/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "util.h" #define _STR(x) #x #define STRINGFY(x) _STR(x) static const std::vector kCommonSizes{ 8, 16, 32, 64, 512, 1 * KB, 8 * KB, 16 * KB, 32 * KB, 64 * KB, 128 * KB, }; static const std::vector kSmallSizes{ // Increment by 1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, // Increment by 8 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, // Increment by 16 160, 176, 192, 208, 224, 240, 256, }; static const std::vector kMediumSizes{ 512, 1 * KB, 8 * KB, 16 * KB, 32 * KB, 64 * KB, 128 * KB, }; static const std::vector kLargeSizes{ 256 * KB, 512 * KB, 1024 * KB, 2048 * KB, }; static std::map &> kSizes{ { "SMALL", kSmallSizes }, { "MEDIUM", kMediumSizes }, { "LARGE", kLargeSizes }, }; std::map> g_str_to_func; std::mutex g_map_lock; static struct option g_long_options[] = { {"bionic_cpu", required_argument, nullptr, 'c'}, {"bionic_xml", required_argument, nullptr, 'x'}, {"bionic_iterations", required_argument, nullptr, 'i'}, {"bionic_extra", required_argument, nullptr, 'a'}, {"help", no_argument, nullptr, 'h'}, {nullptr, 0, nullptr, 0}, }; typedef std::vector> args_vector_t; void Usage() { printf("Usage:\n"); printf("bionic_benchmarks [--bionic_cpu=]\n"); printf(" [--bionic_xml=]\n"); printf(" [--bionic_iterations=]\n"); printf(" [--bionic_extra=\" ...\"]\n"); printf(" []\n"); printf("Google benchmark flags:\n"); int fake_argc = 2; char argv0[] = "bionic_benchmarks"; char argv1[] = "--help"; char* fake_argv[3] {argv0, argv1, nullptr}; benchmark::Initialize(&fake_argc, fake_argv); exit(1); } // This function removes any bionic benchmarks command line arguments by checking them // against g_long_options. It fills new_argv with the filtered args. void SanitizeOpts(int argc, char** argv, std::vector* new_argv) { // TO THOSE ADDING OPTIONS: This currently doesn't support optional arguments. (*new_argv)[0] = argv[0]; for (int i = 1; i < argc; ++i) { char* optarg = argv[i]; size_t opt_idx = 0; // Iterate through g_long_options until either we hit the end or we have a match. for (opt_idx = 0; g_long_options[opt_idx].name && strncmp(g_long_options[opt_idx].name, optarg + 2, strlen(g_long_options[opt_idx].name)); ++opt_idx) { } if (!g_long_options[opt_idx].name) { new_argv->push_back(optarg); } else { if (g_long_options[opt_idx].has_arg == required_argument) { // If the arg was passed in with an =, it spans one char *. // Otherwise, we skip a spot for the argument. if (!strchr(optarg, '=')) { i++; } } } } new_argv->push_back(nullptr); } bench_opts_t ParseOpts(int argc, char** argv) { bench_opts_t opts; int opt; int option_index = 0; // To make this parser handle the benchmark options silently: extern int opterr; opterr = 0; while ((opt = getopt_long(argc, argv, "c:x:i:a:h", g_long_options, &option_index)) != -1) { if (opt == -1) { break; } switch (opt) { case 'c': if (*optarg) { char* check_null; opts.cpu_to_lock = strtol(optarg, &check_null, 10); if (*check_null) { errx(1, "ERROR: Args %s is not a valid integer.", optarg); } } else { printf("ERROR: no argument specified for bionic_cpu\n"); Usage(); } break; case 'x': if (*optarg) { opts.xmlpath = optarg; } else { printf("ERROR: no argument specified for bionic_xml\n"); Usage(); } break; case 'a': if (*optarg) { opts.extra_benchmarks.push_back(optarg); } else { printf("ERROR: no argument specified for bionic_extra\n"); Usage(); } break; case 'i': if (*optarg){ char* check_null; opts.num_iterations = strtol(optarg, &check_null, 10); if (*check_null != '\0' or opts.num_iterations < 0) { errx(1, "ERROR: Args %s is not a valid number of iterations.", optarg); } } else { printf("ERROR: no argument specified for bionic_iterations\n"); Usage(); } break; case 'h': Usage(); break; case '?': break; default: exit(1); } } return opts; } // This is a wrapper for every function call for per-benchmark cpu pinning. void LockAndRun(benchmark::State& state, benchmark_func_t