540 lines
15 KiB
C
540 lines
15 KiB
C
|
/*
|
||
|
* Copyright (c) 2018-2020, ARM Limited and Contributors. All rights reserved.
|
||
|
*
|
||
|
* SPDX-License-Identifier: BSD-3-Clause
|
||
|
*/
|
||
|
|
||
|
/* Helper functions to offer easier navigation of Device Tree Blob */
|
||
|
|
||
|
#include <assert.h>
|
||
|
#include <string.h>
|
||
|
|
||
|
#include <libfdt.h>
|
||
|
|
||
|
#include <common/debug.h>
|
||
|
#include <common/fdt_wrappers.h>
|
||
|
|
||
|
/*
|
||
|
* Read cells from a given property of the given node. Any number of 32-bit
|
||
|
* cells of the property can be read. Returns 0 on success, or a negative
|
||
|
* FDT error value otherwise.
|
||
|
*/
|
||
|
int fdt_read_uint32_array(const void *dtb, int node, const char *prop_name,
|
||
|
unsigned int cells, uint32_t *value)
|
||
|
{
|
||
|
const fdt32_t *prop;
|
||
|
int value_len;
|
||
|
|
||
|
assert(dtb != NULL);
|
||
|
assert(prop_name != NULL);
|
||
|
assert(value != NULL);
|
||
|
assert(node >= 0);
|
||
|
|
||
|
/* Access property and obtain its length (in bytes) */
|
||
|
prop = fdt_getprop(dtb, node, prop_name, &value_len);
|
||
|
if (prop == NULL) {
|
||
|
WARN("Couldn't find property %s in dtb\n", prop_name);
|
||
|
return -FDT_ERR_NOTFOUND;
|
||
|
}
|
||
|
|
||
|
/* Verify that property length can fill the entire array. */
|
||
|
if (NCELLS((unsigned int)value_len) < cells) {
|
||
|
WARN("Property length mismatch\n");
|
||
|
return -FDT_ERR_BADVALUE;
|
||
|
}
|
||
|
|
||
|
for (unsigned int i = 0U; i < cells; i++) {
|
||
|
value[i] = fdt32_to_cpu(prop[i]);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int fdt_read_uint32(const void *dtb, int node, const char *prop_name,
|
||
|
uint32_t *value)
|
||
|
{
|
||
|
return fdt_read_uint32_array(dtb, node, prop_name, 1, value);
|
||
|
}
|
||
|
|
||
|
uint32_t fdt_read_uint32_default(const void *dtb, int node,
|
||
|
const char *prop_name, uint32_t dflt_value)
|
||
|
{
|
||
|
uint32_t ret = dflt_value;
|
||
|
int err = fdt_read_uint32(dtb, node, prop_name, &ret);
|
||
|
|
||
|
if (err < 0) {
|
||
|
return dflt_value;
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int fdt_read_uint64(const void *dtb, int node, const char *prop_name,
|
||
|
uint64_t *value)
|
||
|
{
|
||
|
uint32_t array[2] = {0, 0};
|
||
|
int ret;
|
||
|
|
||
|
ret = fdt_read_uint32_array(dtb, node, prop_name, 2, array);
|
||
|
if (ret < 0) {
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
*value = ((uint64_t)array[0] << 32) | array[1];
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Read bytes from a given property of the given node. Any number of
|
||
|
* bytes of the property can be read. The fdt pointer is updated.
|
||
|
* Returns 0 on success, and -1 on error.
|
||
|
*/
|
||
|
int fdtw_read_bytes(const void *dtb, int node, const char *prop,
|
||
|
unsigned int length, void *value)
|
||
|
{
|
||
|
const void *ptr;
|
||
|
int value_len;
|
||
|
|
||
|
assert(dtb != NULL);
|
||
|
assert(prop != NULL);
|
||
|
assert(value != NULL);
|
||
|
assert(node >= 0);
|
||
|
|
||
|
/* Access property and obtain its length (in bytes) */
|
||
|
ptr = fdt_getprop_namelen(dtb, node, prop, (int)strlen(prop),
|
||
|
&value_len);
|
||
|
if (ptr == NULL) {
|
||
|
WARN("Couldn't find property %s in dtb\n", prop);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
/* Verify that property length is not less than number of bytes */
|
||
|
if ((unsigned int)value_len < length) {
|
||
|
WARN("Property length mismatch\n");
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
(void)memcpy(value, ptr, length);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Read string from a given property of the given node. Up to 'size - 1'
|
||
|
* characters are read, and a NUL terminator is added. Returns 0 on success,
|
||
|
* and -1 upon error.
