// // Copyright (C) 2015 The Android Open Source Project // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // #include "update_engine/payload_generator/payload_file.h" #include #include #include #include #include #include "update_engine/common/hash_calculator.h" #include "update_engine/common/utils.h" #include "update_engine/payload_consumer/delta_performer.h" #include "update_engine/payload_consumer/file_writer.h" #include "update_engine/payload_consumer/payload_constants.h" #include "update_engine/payload_generator/annotated_operation.h" #include "update_engine/payload_generator/delta_diff_utils.h" #include "update_engine/payload_generator/payload_signer.h" using std::string; using std::vector; namespace chromeos_update_engine { namespace { struct DeltaObject { DeltaObject(const string& in_name, const int in_type, const off_t in_size) : name(in_name), type(in_type), size(in_size) {} bool operator<(const DeltaObject& object) const { return (size != object.size) ? (size < object.size) : (name < object.name); } string name; int type; off_t size; }; // Writes the uint64_t passed in in host-endian to the file as big-endian. // Returns true on success. bool WriteUint64AsBigEndian(FileWriter* writer, const uint64_t value) { uint64_t value_be = htobe64(value); TEST_AND_RETURN_FALSE(writer->Write(&value_be, sizeof(value_be))); return true; } } // namespace bool PayloadFile::Init(const PayloadGenerationConfig& config) { TEST_AND_RETURN_FALSE(config.version.Validate()); major_version_ = config.version.major; manifest_.set_minor_version(config.version.minor); manifest_.set_block_size(config.block_size); manifest_.set_max_timestamp(config.max_timestamp); if (config.target.dynamic_partition_metadata != nullptr) *(manifest_.mutable_dynamic_partition_metadata()) = *(config.target.dynamic_partition_metadata); if (config.is_partial_update) { manifest_.set_partial_update(true); } if (!config.apex_info_file.empty()) { ApexMetadata apex_metadata; int fd = open(config.apex_info_file.c_str(), O_RDONLY); if (fd < 0) { PLOG(FATAL) << "Failed to open " << config.apex_info_file << " for read."; } ScopedFdCloser closer{&fd}; CHECK(apex_metadata.ParseFromFileDescriptor(fd)); if (apex_metadata.apex_info_size() > 0) { *manifest_.mutable_apex_info() = std::move(*apex_metadata.mutable_apex_info()); } } return true; } bool PayloadFile::AddPartition(const PartitionConfig& old_conf, const PartitionConfig& new_conf, vector aops, vector merge_sequence, size_t cow_size) { Partition part; part.cow_size = cow_size; part.name = new_conf.name; part.aops = std::move(aops); part.cow_merge_sequence = std::move(merge_sequence); part.postinstall = new_conf.postinstall; part.verity = new_conf.verity; part.version = new_conf.version; // Initialize the PartitionInfo objects if present. if (!old_conf.path.empty()) TEST_AND_RETURN_FALSE( diff_utils::InitializePartitionInfo(old_conf, &part.old_info)); TEST_AND_RETURN_FALSE( diff_utils::InitializePartitionInfo(new_conf, &part.new_info)); part_vec_.push_back(std::move(part)); return true; } bool PayloadFile::WritePayload(const string& payload_file, const string& data_blobs_path, const string& private_key_path, uint64_t* metadata_size_out) { // Reorder the data blobs with the manifest_. ScopedTempFile ordered_blobs_file("CrAU_temp_data.ordered.XXXXXX"); TEST_AND_RETURN_FALSE( ReorderDataBlobs(data_blobs_path, ordered_blobs_file.path())); // Check that install op blobs are in order. uint64_t next_blob_offset = 0; for (const auto& part : part_vec_) { for (const auto& aop : part.aops) { if (!aop.op.has_data_offset()) continue; if (aop.op.data_offset() != next_blob_offset) { LOG(FATAL) << "bad blob offset! " << aop.op.data_offset() << " != " << next_blob_offset; } next_blob_offset += aop.op.data_length(); } } // Copy the operations and partition info from the part_vec_ to the manifest. manifest_.clear_partitions(); for (const auto& part : part_vec_) { PartitionUpdate* partition = manifest_.add_partitions(); partition->set_partition_name(part.name); if (!part.version.empty()) { partition->set_version(part.version); } if (part.cow_size > 0) { partition->set_estimate_cow_size(part.cow_size); } if (part.postinstall.run) { partition->set_run_postinstall(true); if (!part.postinstall.path.empty()) partition->set_postinstall_path(part.postinstall.path); if (!part.postinstall.filesystem_type.empty()) partition->set_filesystem_type(part.postinstall.filesystem_type); partition->set_postinstall_optional(part.postinstall.optional); } if (!part.verity.IsEmpty()) { if (part.verity.hash_tree_extent.num_blocks() != 0) { *partition->mutable_hash_tree_data_extent() = part.verity.hash_tree_data_extent; *partition->mutable_hash_tree_extent() = part.verity.hash_tree_extent; partition->set_hash_tree_algorithm(part.verity.hash_tree_algorithm); if (!part.verity.hash_tree_salt.empty()) partition->set_hash_tree_salt(part.verity.hash_tree_salt.data(), part.verity.hash_tree_salt.size()); } if (part.verity.fec_extent.num_blocks() != 0) { *partition->mutable_fec_data_extent() = part.verity.fec_data_extent; *partition->mutable_fec_extent() = part.verity.fec_extent; partition->set_fec_roots(part.verity.fec_roots); } } for (const AnnotatedOperation& aop : part.aops) { *partition->add_operations() = aop.op; } for (const auto& merge_op : part.cow_merge_sequence) { *partition->add_merge_operations() = merge_op; } if (part.old_info.has_size() || part.old_info.has_hash()) *(partition->mutable_old_partition_info()) = part.old_info; if (part.new_info.has_size() || part.new_info.has_hash()) *(partition->mutable_new_partition_info()) = part.new_info; } // Signatures appear at the end of the blobs. Note the offset in the // |manifest_|. uint64_t signature_blob_length = 0; if (!private_key_path.empty()) { TEST_AND_RETURN_FALSE(PayloadSigner::SignatureBlobLength( {private_key_path}, &signature_blob_length)); PayloadSigner::AddSignatureToManifest( next_blob_offset, signature_blob_length, &manifest_); } // Serialize protobuf string serialized_manifest; TEST_AND_RETURN_FALSE(manifest_.SerializeToString(&serialized_manifest)); uint64_t metadata_size = sizeof(kDeltaMagic) + 2 * sizeof(uint64_t) + serialized_manifest.size(); LOG(INFO) << "Writing final delta file header..."; DirectFileWriter writer; TEST_AND_RETURN_FALSE_ERRNO(writer.Open(payload_file.c_str(), O_WRONLY | O_CREAT | O_TRUNC, 0644) == 0); ScopedFileWriterCloser writer_closer(&writer); // Write header TEST_AND_RETURN_FALSE_ERRNO(writer.Write(kDeltaMagic, sizeof(kDeltaMagic))); // Write major version number TEST_AND_RETURN_FALSE(WriteUint64AsBigEndian(&writer, major_version_)); // Write protobuf length TEST_AND_RETURN_FALSE( WriteUint64AsBigEndian(&writer, serialized_manifest.size())); // Metadata signature has the same size as payload signature, because they // are both the same kind of signature for the same kind of hash. uint32_t metadata_signature_size = htobe32(signature_blob_length); TEST_AND_RETURN_FALSE_ERRNO( writer.Write(&metadata_signature_size, sizeof(metadata_signature_size))); metadata_size += sizeof(metadata_signature_size); // Set correct size instead of big endian size. metadata_signature_size = signature_blob_length; // Write protobuf LOG(INFO) << "Writing final delta file protobuf... " << serialized_manifest.size(); TEST_AND_RETURN_FALSE_ERRNO( writer.Write(serialized_manifest.data(), serialized_manifest.size())); // Write metadata signature blob. if (!private_key_path.empty()) { brillo::Blob