aosp12/system/update_engine/payload_generator/payload_file.cc

369 lines
13 KiB
C++
Raw Normal View History

2023-01-09 17:11:35 +08:00
//
// Copyright (C) 2015 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "update_engine/payload_generator/payload_file.h"
#include <endian.h>
#include <algorithm>
#include <map>
#include <utility>
#include <base/strings/stringprintf.h>
#include "update_engine/common/hash_calculator.h"
#include "update_engine/common/utils.h"
#include "update_engine/payload_consumer/delta_performer.h"
#include "update_engine/payload_consumer/file_writer.h"
#include "update_engine/payload_consumer/payload_constants.h"
#include "update_engine/payload_generator/annotated_operation.h"
#include "update_engine/payload_generator/delta_diff_utils.h"
#include "update_engine/payload_generator/payload_signer.h"
using std::string;
using std::vector;
namespace chromeos_update_engine {
namespace {
struct DeltaObject {
DeltaObject(const string& in_name, const int in_type, const off_t in_size)
: name(in_name), type(in_type), size(in_size) {}
bool operator<(const DeltaObject& object) const {
return (size != object.size) ? (size < object.size) : (name < object.name);
}
string name;
int type;
off_t size;
};
// Writes the uint64_t passed in in host-endian to the file as big-endian.
// Returns true on success.
bool WriteUint64AsBigEndian(FileWriter* writer, const uint64_t value) {
uint64_t value_be = htobe64(value);
TEST_AND_RETURN_FALSE(writer->Write(&value_be, sizeof(value_be)));
return true;
}
} // namespace
bool PayloadFile::Init(const PayloadGenerationConfig& config) {
TEST_AND_RETURN_FALSE(config.version.Validate());
major_version_ = config.version.major;
manifest_.set_minor_version(config.version.minor);
manifest_.set_block_size(config.block_size);
manifest_.set_max_timestamp(config.max_timestamp);
if (config.target.dynamic_partition_metadata != nullptr)
*(manifest_.mutable_dynamic_partition_metadata()) =
*(config.target.dynamic_partition_metadata);
if (config.is_partial_update) {
manifest_.set_partial_update(true);
}
if (!config.apex_info_file.empty()) {
ApexMetadata apex_metadata;
int fd = open(config.apex_info_file.c_str(), O_RDONLY);
if (fd < 0) {
PLOG(FATAL) << "Failed to open " << config.apex_info_file << " for read.";
}
ScopedFdCloser closer{&fd};
CHECK(apex_metadata.ParseFromFileDescriptor(fd));
if (apex_metadata.apex_info_size() > 0) {
*manifest_.mutable_apex_info() =
std::move(*apex_metadata.mutable_apex_info());
}
}
return true;
}
bool PayloadFile::AddPartition(const PartitionConfig& old_conf,
const PartitionConfig& new_conf,
vector<AnnotatedOperation> aops,
vector<CowMergeOperation> merge_sequence,
size_t cow_size) {
Partition part;
part.cow_size = cow_size;
part.name = new_conf.name;
part.aops = std::move(aops);
part.cow_merge_sequence = std::move(merge_sequence);
part.postinstall = new_conf.postinstall;
part.verity = new_conf.verity;
part.version = new_conf.version;
// Initialize the PartitionInfo objects if present.
if (!old_conf.path.empty())
TEST_AND_RETURN_FALSE(
diff_utils::InitializePartitionInfo(old_conf, &part.old_info));
TEST_AND_RETURN_FALSE(
diff_utils::InitializePartitionInfo(new_conf, &part.new_info));
part_vec_.push_back(std::move(part));
return true;
}
bool PayloadFile::WritePayload(const string& payload_file,
const string& data_blobs_path,
const string& private_key_path,
uint64_t* metadata_size_out) {
// Reorder the data blobs with the manifest_.
ScopedTempFile ordered_blobs_file("CrAU_temp_data.ordered.XXXXXX");
TEST_AND_RETURN_FALSE(
ReorderDataBlobs(data_blobs_path, ordered_blobs_file.path()));
// Check that install op blobs are in order.
uint64_t next_blob_offset = 0;
for (const auto& part : part_vec_) {
for (const auto& aop : part.aops) {
if (!aop.op.has_data_offset())
continue;
if (aop.op.data_offset() != next_blob_offset) {
LOG(FATAL) << "bad blob offset! " << aop.op.data_offset()
<< " != " << next_blob_offset;
}
next_blob_offset += aop.op.data_length();
}
}
// Copy the operations and partition info from the part_vec_ to the manifest.
