/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_ #define ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_ #include #include #include #include #include #include "base/bit_utils.h" #include "base/locks.h" #include "base/macros.h" #include "base/mem_map.h" #include "gc_root.h" #include "obj_ptr.h" #include "offsets.h" #include "read_barrier_option.h" namespace art { class RootInfo; namespace mirror { class Object; } // namespace mirror // Maintain a table of indirect references. Used for local/global JNI references. // // The table contains object references, where the strong (local/global) references are part of the // GC root set (but not the weak global references). When an object is added we return an // IndirectRef that is not a valid pointer but can be used to find the original value in O(1) time. // Conversions to and from indirect references are performed on upcalls and downcalls, so they need // to be very fast. // // To be efficient for JNI local variable storage, we need to provide operations that allow us to // operate on segments of the table, where segments are pushed and popped as if on a stack. For // example, deletion of an entry should only succeed if it appears in the current segment, and we // want to be able to strip off the current segment quickly when a method returns. Additions to the // table must be made in the current segment even if space is available in an earlier area. // // A new segment is created when we call into native code from interpreted code, or when we handle // the JNI PushLocalFrame function. // // The GC must be able to scan the entire table quickly. // // In summary, these must be very fast: // - adding or removing a segment // - adding references to a new segment // - converting an indirect reference back to an Object // These can be a little slower, but must still be pretty quick: // - adding references to a "mature" segment // - removing individual references // - scanning the entire table straight through // // If there's more than one segment, we don't guarantee that the table will fill completely before // we fail due to lack of space. We do ensure that the current segment will pack tightly, which // should satisfy JNI requirements (e.g. EnsureLocalCapacity). // // Only SynchronizedGet is synchronized. // Indirect reference definition. This must be interchangeable with JNI's jobject, and it's // convenient to let null be null, so we use void*. // // We need a (potentially) large table index and a 2-bit reference type (global, local, weak // global). We also reserve some bits to be used to detect stale indirect references: we put a // serial number in the extra bits, and keep a copy of the serial number in the table. This requires // more memory and additional memory accesses on add/get, but is moving-GC safe. It will catch // additional problems, e.g.: create iref1 for obj, delete iref1, create iref2 for same obj, // lookup iref1. A pattern based on object bits will miss this. typedef void* IndirectRef; // Indirect reference kind, used as the two low bits of IndirectRef. // // For convenience these match up with enum jobjectRefType from jni.h. enum IndirectRefKind { kJniTransitionOrInvalid = 0, // <> kLocal = 1, // <> kGlobal = 2, // <> kWeakGlobal = 3, // <> kLastKind = kWeakGlobal }; std::ostream& operator<<(std::ostream& os, IndirectRefKind rhs); const char* GetIndirectRefKindString(const IndirectRefKind& kind); // Table definition. // // For the global reference table, the expected common operations are adding a new entry and // removing a recently-added entry (usually the most-recently-added entry). For JNI local // references, the common operations are adding a new entry and removing an entire table segment. // // If we delete entries from the middle of the list, we will be left with "holes". We track the // number of holes so that, when adding new elements, we can quickly decide to do a trivial append // or go slot-hunting. // // When the top-most entry is removed, any holes immediately below it are also removed. Thus, // deletion of an entry may reduce "top_index" by more than one. // // To get the desired behavior for JNI locals, we need to know the bottom and top of the current // "segment". The top is managed internally, and the bottom is passed in as a function argument. // When we call a native method or push a local frame, the current top index gets pushed on, and // serves as the new bottom. When we pop a frame off, the value from the stack becomes the new top // index, and the value stored in the previous frame becomes the new bottom. // // Holes are being locally cached for the segment. Otherwise we'd have to pass bottom index and // number of holes, which restricts us to 16 bits for the top index. The value is cached within the // table. To avoid code in generated JNI transitions, which implicitly form segments, the code for // adding and removing references needs to detect the change of a segment. Helper fields are used // for this detection. // // Common alternative implementation: make IndirectRef a pointer to the actual reference slot. // Instead of