|
||
|
*/
|
||
|
int fdtw_read_string(const void *dtb, int node, const char *prop,
|
||
|
char *str, size_t size)
|
||
|
{
|
||
|
const char *ptr;
|
||
|
size_t len;
|
||
|
|
||
|
assert(dtb != NULL);
|
||
|
assert(node >= 0);
|
||
|
assert(prop != NULL);
|
||
|
assert(str != NULL);
|
||
|
assert(size > 0U);
|
||
|
|
||
|
ptr = fdt_getprop_namelen(dtb, node, prop, (int)strlen(prop), NULL);
|
||
|
if (ptr == NULL) {
|
||
|
WARN("Couldn't find property %s in dtb\n", prop);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
len = strlcpy(str, ptr, size);
|
||
|
if (len >= size) {
|
||
|
WARN("String of property %s in dtb has been truncated\n", prop);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Write cells in place to a given property of the given node. At most 2 cells
|
||
|
* of the property are written. Returns 0 on success, and -1 upon error.
|
||
|
*/
|
||
|
int fdtw_write_inplace_cells(void *dtb, int node, const char *prop,
|
||
|
unsigned int cells, void *value)
|
||
|
{
|
||
|
int err, len;
|
||
|
|
||
|
assert(dtb != NULL);
|
||
|
assert(prop != NULL);
|
||
|
assert(value != NULL);
|
||
|
assert(node >= 0);
|
||
|
|
||
|
/* We expect either 1 or 2 cell property */
|
||
|
assert(cells <= 2U);
|
||
|
|
||
|
if (cells == 2U)
|
||
|
*(uint64_t *)value = cpu_to_fdt64(*(uint64_t *)value);
|
||
|
else
|
||
|
*(uint32_t *)value = cpu_to_fdt32(*(uint32_t *)value);
|
||
|
|
||
|
len = (int)cells * 4;
|
||
|
|
||
|
/* Set property value in place */
|
||
|
err = fdt_setprop_inplace(dtb, node, prop, value, len);
|
||
|
if (err != 0) {
|
||
|
WARN("Modify property %s failed with error %d\n", prop, err);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Write bytes in place to a given property of the given node.
|
||
|
* Any number of bytes of the property can be written.
|
||
|
* Returns 0 on success, and < 0 on error.
|
||
|
*/
|
||
|
int fdtw_write_inplace_bytes(void *dtb, int node, const char *prop,
|
||
|
unsigned int length, const void *data)
|
||
|
{
|
||
|
const void *ptr;
|
||
|
int namelen, value_len, err;
|
||
|
|
||
|
assert(dtb != NULL);
|
||
|
assert(prop != NULL);
|
||
|
assert(data != NULL);
|
||
|
assert(node >= 0);
|
||
|
|
||
|
namelen = (int)strlen(prop);
|
||
|
|
||
|
/* Access property and obtain its length in bytes */
|
||
|
ptr = fdt_getprop_namelen(dtb, node, prop, namelen, &value_len);
|
||
|
if (ptr == NULL) {
|
||
|
WARN("Couldn't find property %s in dtb\n", prop);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
/* Verify that property length is not less than number of bytes */
|
||
|
if ((unsigned int)value_len < length) {
|
||
|
WARN("Property length mismatch\n");
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
/* Set property value in place */
|
||
|
err = fdt_setprop_inplace_namelen_partial(dtb, node, prop,
|
||
|
namelen, 0,
|
||
|
data, (int)length);
|
||
|
if (err != 0) {
|
||
|
WARN("Set property %s failed with error %d\n", prop, err);
|
||
|
}
|
||
|
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
static uint64_t fdt_read_prop_cells(const fdt32_t *prop, int nr_cells)
|
||
|
{
|
||
|
uint64_t reg = fdt32_to_cpu(prop[0]);
|
||
|
|
||
|
if (nr_cells > 1) {
|
||
|
reg = (reg << 32) | fdt32_to_cpu(prop[1]);
|
||
|
}
|
||
|
|
||
|
return reg;
|
||
|
}
|
||
|
|
||
|
int fdt_get_reg_props_by_index(const void *dtb, int node, int index,
|
||
|
uintptr_t *base, size_t *size)
|
||
|
{
|
||
|
const fdt32_t *prop;
|
||
|
int parent, len;
|
||
|
int ac, sc;
|
||
|
int cell;
|
||
|
|
||
|
parent = fdt_parent_offset(dtb, node);
|
||
|
if (parent < 0) {
|
||
|
return -FDT_ERR_BADOFFSET;
|
||
|
}
|
||
|
|
||
|
ac = fdt_address_cells(dtb, parent);
|