manifest_.clear_partitions();
for (const auto& part : part_vec_) {
PartitionUpdate* partition = manifest_.add_partitions();
partition->set_partition_name(part.name);
if (!part.version.empty()) {
partition->set_version(part.version);
}
if (part.cow_size > 0) {
partition->set_estimate_cow_size(part.cow_size);
}
if (part.postinstall.run) {
partition->set_run_postinstall(true);
if (!part.postinstall.path.empty())
partition->set_postinstall_path(part.postinstall.path);
if (!part.postinstall.filesystem_type.empty())
partition->set_filesystem_type(part.postinstall.filesystem_type);
partition->set_postinstall_optional(part.postinstall.optional);
}
if (!part.verity.IsEmpty()) {
if (part.verity.hash_tree_extent.num_blocks() != 0) {
*partition->mutable_hash_tree_data_extent() =
part.verity.hash_tree_data_extent;
*partition->mutable_hash_tree_extent() = part.verity.hash_tree_extent;
partition->set_hash_tree_algorithm(part.verity.hash_tree_algorithm);
if (!part.verity.hash_tree_salt.empty())
partition->set_hash_tree_salt(part.verity.hash_tree_salt.data(),
part.verity.hash_tree_salt.size());
}
if (part.verity.fec_extent.num_blocks() != 0) {
*partition->mutable_fec_data_extent() = part.verity.fec_data_extent;
*partition->mutable_fec_extent() = part.verity.fec_extent;
partition->set_fec_roots(part.verity.fec_roots);
}
}
for (const AnnotatedOperation& aop : part.aops) {
*partition->add_operations() = aop.op;
}
for (const auto& merge_op : part.cow_merge_sequence) {
*partition->add_merge_operations() = merge_op;
}
if (part.old_info.has_size() || part.old_info.has_hash())
*(partition->mutable_old_partition_info()) = part.old_info;
if (part.new_info.has_size() || part.new_info.has_hash())
*(partition->mutable_new_partition_info()) = part.new_info;
}
// Signatures appear at the end of the blobs. Note the offset in the
// |manifest_|.
uint64_t signature_blob_length = 0;
if (!private_key_path.empty()) {
TEST_AND_RETURN_FALSE(PayloadSigner::SignatureBlobLength(
{private_key_path}, &signature_blob_length));
PayloadSigner::AddSignatureToManifest(
next_blob_offset, signature_blob_length, &manifest_);
}
// Serialize protobuf
string serialized_manifest;
TEST_AND_RETURN_FALSE(manifest_.SerializeToString(&serialized_manifest));
uint64_t metadata_size =
sizeof(kDeltaMagic) + 2 * sizeof(uint64_t) + serialized_manifest.size();
LOG(INFO) << "Writing final delta file header...";
DirectFileWriter writer;
TEST_AND_RETURN_FALSE_ERRNO(writer.Open(payload_file.c_str(),
O_WRONLY | O_CREAT | O_TRUNC,
0644) == 0);
ScopedFileWriterCloser writer_closer(&writer);
// Write header
TEST_AND_RETURN_FALSE_ERRNO(writer.Write(kDeltaMagic, sizeof(kDeltaMagic)));
// Write major version number
TEST_AND_RETURN_FALSE(WriteUint64AsBigEndian(&writer, major_version_));
// Write protobuf length
TEST_AND_RETURN_FALSE(
WriteUint64AsBigEndian(&writer, serialized_manifest.size()));
// Metadata signature has the same size as payload signature, because they
// are both the same kind of signature for the same kind of hash.
uint32_t metadata_signature_size = htobe32(signature_blob_length);
TEST_AND_RETURN_FALSE_ERRNO(
writer.Write(&metadata_signature_size, sizeof(metadata_signature_size)));
metadata_size += sizeof(metadata_signature_size);
// Set correct size instead of big endian size.
metadata_signature_size = signature_blob_length;
// Write protobuf
LOG(INFO) << "Writing final delta file protobuf... "
<< serialized_manifest.size();
TEST_AND_RETURN_FALSE_ERRNO(
writer.Write(serialized_manifest.data(), serialized_manifest.size()));
// Write metadata signature blob.
if (!private_key_path.empty()) {
brillo::Blob metadata_hash;
TEST_AND_RETURN_FALSE(HashCalculator::RawHashOfFile(
payload_file, metadata_size, &metadata_hash));
string metadata_signature;
TEST_AND_RETURN_FALSE(PayloadSigner::SignHashWithKeys(
metadata_hash, {private_key_path}, &metadata_signature));
TEST_AND_RETURN_FALSE_ERRNO(
writer.Write(metadata_signature.data(), metadata_signature.size()));
}
// Append the data blobs.