getting a table and doing a lookup, the lookup can be done instantly. Operations like // determining the type and deleting the reference are more expensive because the table must be // hunted for (i.e. you have to do a pointer comparison to see which table it's in), you can't move // the table when expanding it (so realloc() is out), and tricks like serial number checking to // detect stale references aren't possible (though we may be able to get similar benefits with other // approaches). // // TODO: consider a "lastDeleteIndex" for quick hole-filling when an add immediately follows a // delete; must invalidate after segment pop might be worth only using it for JNI globals. // // TODO: may want completely different add/remove algorithms for global and local refs to improve // performance. A large circular buffer might reduce the amortized cost of adding global // references. // The state of the current segment. We only store the index. Splitting it for index and hole // count restricts the range too much. struct IRTSegmentState { uint32_t top_index; }; // Use as initial value for "cookie", and when table has only one segment. static constexpr IRTSegmentState kIRTFirstSegment = { 0 }; // Try to choose kIRTPrevCount so that sizeof(IrtEntry) is a power of 2. // Contains multiple entries but only one active one, this helps us detect use after free errors // since the serial stored in the indirect ref wont match. static constexpr size_t kIRTPrevCount = kIsDebugBuild ? 7 : 3; class IrtEntry { public: void Add(ObjPtr obj) REQUIRES_SHARED(Locks::mutator_lock_); GcRoot* GetReference() { DCHECK_LT(serial_, kIRTPrevCount); return &references_[serial_]; } const GcRoot* GetReference() const { DCHECK_LT(serial_, kIRTPrevCount); return &references_[serial_]; } uint32_t GetSerial() const { return serial_; } void SetReference(ObjPtr obj) REQUIRES_SHARED(Locks::mutator_lock_); private: uint32_t serial_; GcRoot references_[kIRTPrevCount]; }; static_assert(sizeof(IrtEntry) == (1 + kIRTPrevCount) * sizeof(uint32_t), "Unexpected sizeof(IrtEntry)"); static_assert(IsPowerOfTwo(sizeof(IrtEntry)), "Unexpected sizeof(IrtEntry)"); class IrtIterator { public: IrtIterator(IrtEntry* table, size_t i, size_t capacity) REQUIRES_SHARED(Locks::mutator_lock_) : table_(table), i_(i), capacity_(capacity) { // capacity_ is used in some target; has warning with unused attribute. UNUSED(capacity_); } IrtIterator& operator++() REQUIRES_SHARED(Locks::mutator_lock_) { ++i_; return *this; } GcRoot* operator*() REQUIRES_SHARED(Locks::mutator_lock_) { // This does not have a read barrier as this is used to visit roots. return table_[i_].GetReference(); } bool equals(const IrtIterator& rhs) const { return (i_ == rhs.i_ && table_ == rhs.table_); } private: IrtEntry* const table_; size_t i_; const size_t capacity_; }; bool inline operator==(const IrtIterator& lhs, const IrtIterator& rhs) { return lhs.equals(rhs); } bool inline operator!=(const IrtIterator& lhs, const IrtIterator& rhs) { return !lhs.equals(rhs); } class IndirectReferenceTable { public: enum class ResizableCapacity { kNo, kYes }; // WARNING: Construction of the IndirectReferenceTable may fail. // error_msg must not be null. If error_msg is set by the constructor, then // construction has failed and the IndirectReferenceTable will be in an // invalid state. Use IsValid to check whether the object is in an invalid // state. IndirectReferenceTable(size_t max_count, IndirectRefKind kind, ResizableCapacity resizable, std::string* error_msg); ~IndirectReferenceTable(); /* * Checks whether construction of the IndirectReferenceTable succeeded. * * This object must only be used if IsValid() returns true. It is safe to * call IsValid from multiple threads without locking or other explicit * synchronization. */ bool IsValid() const; // Add a new entry. "obj" must be a valid non-null object reference. This function will // return null if an error happened (with an appropriate error message set). IndirectRef Add(IRTSegmentState previous_state, ObjPtr obj, std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_); // Given an IndirectRef in the table, return the Object it refers to. // // This function may abort under error conditions. template ObjPtr Get(IndirectRef iref) const REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE; // Synchronized get which reads a reference, acquiring a lock if necessary. template ObjPtr SynchronizedGet(IndirectRef iref) const REQUIRES_SHARED(Locks::mutator_lock_) { return Get(iref); } // Updates an existing indirect reference to point to a new object. void Update(IndirectRef iref, ObjPtr obj) REQUIRES_SHARED(Locks::mutator_lock_); // Remove an existing entry. // // If the entry is not between the current top index and the bottom index // specified by the cookie, we don't remove anything. This is the behavior // required by JNI's DeleteLocalRef function. // // Returns "false" if nothing was removed. bool Remove(IRTSegmentState previous_state, IndirectRef iref); void AssertEmpty() REQUIRES_SHARED(Locks::mutator_lock_); void Dump(std::ostream& os) const REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(!Locks::alloc_tracker_lock_); IndirectRefKind GetKind() const { return kind_; } // Return the #of entries in the entire table. This includes holes, and // so may be larger than the actual number of "live" entries. size_t Capacity() const { return segment_state_.top_index; } // Ensure that at least free_capacity elements are available, or return false. bool EnsureFreeCapacity(size_t free_capacity, std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_); // See implementation of EnsureFreeCapacity. We'll only state here how much is trivially free, // without recovering holes. Thus this is a conservative estimate. size_t FreeCapacity() const; // Note IrtIterator does not have a read barrier as it's used to visit roots. IrtIterator begin() { return IrtIterator(table_, 0, Capacity()); } IrtIterator end() { return IrtIterator(table_, Capacity(), Capacity()); } void VisitRoots(RootVisitor* visitor, const RootInfo& root_info) REQUIRES_SHARED(Locks::mutator_lock_); IRTSegmentState GetSegmentState() const { return segment_state_; } void SetSegmentState(IRTSegmentState new_state); static Offset SegmentStateOffset(size_t pointer_size ATTRIBUTE_UNUSED) { // Note: Currently segment_state_ is at offset 0. We're testing the expected value in // jni_internal_test to make sure it stays correct. It is not OFFSETOF_MEMBER, as that // is not pointer-size-safe. return Offset(0); } // Release pages past the end of the table that may have previously held references. void Trim() REQUIRES_SHARED(Locks::mutator_lock_); // Determine what kind of indirect reference this is. Opposite of EncodeIndirectRefKind. ALWAYS_INLINE static inline IndirectRefKind GetIndirectRefKind(IndirectRef iref) { return DecodeIndirectRefKind(reinterpret_cast(iref)); } /* Reference validation for CheckJNI. */ bool IsValidReference(IndirectRef, /*out*/std::string* error_msg) const REQUIRES_SHARED(Locks::mutator_lock_); private: static constexpr size_t kSerialBits = MinimumBitsToStore(kIRTPrevCount); static constexpr uint32_t kShiftedSerialMask = (1u << kSerialBits) - 1; static constexpr size_t kKindBits = MinimumBitsToStore( static_cast(IndirectRefKind::kLastKind)); static constexpr uint32_t kKindMask = (1u << kKindBits) - 1; static constexpr uintptr_t EncodeIndex(uint32_t table_index) { static_assert(sizeof(IndirectRef) == sizeof(uintptr_t), "Unexpected IndirectRef size"); DCHECK_LE(MinimumBitsToStore(table_index), BitSizeOf() - kSerialBits - kKindBits); return (static_cast(table_index) << kKindBits << kSerialBits); } static constexpr uint32_t DecodeIndex(uintptr_t uref) { return static_cast((uref >> kKindBits) >> kSerialBits); } static constexpr uintptr_t EncodeIndirectRefKind(IndirectRefKind kind) { return static_cast(kind); } static constexpr IndirectRefKind DecodeIndirectRefKind(uintptr_t uref) { return static_cast(uref & kKindMask); } static constexpr uintptr_t EncodeSerial(uint32_t serial) { DCHECK_LE(MinimumBitsToStore(serial), kSerialBits); return serial << kKindBits; } static constexpr uint32_t DecodeSerial(uintptr_t uref) { return static_cast(uref >> kKindBits) & kShiftedSerialMask; } constexpr uintptr_t EncodeIndirectRef(uint32_t table_index, uint32_t serial) const { DCHECK_LT(table_index, max_entries_); return EncodeIndex(table_index) | EncodeSerial(serial) | EncodeIndirectRefKind(kind_); } static void ConstexprChecks(); // Extract the table index from an indirect reference. ALWAYS_INLINE static uint32_t ExtractIndex(IndirectRef iref) { return DecodeIndex(reinterpret_cast(iref)); } IndirectRef ToIndirectRef(uint32_t table_index) const { DCHECK_LT(table_index, max_entries_); uint32_t serial = table_[table_index].GetSerial(); return reinterpret_cast(EncodeIndirectRef(table_index, serial)); } // Resize the backing table to be at least new_size elements long. Currently // must be larger than the current size. After return max_entries_ >= new_size. bool Resize(size_t new_size, std::string* error_msg); void RecoverHoles(IRTSegmentState from); // Abort if check_jni is not enabled. Otherwise, just log as an error. static void AbortIfNoCheckJNI(const std::string& msg); /* extra debugging checks */ bool CheckEntry(const char*, IndirectRef, uint32_t) const; /// semi-public - read/write by jni down calls. IRTSegmentState segment_state_; // Mem map where we store the indirect refs. MemMap table_mem_map_; // bottom of the stack. Do not directly access the object references // in this as they are roots. Use Get() that has a read barrier. IrtEntry* table_; // bit mask, ORed into all irefs. const IndirectRefKind kind_; // max #of entries allowed (modulo resizing). size_t max_entries_; // Some values to retain old behavior with holes. Description of the algorithm is in the .cc // file. // TODO: Consider other data structures for compact tables, e.g., free lists. size_t current_num_holes_; IRTSegmentState last_known_previous_state_; // Whether the table's capacity may be resized. As there are no locks used, it is the caller's // responsibility to ensure thread-safety. ResizableCapacity resizable_; }; } // namespace art #endif // ART_RUNTIME_INDIRECT_REFERENCE_TABLE_H_