THREAD_COUNT; ++i) {
ASSERT_EQ(0, pthread_join(threads[i], nullptr));
}
}
TEST(pthread, pthread_barrier_init_zero_count) {
pthread_barrier_t barrier;
ASSERT_EQ(EINVAL, pthread_barrier_init(&barrier, nullptr, 0));
}
TEST(pthread, pthread_spinlock_smoke) {
pthread_spinlock_t lock;
ASSERT_EQ(0, pthread_spin_init(&lock, 0));
ASSERT_EQ(0, pthread_spin_trylock(&lock));
ASSERT_EQ(0, pthread_spin_unlock(&lock));
ASSERT_EQ(0, pthread_spin_lock(&lock));
ASSERT_EQ(EBUSY, pthread_spin_trylock(&lock));
ASSERT_EQ(0, pthread_spin_unlock(&lock));
ASSERT_EQ(0, pthread_spin_destroy(&lock));
}
TEST(pthread, pthread_attr_getdetachstate__pthread_attr_setdetachstate) {
pthread_attr_t attr;
ASSERT_EQ(0, pthread_attr_init(&attr));
int state;
ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED));
ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state));
ASSERT_EQ(PTHREAD_CREATE_DETACHED, state);
ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE));
ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state));
ASSERT_EQ(PTHREAD_CREATE_JOINABLE, state);
ASSERT_EQ(EINVAL, pthread_attr_setdetachstate(&attr, 123));
ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &state));
ASSERT_EQ(PTHREAD_CREATE_JOINABLE, state);
}
TEST(pthread, pthread_create__mmap_failures) {
// After thread is successfully created, native_bridge might need more memory to run it.
SKIP_WITH_NATIVE_BRIDGE;
pthread_attr_t attr;
ASSERT_EQ(0, pthread_attr_init(&attr));
ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED));
const auto kPageSize = sysconf(_SC_PAGE_SIZE);
// Use up all the VMAs. By default this is 64Ki (though some will already be in use).
std::vector<void*> pages;
pages.reserve(64 * 1024);
int prot = PROT_NONE;
while (true) {
void* page = mmap(nullptr, kPageSize, prot, MAP_ANON|MAP_PRIVATE, -1, 0);
if (page == MAP_FAILED) break;
pages.push_back(page);
prot = (prot == PROT_NONE) ? PROT_READ : PROT_NONE;
}
// Try creating threads, freeing up a page each time we fail.
size_t EAGAIN_count = 0;
size_t i = 0;
for (; i < pages.size(); ++i) {
pthread_t t;
int status = pthread_create(&t, &attr, IdFn, nullptr);
if (status != EAGAIN) break;
++EAGAIN_count;
ASSERT_EQ(0, munmap(pages[i], kPageSize));
}
// Creating a thread uses at least three VMAs: the combined stack and TLS, and a guard on each
// side. So we should have seen at least three failures.
ASSERT_GE(EAGAIN_count, 3U);
for (; i < pages.size(); ++i) {
ASSERT_EQ(0, munmap(pages[i], kPageSize));
}
}
TEST(pthread, pthread_setschedparam) {
sched_param p = { .sched_priority = INT_MIN };
ASSERT_EQ(EINVAL, pthread_setschedparam(pthread_self(), INT_MIN, &p));
}
TEST(pthread, pthread_setschedprio) {
ASSERT_EQ(EINVAL, pthread_setschedprio(pthread_self(), INT_MIN));
}
TEST(pthread, pthread_attr_getinheritsched__pthread_attr_setinheritsched) {
pthread_attr_t attr;
ASSERT_EQ(0, pthread_attr_init(&attr));
int state;
ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state));
ASSERT_EQ(PTHREAD_INHERIT_SCHED, state);
ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED));
ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state));
ASSERT_EQ(PTHREAD_EXPLICIT_SCHED, state);
ASSERT_EQ(EINVAL, pthread_attr_setinheritsched(&attr, 123));
ASSERT_EQ(0, pthread_attr_getinheritsched(&attr, &state));
ASSERT_EQ(PTHREAD_EXPLICIT_SCHED, state);
}
TEST(pthread, pthread_attr_setinheritsched__PTHREAD_INHERIT_SCHED__PTHREAD_EXPLICIT_SCHED) {
pthread_attr_t attr;
ASSERT_EQ(0, pthread_attr_init(&attr));
// If we set invalid scheduling attributes but choose to inherit, everything's fine...
sched_param param = { .sched_priority = sched_get_priority_max(SCHED_FIFO) + 1 };
ASSERT_EQ(0, pthread_attr_setschedparam(&attr, &param));
ASSERT_EQ(0, pthread_attr_setschedpolicy(&attr, SCHED_FIFO));
ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, &attr, IdFn, nullptr));
ASSERT_EQ(0, pthread_join(t, nullptr));
#if defined(__LP64__)
// If we ask to use them, though, we'll see a failure...
ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED));
ASSERT_EQ(EINVAL, pthread_create(&t, &attr, IdFn, nullptr));
#else
// For backwards compatibility with broken apps, we just ignore failures
// to set scheduler attributes on LP32.
#endif
}
TEST(pthread, pthread_attr_setinheritsched_PTHREAD_INHERIT_SCHED_takes_effect) {
sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) };
int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO, &param);
if (rc == EPERM) GTEST_SKIP() << "pthread_setschedparam failed with EPERM";
ASSERT_EQ(0, rc);
pthread_attr_t attr;
ASSERT_EQ(0, pthread_attr_init(&attr));
ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
SpinFunctionHelper spin_helper;
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr));
int actual_policy;
sched_param actual_param;
ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param));
ASSERT_EQ(SCHED_FIFO, actual_policy);
spin_helper.UnSpin();
ASSERT_EQ(0, pthread_join(t, nullptr));
}
TEST(pthread, pthread_attr_setinheritsched_PTHREAD_EXPLICIT_SCHED_takes_effect) {
sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) };
int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO, &param);
if (rc == EPERM) GTEST_SKIP() << "pthread_setschedparam failed with EPERM";
ASSERT_EQ(0, rc);
pthread_attr_t attr;
ASSERT_EQ(0, pthread_attr_init(&attr));
ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED));
ASSERT_EQ(0, pthread_attr_setschedpolicy(&attr, SCHED_OTHER));
SpinFunctionHelper spin_helper;
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr));
int actual_policy;
sched_param actual_param;
ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param));
ASSERT_EQ(SCHED_OTHER, actual_policy);
spin_helper.UnSpin();
ASSERT_EQ(0, pthread_join(t, nullptr));
}
TEST(pthread, pthread_attr_setinheritsched__takes_effect_despite_SCHED_RESET_ON_FORK) {
sched_param param = { .sched_priority = sched_get_priority_min(SCHED_FIFO) };
int rc = pthread_setschedparam(pthread_self(), SCHED_FIFO | SCHED_RESET_ON_FORK, &param);
if (rc == EPERM) GTEST_SKIP() << "pthread_setschedparam failed with EPERM";
ASSERT_EQ(0, rc);
pthread_attr_t attr;
ASSERT_EQ(0, pthread_attr_init(&attr));
ASSERT_EQ(0, pthread_attr_setinheritsched(&attr, PTHREAD_INHERIT_SCHED));
SpinFunctionHelper spin_helper;
pthread_t t;
ASSERT_EQ(0, pthread_create(&t, &attr, spin_helper.GetFunction(), nullptr));
int actual_policy;
sched_param actual_param;
ASSERT_EQ(0, pthread_getschedparam(t, &actual_policy, &actual_param));
ASSERT_EQ(SCHED_FIFO | SCHED_RESET_ON_FORK, actual_policy);
spin_helper.UnSpin();
ASSERT_EQ(0, pthread_join(t, nullptr));
}
extern "C" bool android_run_on_all_threads(bool (*func)(void*), void* arg);
TEST(pthread, run_on_all_threads) {
#if defined(__BIONIC__)
pthread_t t;
ASSERT_EQ(
0, pthread_create(
&t, nullptr,
[](void*) -> void* {
pthread_attr_t detached;
if (pthread_attr_init(&detached) != 0 ||
pthread_attr_setdetachstate(&detached, PTHREAD_CREATE_DETACHED) != 0) {
return reinterpret_cast<void*>(errno);
}
for (int i = 0; i != 1000; ++i) {
pthread_t t1, t2;
if (pthread_create(
&t1, &detached, [](void*) -> void* { return nullptr; }, nullptr) != 0 ||
pthread_create(
&t2, nullptr, [](void*) -> void* { return nullptr; }, nullptr) != 0 ||
pthread_join(t2, nullptr) != 0) {
return reinterpret_cast<void*>(errno);
}
}
if (pthread_attr_destroy(&detached) != 0) {
return reinterpret_cast<void*>(errno);
}
return nullptr;
},
nullptr));
for (int i = 0; i != 1000; ++i) {
ASSERT_TRUE(android_run_on_all_threads([](void* arg) { return arg == nullptr; }, nullptr));
}
void *retval;
ASSERT_EQ(0, pthread_join(t, &retval));
ASSERT_EQ(nullptr, retval);
#else
GTEST_SKIP() << "bionic-only test";
#endif
}