func_to_bench, int cpu_to_lock) { if (cpu_to_lock >= 0) LockToCPU(cpu_to_lock); // To avoid having to link against Google benchmarks in libutil, // benchmarks are kept without parameter information, necessitating this cast. reinterpret_cast(func_to_bench)(state); } static constexpr char kOnebufManualStr[] = "AT_ONEBUF_MANUAL_ALIGN_"; static constexpr char kTwobufManualStr[] = "AT_TWOBUF_MANUAL_ALIGN1_"; static bool ParseOnebufManualStr(std::string& arg, args_vector_t* to_populate) { // The format of this is: // AT_ONEBUF_MANUAL_ALIGN_XX_SIZE_YY // Where: // XX is the alignment // YY is the size // The YY size can be either a number or a string representing the pre-defined // sets of values: // SMALL (for values between 1 and 256) // MEDIUM (for values between 512 and 128KB) // LARGE (for values between 256KB and 2048KB) int64_t align; int64_t size; char sizes[32] = { 0 }; int ret; ret = sscanf(arg.c_str(), "AT_ONEBUF_MANUAL_ALIGN_%" SCNd64 "_SIZE_%" SCNd64, &align, &size); if (ret == 1) { ret = sscanf(arg.c_str(), "AT_ONEBUF_MANUAL_ALIGN_%" SCNd64 "_SIZE_" "%" STRINGFY(sizeof(sizes)-1) "s", &align, sizes); } if (ret != 2) { return false; } // Verify the alignment is powers of 2. if (align != 0 && (align & (align - 1)) != 0) { return false; } auto sit = kSizes.find(sizes); if (sit == kSizes.cend()) { to_populate->push_back({size, align}); } else { for (auto ssize : sit->second) { to_populate->push_back({ssize, align}); } } return true; } static bool ParseTwobufManualStr(std::string& arg, args_vector_t* to_populate) { // The format of this is: // AT_TWOBUF_MANUAL_ALIGN1_XX_ALIGN2_YY_SIZE_ZZ // Where: // XX is the alignment of the first argument // YY is the alignment of the second argument // ZZ is the size // The ZZ size can be either a number or a string representing the pre-defined // sets of values: // SMALL (for values between 1 and 256) // MEDIUM (for values between 512 and 128KB) // LARGE (for values between 256KB and 2048KB) int64_t align1; int64_t align2; int64_t size; char sizes[32] = { 0 }; int ret; ret = sscanf(arg.c_str(), "AT_TWOBUF_MANUAL_ALIGN1_%" SCNd64 "_ALIGN2_%" SCNd64 "_SIZE_%" SCNd64, &align1, &align2, &size); if (ret == 2) { ret = sscanf(arg.c_str(), "AT_TWOBUF_MANUAL_ALIGN1_%" SCNd64 "_ALIGN2_%" SCNd64 "_SIZE_" "%" STRINGFY(sizeof(sizes)-1) "s", &align1, &align2, sizes); } if (ret != 3) { return false; } // Verify the alignments are powers of 2. if ((align1 != 0 && (align1 & (align1 - 1)) != 0) || (align2 != 0 && (align2 & (align2 - 1)) != 0)) { return false; } auto sit = kSizes.find(sizes); if (sit == kSizes.cend()) { to_populate->push_back({size, align1, align2}); } else { for (auto ssize : sit->second) { to_populate->push_back({ssize, align1, align2}); } } return true; } args_vector_t* ResolveArgs(args_vector_t* to_populate, std::string args, std::map& args_shorthand) { // args is either a space-separated list of ints, a macro name, or // special free form macro. // To ease formatting in XML files, args is left and right trimmed. if (args_shorthand.count(args)) { return &args_shorthand[args]; } // Check for free form macro. if (android::base::StartsWith(args, kOnebufManualStr)) { if (!ParseOnebufManualStr(args, to_populate)) { errx(1, "ERROR: Bad format of macro %s, should be AT_ONEBUF_MANUAL_ALIGN_XX_SIZE_YY", args.c_str()); } return to_populate; } else if (android::base::StartsWith(args, kTwobufManualStr)) { if (!ParseTwobufManualStr(args, to_populate)) { errx(1, "ERROR: Bad format of macro %s, should be AT_TWOBUF_MANUAL_ALIGN1_XX_ALIGNE2_YY_SIZE_ZZ", args.c_str()); } return to_populate; } to_populate->push_back(std::vector()); std::stringstream sstream(args); std::string argstr; while (sstream >> argstr) { char* check_null; int converted = static_cast(strtol(argstr.c_str(), &check_null, 10)); if (*check_null) { errx(1, "ERROR: Args str %s contains an invalid macro or