LOG(INFO) << "Writing final delta file data blobs...";
int blobs_fd = open(ordered_blobs_file.path().c_str(), O_RDONLY, 0);
ScopedFdCloser blobs_fd_closer(&blobs_fd);
TEST_AND_RETURN_FALSE(blobs_fd >= 0);
for (;;) {
vector<char> buf(1024 * 1024);
ssize_t rc = read(blobs_fd, buf.data(), buf.size());
if (0 == rc) {
// EOF
break;
}
TEST_AND_RETURN_FALSE_ERRNO(rc > 0);
TEST_AND_RETURN_FALSE_ERRNO(writer.Write(buf.data(), rc));
}
// Write payload signature blob.
if (!private_key_path.empty()) {
LOG(INFO) << "Signing the update...";
string signature;
TEST_AND_RETURN_FALSE(PayloadSigner::SignPayload(
payload_file,
{private_key_path},
metadata_size,
metadata_signature_size,
metadata_size + metadata_signature_size + manifest_.signatures_offset(),
&signature));
TEST_AND_RETURN_FALSE_ERRNO(
writer.Write(signature.data(), signature.size()));
}
ReportPayloadUsage(metadata_size);
*metadata_size_out = metadata_size;
return true;
}
bool PayloadFile::ReorderDataBlobs(const string& data_blobs_path,
const string& new_data_blobs_path) {
int in_fd = open(data_blobs_path.c_str(), O_RDONLY, 0);
TEST_AND_RETURN_FALSE_ERRNO(in_fd >= 0);
ScopedFdCloser in_fd_closer(&in_fd);
DirectFileWriter writer;
int rc = writer.Open(
new_data_blobs_path.c_str(), O_WRONLY | O_TRUNC | O_CREAT, 0644);
if (rc != 0) {
PLOG(ERROR) << "Error creating " << new_data_blobs_path;
return false;
}
ScopedFileWriterCloser writer_closer(&writer);
uint64_t out_file_size = 0;
for (auto& part : part_vec_) {
for (AnnotatedOperation& aop : part.aops) {
if (!aop.op.has_data_offset())
continue;
CHECK(aop.op.has_data_length());
brillo::Blob buf(aop.op.data_length());
ssize_t rc = pread(in_fd, buf.data(), buf.size(), aop.op.data_offset());
TEST_AND_RETURN_FALSE(rc == static_cast<ssize_t>(buf.size()));
// Add the hash of the data blobs for this operation
TEST_AND_RETURN_FALSE(AddOperationHash(&aop.op, buf));
aop.op.set_data_offset(out_file_size);
TEST_AND_RETURN_FALSE_ERRNO(writer.Write(buf.data(), buf.size()));
out_file_size += buf.size();
}
}
return true;
}
bool PayloadFile::AddOperationHash(InstallOperation* op,
const brillo::Blob& buf) {
brillo::Blob hash;
TEST_AND_RETURN_FALSE(HashCalculator::RawHashOfData(buf, &hash));
op->set_data_sha256_hash(hash.data(), hash.size());
return true;
}
void PayloadFile::ReportPayloadUsage(uint64_t metadata_size) const {
std::map<DeltaObject, int> object_counts;
off_t total_size = 0;
int total_op = 0;
for (const auto& part : part_vec_) {
string part_prefix = "<" + part.name + ">:";
for (const AnnotatedOperation& aop : part.aops) {
DeltaObject delta(
part_prefix + aop.name, aop.op.type(), aop.op.data_length());
object_counts[delta]++;
total_size += aop.op.data_length();
}
total_op += part.aops.size();
}
object_counts[DeltaObject("<manifest-metadata>", -1, metadata_size)] = 1;
total_size += metadata_size;
constexpr char kFormatString[] = "%6.2f%% %10jd %-13s %s %d\n";
for (const auto& object_count : object_counts) {
const DeltaObject& object = object_count.first;
// Use printf() instead of LOG(INFO) because timestamp makes it difficult to
// compare two reports.
printf(kFormatString,
object.size * 100.0 / total_size,
object.size,
(object.type >= 0
? InstallOperationTypeName(
static_cast<InstallOperation::Type>(object.type))
: "-"),
object.name.c_str(),
object_count.second);
}
printf(kFormatString, 100.0, total_size, "", "<total>", total_op);
fflush(stdout);
}
} // namespace chromeos_update_engine