||
|
sc = fdt_size_cells(dtb, parent);
|
||
|
|
||
|
cell = index * (ac + sc);
|
||
|
|
||
|
prop = fdt_getprop(dtb, node, "reg", &len);
|
||
|
if (prop == NULL) {
|
||
|
WARN("Couldn't find \"reg\" property in dtb\n");
|
||
|
return -FDT_ERR_NOTFOUND;
|
||
|
}
|
||
|
|
||
|
if (((cell + ac + sc) * (int)sizeof(uint32_t)) > len) {
|
||
|
return -FDT_ERR_BADVALUE;
|
||
|
}
|
||
|
|
||
|
if (base != NULL) {
|
||
|
*base = (uintptr_t)fdt_read_prop_cells(&prop[cell], ac);
|
||
|
}
|
||
|
|
||
|
if (size != NULL) {
|
||
|
*size = (size_t)fdt_read_prop_cells(&prop[cell + ac], sc);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*******************************************************************************
|
||
|
* This function fills reg node info (base & size) with an index found by
|
||
|
* checking the reg-names node.
|
||
|
* Returns 0 on success and a negative FDT error code on failure.
|
||
|
******************************************************************************/
|
||
|
int fdt_get_reg_props_by_name(const void *dtb, int node, const char *name,
|
||
|
uintptr_t *base, size_t *size)
|
||
|
{
|
||
|
int index;
|
||
|
|
||
|
index = fdt_stringlist_search(dtb, node, "reg-names", name);
|
||
|
if (index < 0) {
|
||
|
return index;
|
||
|
}
|
||
|
|
||
|
return fdt_get_reg_props_by_index(dtb, node, index, base, size);
|
||
|
}
|
||
|
|
||
|
/*******************************************************************************
|
||
|
* This function gets the stdout path node.
|
||
|
* It reads the value indicated inside the device tree.
|
||
|
* Returns node offset on success and a negative FDT error code on failure.
|
||
|
******************************************************************************/
|
||
|
int fdt_get_stdout_node_offset(const void *dtb)
|
||
|
{
|
||
|
int node;
|
||
|
const char *prop, *path;
|
||
|
int len;
|
||
|
|
||
|
/* The /secure-chosen node takes precedence over the standard one. */
|
||
|
node = fdt_path_offset(dtb, "/secure-chosen");
|
||
|
if (node < 0) {
|
||
|
node = fdt_path_offset(dtb, "/chosen");
|
||
|
if (node < 0) {
|
||
|
return -FDT_ERR_NOTFOUND;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
prop = fdt_getprop(dtb, node, "stdout-path", NULL);
|
||
|
if (prop == NULL) {
|
||
|
return -FDT_ERR_NOTFOUND;
|
||
|
}
|
||
|
|
||
|
/* Determine the actual path length, as a colon terminates the path. */
|
||
|
path = strchr(prop, ':');
|
||
|
if (path == NULL) {
|
||
|
len = strlen(prop);
|
||
|
} else {
|
||
|
len = path - prop;
|
||
|
}
|
||
|
|
||
|
/* Aliases cannot start with a '/', so it must be the actual path. */
|
||
|
if (prop[0] == '/') {
|
||
|
return fdt_path_offset_namelen(dtb, prop, len);
|
||
|
}
|
||
|
|
||
|
/* Lookup the alias, as this contains the actual path. */
|
||
|
path = fdt_get_alias_namelen(dtb, prop, len);
|
||
|
if (path == NULL) {
|
||
|
return -FDT_ERR_NOTFOUND;
|
||
|
}
|
||
|
|
||
|
return fdt_path_offset(dtb, path);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*******************************************************************************
|
||
|
* Only devices which are direct children of root node use CPU address domain.
|
||
|
* All other devices use addresses that are local to the device node and cannot
|
||
|
* directly used by CPU. Device tree provides an address translation mechanism
|
||
|
* through "ranges" property which provides mappings from local address space to
|
||
|
* parent address space. Since a device could be a child of a child node to the
|
||
|
* root node, there can be more than one level of address translation needed to
|
||
|
* map the device local address space to CPU address space.