int.", args.c_str()); } (*to_populate)[0].push_back(converted); } return to_populate; } void RegisterGoogleBenchmarks(bench_opts_t primary_opts, bench_opts_t secondary_opts, const std::string& fn_name, args_vector_t* run_args) { if (g_str_to_func.find(fn_name) == g_str_to_func.end()) { errx(1, "ERROR: No benchmark for function %s", fn_name.c_str()); } long iterations_to_use = primary_opts.num_iterations ? primary_opts.num_iterations : secondary_opts.num_iterations; int cpu_to_use = -1; if (primary_opts.cpu_to_lock >= 0) { cpu_to_use = primary_opts.cpu_to_lock; } else if (secondary_opts.cpu_to_lock >= 0) { cpu_to_use = secondary_opts.cpu_to_lock; } benchmark_func_t benchmark_function = g_str_to_func.at(fn_name).first; for (const std::vector& args : (*run_args)) { auto registration = benchmark::RegisterBenchmark(fn_name.c_str(), LockAndRun, benchmark_function, cpu_to_use)->Args(args); if (iterations_to_use > 0) { registration->Iterations(iterations_to_use); } } } void RegisterCliBenchmarks(bench_opts_t cmdline_opts, std::map& args_shorthand) { // Register any of the extra benchmarks that were specified in the options. args_vector_t arg_vector; args_vector_t* run_args = &arg_vector; for (const std::string& extra_fn : cmdline_opts.extra_benchmarks) { android::base::Trim(extra_fn); size_t first_space_pos = extra_fn.find(' '); std::string fn_name = extra_fn.substr(0, first_space_pos); std::string cmd_args; if (first_space_pos != std::string::npos) { cmd_args = extra_fn.substr(extra_fn.find(' ') + 1); } else { cmd_args = ""; } run_args = ResolveArgs(run_args, cmd_args, args_shorthand); RegisterGoogleBenchmarks(bench_opts_t(), cmdline_opts, fn_name, run_args); run_args = &arg_vector; arg_vector.clear(); } } int RegisterXmlBenchmarks(bench_opts_t cmdline_opts, std::map& args_shorthand) { // Structure of the XML file: // - Element "fn" Function to benchmark. // - - Element "iterations" Number of iterations to run. Leaving this blank uses // Google benchmarks' convergence heuristics. // - - Element "cpu" CPU to isolate to, if any. // - - Element "args" Whitespace-separated list of per-function integer arguments, or // one of the macros defined in util.h. tinyxml2::XMLDocument doc; if (doc.LoadFile(cmdline_opts.xmlpath.c_str()) != tinyxml2::XML_SUCCESS) { doc.PrintError(); return doc.ErrorID(); } // Read and register the functions. tinyxml2::XMLNode* fn = doc.FirstChildElement("fn"); while (fn) { if (fn == fn->ToComment()) { // Skip comments. fn = fn->NextSibling(); continue; } auto fn_elem = fn->FirstChildElement("name"); if (!fn_elem) { errx(1, "ERROR: Malformed XML entry: missing name element."); } std::string fn_name = fn_elem->GetText(); if (fn_name.empty()) { errx(1, "ERROR: Malformed XML entry: error parsing name text."); } auto* xml_args = fn->FirstChildElement("args"); args_vector_t arg_vector; args_vector_t* run_args = ResolveArgs(&arg_vector, xml_args ? android::base::Trim(xml_args->GetText()) : "", args_shorthand); // XML values for CPU and iterations take precedence over those passed in via CLI. bench_opts_t xml_opts{}; auto* num_iterations_elem = fn->FirstChildElement("iterations"); if (num_iterations_elem) { int temp; num_iterations_elem->QueryIntText(&temp); xml_opts.num_iterations = temp; } auto* cpu_to_lock_elem = fn->FirstChildElement("cpu"); if (cpu_to_lock_elem) { int temp; cpu_to_lock_elem->QueryIntText(&temp); xml_opts.cpu_to_lock = temp; } RegisterGoogleBenchmarks(xml_opts, cmdline_opts, fn_name, run_args); fn = fn->NextSibling(); } return 0; } static void SetArgs(const std::vector& sizes, args_vector_t* args) { for (int size : sizes) { args->push_back({size}); } } static void SetArgs(const std::vector& sizes, int align, args_vector_t* args) { for (int size : sizes) { args->push_back({size, align}); } } static void SetArgs(const std::vector& sizes, int align1, int align2, args_vector_t* args) { for (int size : sizes) { args->push_back({size, align1, align2}); } } static