metadata_hash; TEST_AND_RETURN_FALSE(HashCalculator::RawHashOfFile( payload_file, metadata_size, &metadata_hash)); string metadata_signature; TEST_AND_RETURN_FALSE(PayloadSigner::SignHashWithKeys( metadata_hash, {private_key_path}, &metadata_signature)); TEST_AND_RETURN_FALSE_ERRNO( writer.Write(metadata_signature.data(), metadata_signature.size())); } // Append the data blobs. LOG(INFO) << "Writing final delta file data blobs..."; int blobs_fd = open(ordered_blobs_file.path().c_str(), O_RDONLY, 0); ScopedFdCloser blobs_fd_closer(&blobs_fd); TEST_AND_RETURN_FALSE(blobs_fd >= 0); for (;;) { vector buf(1024 * 1024); ssize_t rc = read(blobs_fd, buf.data(), buf.size()); if (0 == rc) { // EOF break; } TEST_AND_RETURN_FALSE_ERRNO(rc > 0); TEST_AND_RETURN_FALSE_ERRNO(writer.Write(buf.data(), rc)); } // Write payload signature blob. if (!private_key_path.empty()) { LOG(INFO) << "Signing the update..."; string signature; TEST_AND_RETURN_FALSE(PayloadSigner::SignPayload( payload_file, {private_key_path}, metadata_size, metadata_signature_size, metadata_size + metadata_signature_size + manifest_.signatures_offset(), &signature)); TEST_AND_RETURN_FALSE_ERRNO( writer.Write(signature.data(), signature.size())); } ReportPayloadUsage(metadata_size); *metadata_size_out = metadata_size; return true; } bool PayloadFile::ReorderDataBlobs(const string& data_blobs_path, const string& new_data_blobs_path) { int in_fd = open(data_blobs_path.c_str(), O_RDONLY, 0); TEST_AND_RETURN_FALSE_ERRNO(in_fd >= 0); ScopedFdCloser in_fd_closer(&in_fd); DirectFileWriter writer; int rc = writer.Open( new_data_blobs_path.c_str(), O_WRONLY | O_TRUNC | O_CREAT, 0644); if (rc != 0) { PLOG(ERROR) << "Error creating " << new_data_blobs_path; return false; } ScopedFileWriterCloser writer_closer(&writer); uint64_t out_file_size = 0; for (auto& part : part_vec_) { for (AnnotatedOperation& aop : part.aops) { if (!aop.op.has_data_offset()) continue; CHECK(aop.op.has_data_length()); brillo::Blob buf(aop.op.data_length()); ssize_t rc = pread(in_fd, buf.data(), buf.size(), aop.op.data_offset()); TEST_AND_RETURN_FALSE(rc == static_cast(buf.size())); // Add the hash of the data blobs for this operation TEST_AND_RETURN_FALSE(AddOperationHash(&aop.op, buf)); aop.op.set_data_offset(out_file_size); TEST_AND_RETURN_FALSE_ERRNO(writer.Write(buf.data(), buf.size())); out_file_size += buf.size(); } } return true; } bool PayloadFile::AddOperationHash(InstallOperation* op, const brillo::Blob& buf) { brillo::Blob hash; TEST_AND_RETURN_FALSE(HashCalculator::RawHashOfData(buf, &hash)); op->set_data_sha256_hash(hash.data(), hash.size()); return true; } void PayloadFile::ReportPayloadUsage(uint64_t metadata_size) const { std::map object_counts; off_t total_size = 0; int total_op = 0; for (const auto& part : part_vec_) { string part_prefix = "<" + part.name + ">:"; for (const AnnotatedOperation& aop : part.aops) { DeltaObject delta( part_prefix + aop.name, aop.op.type(), aop.op.data_length()); object_counts[delta]++; total_size += aop.op.data_length(); } total_op += part.aops.size(); } object_counts[DeltaObject("", -1, metadata_size)] = 1; total_size += metadata_size; constexpr char kFormatString[] = "%6.2f%% %10jd %-13s %s %d\n"; for (const auto& object_count : object_counts) { const DeltaObject& object = object_count.first; // Use printf() instead of LOG(INFO) because timestamp makes it difficult to // compare two reports. printf(kFormatString, object.size * 100.0 / total_size, object.size, (object.type >= 0 ? InstallOperationTypeName( static_cast(object.type)) : "-"), object.name.c_str(), object_count.second); } printf(kFormatString, 100.0, total_size, "", "", total_op); fflush(stdout); } } // namespace chromeos_update_engine