|
||
|
* fdtw_translate_address() API performs address translation of a local address
|
||
|
* to a global address with help of various helper functions.
|
||
|
******************************************************************************/
|
||
|
|
||
|
static bool fdtw_xlat_hit(const uint32_t *value, int child_addr_size,
|
||
|
int parent_addr_size, int range_size, uint64_t base_address,
|
||
|
uint64_t *translated_addr)
|
||
|
{
|
||
|
uint64_t local_address, parent_address, addr_range;
|
||
|
|
||
|
local_address = fdt_read_prop_cells(value, child_addr_size);
|
||
|
parent_address = fdt_read_prop_cells(value + child_addr_size,
|
||
|
parent_addr_size);
|
||
|
addr_range = fdt_read_prop_cells(value + child_addr_size +
|
||
|
parent_addr_size,
|
||
|
range_size);
|
||
|
VERBOSE("DT: Address %llx mapped to %llx with range %llx\n",
|
||
|
local_address, parent_address, addr_range);
|
||
|
|
||
|
/* Perform range check */
|
||
|
if ((base_address < local_address) ||
|
||
|
(base_address >= local_address + addr_range)) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/* Found hit for the addr range that needs to be translated */
|
||
|
*translated_addr = parent_address + (base_address - local_address);
|
||
|
VERBOSE("DT: child address %llx mapped to %llx in parent bus\n",
|
||
|
local_address, parent_address);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
#define ILLEGAL_ADDR ULL(~0)
|
||
|
|
||
|
static uint64_t fdtw_search_all_xlat_entries(const void *dtb,
|
||
|
const struct fdt_property *ranges_prop,
|
||
|
int local_bus, uint64_t base_address)
|
||
|
{
|
||
|
uint64_t translated_addr;
|
||
|
const uint32_t *next_entry;
|
||
|
int parent_bus_node, nxlat_entries, length;
|
||
|
int self_addr_cells, parent_addr_cells, self_size_cells, ncells_xlat;
|
||
|
|
||
|
/*
|
||
|
* The number of cells in one translation entry in ranges is the sum of
|
||
|
* the following values:
|
||
|
* self#address-cells + parent#address-cells + self#size-cells
|
||
|
* Ex: the iofpga ranges property has one translation entry with 4 cells
|
||
|
* They represent iofpga#addr-cells + motherboard#addr-cells + iofpga#size-cells
|
||
|
* = 1 + 2 + 1
|
||
|
*/
|
||
|
|
||
|
parent_bus_node = fdt_parent_offset(dtb, local_bus);
|
||
|
self_addr_cells = fdt_address_cells(dtb, local_bus);
|
||
|
self_size_cells = fdt_size_cells(dtb, local_bus);
|
||
|
parent_addr_cells = fdt_address_cells(dtb, parent_bus_node);
|
||
|
|
||
|
/* Number of cells per translation entry i.e., mapping */
|
||
|
ncells_xlat = self_addr_cells + parent_addr_cells + self_size_cells;
|
||
|
|
||
|
assert(ncells_xlat > 0);
|
||
|
|
||
|
/*
|
||
|
* Find the number of translations(mappings) specified in the current
|
||
|
* `ranges` property. Note that length represents number of bytes and
|
||
|
* is stored in big endian mode.
|
||
|
*/
|
||
|
length = fdt32_to_cpu(ranges_prop->len);
|
||
|
nxlat_entries = (length/sizeof(uint32_t))/ncells_xlat;
|
||
|
|
||
|
assert(nxlat_entries > 0);
|
||
|
|
||
|
next_entry = (const uint32_t *)ranges_prop->data;
|
||
|
|
||
|
/* Iterate over the entries in the "ranges" */
|
||
|
for (int i = 0; i < nxlat_entries; i++) {
|
||
|
if (fdtw_xlat_hit(next_entry, self_addr_cells,
|
||
|
parent_addr_cells, self_size_cells, base_address,
|
||
|
&translated_addr)){
|
||
|
return translated_addr;
|
||
|
}
|
||
|
next_entry = next_entry + ncells_xlat;
|
||
|
}
|
||
|
|
||
|
INFO("DT: No translation found for address %llx in node %s\n",
|
||
|
base_address, fdt_get_name(dtb, local_bus, NULL));
|
||
|
return ILLEGAL_ADDR;
|
||
|
}
|
||
|
|
||
|
|
||
|
/*******************************************************************************
|
||
|
* address mapping needs to be done recursively starting from current node to
|
||
|
* root node through all intermediate parent nodes.