args_vector_t GetArgs(const std::vector& sizes) { args_vector_t args; SetArgs(sizes, &args); return args; } static args_vector_t GetArgs(const std::vector& sizes, int align) { args_vector_t args; SetArgs(sizes, align, &args); return args; } static args_vector_t GetArgs(const std::vector& sizes, int align1, int align2) { args_vector_t args; SetArgs(sizes, align1, align2, &args); return args; } std::map GetShorthand() { std::vector all_sizes(kSmallSizes); all_sizes.insert(all_sizes.end(), kMediumSizes.begin(), kMediumSizes.end()); all_sizes.insert(all_sizes.end(), kLargeSizes.begin(), kLargeSizes.end()); std::map args_shorthand { {"AT_COMMON_SIZES", GetArgs(kCommonSizes)}, {"AT_SMALL_SIZES", GetArgs(kSmallSizes)}, {"AT_MEDIUM_SIZES", GetArgs(kMediumSizes)}, {"AT_LARGE_SIZES", GetArgs(kLargeSizes)}, {"AT_ALL_SIZES", GetArgs(all_sizes)}, {"AT_ALIGNED_ONEBUF", GetArgs(kCommonSizes, 0)}, {"AT_ALIGNED_ONEBUF_SMALL", GetArgs(kSmallSizes, 0)}, {"AT_ALIGNED_ONEBUF_MEDIUM", GetArgs(kMediumSizes, 0)}, {"AT_ALIGNED_ONEBUF_LARGE", GetArgs(kLargeSizes, 0)}, {"AT_ALIGNED_ONEBUF_ALL", GetArgs(all_sizes, 0)}, {"AT_ALIGNED_TWOBUF", GetArgs(kCommonSizes, 0, 0)}, {"AT_ALIGNED_TWOBUF_SMALL", GetArgs(kSmallSizes, 0, 0)}, {"AT_ALIGNED_TWOBUF_MEDIUM", GetArgs(kMediumSizes, 0, 0)}, {"AT_ALIGNED_TWOBUF_LARGE", GetArgs(kLargeSizes, 0, 0)}, {"AT_ALIGNED_TWOBUF_ALL", GetArgs(all_sizes, 0, 0)}, // Do not exceed 512. that is about the largest number of properties // that can be created with the current property area size. {"NUM_PROPS", args_vector_t{ {1}, {4}, {16}, {64}, {128}, {256}, {512} }}, {"MATH_COMMON", args_vector_t{ {0}, {1}, {2}, {3} }}, {"MATH_SINCOS_COMMON", args_vector_t{ {0}, {1}, {2}, {3}, {4}, {5}, {6}, {7} }}, }; args_vector_t args_onebuf; args_vector_t args_twobuf; for (int size : all_sizes) { args_onebuf.push_back({size, 0}); args_twobuf.push_back({size, 0, 0}); // Skip alignments on zero sizes. if (size == 0) { continue; } for (int align1 = 1; align1 <= 32; align1 <<= 1) { args_onebuf.push_back({size, align1}); for (int align2 = 1; align2 <= 32; align2 <<= 1) { args_twobuf.push_back({size, align1, align2}); } } } args_shorthand.emplace("AT_MANY_ALIGNED_ONEBUF", args_onebuf); args_shorthand.emplace("AT_MANY_ALIGNED_TWOBUF", args_twobuf); return args_shorthand; } static bool FileExists(const std::string& file) { struct stat st; return stat(file.c_str(), &st) != -1 && S_ISREG(st.st_mode); } void RegisterAllBenchmarks(const bench_opts_t& opts, std::map& args_shorthand) { for (auto& entry : g_str_to_func) { auto& function_info = entry.second; args_vector_t arg_vector; args_vector_t* run_args = ResolveArgs(&arg_vector, function_info.second, args_shorthand); RegisterGoogleBenchmarks(bench_opts_t(), opts, entry.first, run_args); } } int main(int argc, char** argv) { std::map args_shorthand = GetShorthand(); bench_opts_t opts = ParseOpts(argc, argv); std::vector new_argv(argc); SanitizeOpts(argc, argv, &new_argv); if (opts.xmlpath.empty()) { // Don't add the default xml file if a user is specifying the tests to run. if (opts.extra_benchmarks.empty()) { RegisterAllBenchmarks(opts, args_shorthand); } } else if (!FileExists(opts.xmlpath)) { // See if this is a file in the suites directory. std::string file(android::base::GetExecutableDirectory() + "/suites/" + opts.xmlpath); if (opts.xmlpath[0] == '/' || !FileExists(file)) { printf("Cannot find xml file %s: does not exist or is not a file.\n", opts.xmlpath.c_str()); return 1; } opts.xmlpath = file; } if (!opts.xmlpath.empty()) { if (int err = RegisterXmlBenchmarks(opts, args_shorthand)) { return err; } } RegisterCliBenchmarks(opts, args_shorthand); // Set the thread priority to the maximum. if (setpriority(PRIO_PROCESS, 0, -20)) { perror("Failed to raise priority of process. Are you root?\n"); } int new_argc = new_argv.size(); benchmark::Initialize(&new_argc, new_argv.data()); benchmark::RunSpecifiedBenchmarks(); }