|
||
|
* Sample device tree is shown here:
|
||
|
|
||
|
smb@0,0 {
|
||
|
compatible = "simple-bus";
|
||
|
|
||
|
#address-cells = <2>;
|
||
|
#size-cells = <1>;
|
||
|
ranges = <0 0 0 0x08000000 0x04000000>,
|
||
|
<1 0 0 0x14000000 0x04000000>,
|
||
|
<2 0 0 0x18000000 0x04000000>,
|
||
|
<3 0 0 0x1c000000 0x04000000>,
|
||
|
<4 0 0 0x0c000000 0x04000000>,
|
||
|
<5 0 0 0x10000000 0x04000000>;
|
||
|
|
||
|
motherboard {
|
||
|
arm,v2m-memory-map = "rs1";
|
||
|
compatible = "arm,vexpress,v2m-p1", "simple-bus";
|
||
|
#address-cells = <2>;
|
||
|
#size-cells = <1>;
|
||
|
ranges;
|
||
|
|
||
|
iofpga@3,00000000 {
|
||
|
compatible = "arm,amba-bus", "simple-bus";
|
||
|
#address-cells = <1>;
|
||
|
#size-cells = <1>;
|
||
|
ranges = <0 3 0 0x200000>;
|
||
|
v2m_serial1: uart@a0000 {
|
||
|
compatible = "arm,pl011", "arm,primecell";
|
||
|
reg = <0x0a0000 0x1000>;
|
||
|
interrupts = <0 6 4>;
|
||
|
clocks = <&v2m_clk24mhz>, <&v2m_clk24mhz>;
|
||
|
clock-names = "uartclk", "apb_pclk";
|
||
|
};
|
||
|
};
|
||
|
};
|
||
|
|
||
|
* As seen above, there are 3 levels of address translations needed. An empty
|
||
|
* `ranges` property denotes identity mapping (as seen in `motherboard` node).
|
||
|
* Each ranges property can map a set of child addresses to parent bus. Hence
|
||
|
* there can be more than 1 (translation) entry in the ranges property as seen
|
||
|
* in the `smb` node which has 6 translation entries.
|
||
|
******************************************************************************/
|
||
|
|
||
|
/* Recursive implementation */
|
||
|
uint64_t fdtw_translate_address(const void *dtb, int node,
|
||
|
uint64_t base_address)
|
||
|
{
|
||
|
int length, local_bus_node;
|
||
|
const char *node_name;
|
||
|
uint64_t global_address;
|
||
|
|
||
|
local_bus_node = fdt_parent_offset(dtb, node);
|
||
|
node_name = fdt_get_name(dtb, local_bus_node, NULL);
|
||
|
|
||
|
/*
|
||
|
* In the example given above, starting from the leaf node:
|
||
|
* uart@a000 represents the current node
|
||
|
* iofpga@3,00000000 represents the local bus
|
||
|
* motherboard represents the parent bus
|
||
|
*/
|
||
|
|
||
|
/* Read the ranges property */
|
||
|
const struct fdt_property *property = fdt_get_property(dtb,
|
||
|
local_bus_node, "ranges", &length);
|
||
|
|
||
|
if (property == NULL) {
|
||
|
if (local_bus_node == 0) {
|
||
|
/*
|
||
|
* root node doesn't have range property as addresses
|
||
|
* are in CPU address space.
|
||
|
*/
|
||
|
return base_address;
|
||
|
}
|
||
|
INFO("DT: Couldn't find ranges property in node %s\n",
|
||
|
node_name);
|
||
|
return ILLEGAL_ADDR;
|
||
|
} else if (length == 0) {
|
||
|
/* empty ranges indicates identity map to parent bus */
|
||
|
return fdtw_translate_address(dtb, local_bus_node, base_address);
|
||
|
}
|
||
|
|
||
|
VERBOSE("DT: Translation lookup in node %s at offset %d\n", node_name,
|
||
|
local_bus_node);
|
||
|
global_address = fdtw_search_all_xlat_entries(dtb, property,
|
||
|
local_bus_node, base_address);
|
||
|
|
||
|
if (global_address == ILLEGAL_ADDR) {
|
||
|
return ILLEGAL_ADDR;
|
||
|
}
|
||
|
|
||
|
/* Translate the local device address recursively */
|
||
|
return fdtw_translate_address(dtb, local_bus_node, global_address);
|
||
|
}
|