/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "monitor-inl.h" #include #include "android-base/stringprintf.h" #include "art_method-inl.h" #include "base/logging.h" // For VLOG. #include "base/mutex.h" #include "base/quasi_atomic.h" #include "base/stl_util.h" #include "base/systrace.h" #include "base/time_utils.h" #include "class_linker.h" #include "dex/dex_file-inl.h" #include "dex/dex_file_types.h" #include "dex/dex_instruction-inl.h" #include "entrypoints/entrypoint_utils-inl.h" #include "lock_word-inl.h" #include "mirror/class-inl.h" #include "mirror/object-inl.h" #include "object_callbacks.h" #include "scoped_thread_state_change-inl.h" #include "stack.h" #include "thread.h" #include "thread_list.h" #include "verifier/method_verifier.h" #include "well_known_classes.h" #include static_assert(ART_USE_FUTEXES); namespace art { using android::base::StringPrintf; static constexpr uint64_t kDebugThresholdFudgeFactor = kIsDebugBuild ? 10 : 1; static constexpr uint64_t kLongWaitMs = 100 * kDebugThresholdFudgeFactor; /* * Every Object has a monitor associated with it, but not every Object is actually locked. Even * the ones that are locked do not need a full-fledged monitor until a) there is actual contention * or b) wait() is called on the Object, or (c) we need to lock an object that also has an * identity hashcode. * * For Android, we have implemented a scheme similar to the one described in Bacon et al.'s * "Thin locks: featherweight synchronization for Java" (ACM 1998). Things are even easier for us, * though, because we have a full 32 bits to work with. * * The two states of an Object's lock are referred to as "thin" and "fat". A lock may transition * from the "thin" state to the "fat" state and this transition is referred to as inflation. We * deflate locks from time to time as part of heap trimming. * * The lock value itself is stored in mirror::Object::monitor_ and the representation is described * in the LockWord value type. * * Monitors provide: * - mutually exclusive access to resources * - a way for multiple threads to wait for notification * * In effect, they fill the role of both mutexes and condition variables. * * Only one thread can own the monitor at any time. There may be several threads waiting on it * (the wait call unlocks it). One or more waiting threads may be getting interrupted or notified * at any given time. */ uint32_t Monitor::lock_profiling_threshold_ = 0; uint32_t Monitor::stack_dump_lock_profiling_threshold_ = 0; void Monitor::Init(uint32_t lock_profiling_threshold, uint32_t stack_dump_lock_profiling_threshold) { // It isn't great to always include the debug build fudge factor for command- // line driven arguments, but it's easier to adjust here than in the build. lock_profiling_threshold_ = lock_profiling_threshold * kDebugThresholdFudgeFactor; stack_dump_lock_profiling_threshold_ = stack_dump_lock_profiling_threshold * kDebugThresholdFudgeFactor; } Monitor::Monitor(Thread* self, Thread* owner, ObjPtr obj, int32_t hash_code) : monitor_lock_("a monitor lock", kMonitorLock), num_waiters_(0), owner_(owner), lock_count_(0), obj_(GcRoot(obj)), wait_set_(nullptr), wake_set_(nullptr), hash_code_(hash_code), lock_owner_(nullptr), lock_owner_method_(nullptr), lock_owner_dex_pc_(0), lock_owner_sum_(0), lock_owner_request_(nullptr), monitor_id_(MonitorPool::ComputeMonitorId(this, self)) { #ifdef __LP64__ DCHECK(false) << "Should not be reached in 64b"; next_free_ = nullptr; #endif // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race // with the owner unlocking the thin-lock. CHECK(owner == nullptr || owner == self || owner->IsSuspended()); // The identity hash code is set for the life time of the monitor. bool monitor_timeout_enabled = Runtime::Current()->IsMonitorTimeoutEnabled(); if (monitor_timeout_enabled) { MaybeEnableTimeout(); } } Monitor::Monitor(Thread* self, Thread* owner, ObjPtr obj, int32_t hash_code, MonitorId id) : monitor_lock_("a monitor lock", kMonitorLock), num_waiters_(0), owner_(owner), lock_count_(0), obj_(GcRoot(obj)), wait_set_(nullptr), wake_set_(nullptr), hash_code_(hash_code), lock_owner_(nullptr), lock_owner_method_(nullptr), lock_owner_dex_pc_(0), lock_owner_sum_(0), lock_owner_request_(nullptr), monitor_id_(id) { #ifdef __LP64__ next_free_ = nullptr; #endif // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race // with the owner unlocking the thin-lock. CHECK(owner == nullptr || owner == self || owner->IsSuspended()); // The identity hash code is set for the life time of the monitor. bool monitor_timeout_enabled = Runtime::Current()->IsMonitorTimeoutEnabled(); if (monitor_timeout_enabled) { MaybeEnableTimeout(); } } int32_t Monitor::GetHashCode() { int32_t hc = hash_code_.load(std::memory_order_relaxed); if (!HasHashCode()) { // Use a strong CAS to prevent spurious failures since these can make the boot image // non-deterministic. hash_code_.CompareAndSetStrongRelaxed(0, mirror::Object::GenerateIdentityHashCode()); hc = hash_code_.load(std::memory_order_relaxed); } DCHECK(HasHashCode()); return hc; } void Monitor::SetLockingMethod(Thread* owner) { DCHECK(owner == Thread::Current() || owner->IsSuspended()); // Do not abort on dex pc errors. This can easily happen when we want to dump a stack trace on // abort. ArtMethod* lock_owner_method; uint32_t lock_owner_dex_pc; lock_owner_method = owner->GetCurrentMethod(&lock_owner_dex_pc, false); if (lock_owner_method != nullptr && UNLIKELY(lock_owner_method->IsProxyMethod())) { // Grab another frame. Proxy methods are not helpful for lock profiling. This should be rare // enough that it's OK to walk the stack twice. struct NextMethodVisitor final : public StackVisitor { explicit NextMethodVisitor(Thread* thread) REQUIRES_SHARED(Locks::mutator_lock_) : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames, false), count_(0), method_(nullptr), dex_pc_(0) {} bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* m = GetMethod(); if (m->IsRuntimeMethod()) { // Continue if this is a runtime method. return true; } count_++; if (count_ == 2u) { method_ = m; dex_pc_ = GetDexPc(false); return false; } return true; } size_t count_; ArtMethod* method_; uint32_t dex_pc_; }; NextMethodVisitor nmv(owner_.load(std::memory_order_relaxed)); nmv.WalkStack(); lock_owner_method = nmv.method_; lock_owner_dex_pc = nmv.dex_pc_; } SetLockOwnerInfo(lock_owner_method, lock_owner_dex_pc, owner); DCHECK(lock_owner_method == nullptr || !lock_owner_method->IsProxyMethod()); } void Monitor::SetLockingMethodNoProxy(Thread *owner) { DCHECK(owner == Thread::Current()); uint32_t lock_owner_dex_pc; ArtMethod* lock_owner_method = owner->GetCurrentMethod(&lock_owner_dex_pc); // We don't expect a proxy method here. DCHECK(lock_owner_method == nullptr || !lock_owner_method->IsProxyMethod()); SetLockOwnerInfo(lock_owner_method, lock_owner_dex_pc, owner); } bool Monitor::Install(Thread* self) NO_THREAD_SAFETY_ANALYSIS { // This may or may not result in acquiring monitor_lock_. Its behavior is much more complicated // than what clang thread safety analysis understands. // Monitor is not yet public. Thread* owner = owner_.load(std::memory_order_relaxed); CHECK(owner == nullptr || owner == self || owner->IsSuspended()); // Propagate the lock state. LockWord lw(GetObject()->GetLockWord(false)); switch (lw.GetState()) { case LockWord::kThinLocked: { DCHECK(owner != nullptr); CHECK_EQ(owner->GetThreadId(), lw.ThinLockOwner()); DCHECK_EQ(monitor_lock_.GetExclusiveOwnerTid(), 0) << " my tid = " << SafeGetTid(self); lock_count_ = lw.ThinLockCount(); monitor_lock_.ExclusiveLockUncontendedFor(owner); DCHECK_EQ(monitor_lock_.GetExclusiveOwnerTid(), owner->GetTid()) << " my tid = " << SafeGetTid(self); LockWord fat(this, lw.GCState()); // Publish the updated lock word, which may race with other threads. bool success = GetObject()->CasLockWord(lw, fat, CASMode::kWeak, std::memory_order_release); if (success) { if (ATraceEnabled()) { SetLockingMethod(owner); } return true; } else { monitor_lock_.ExclusiveUnlockUncontended(); return false; } } case LockWord::kHashCode: { CHECK_EQ(hash_code_.load(std::memory_order_relaxed), static_cast(lw.GetHashCode())); DCHECK_EQ(monitor_lock_.GetExclusiveOwnerTid(), 0) << " my tid = " << SafeGetTid(self); LockWord fat(this, lw.GCState()); return GetObject()->CasLockWord(lw, fat, CASMode::kWeak, std::memory_order_release); } case LockWord::kFatLocked: { // The owner_ is suspended but another thread beat us to install a monitor. return false; } case LockWord::kUnlocked: { LOG(FATAL) << "Inflating unlocked lock word"; UNREACHABLE(); } default: { LOG(FATAL) << "Invalid monitor state " << lw.GetState(); UNREACHABLE(); } } } Monitor::~Monitor() { // Deflated monitors have a null object. } void Monitor::AppendToWaitSet(Thread* thread) { // Not checking that the owner is equal to this thread, since we've released // the monitor by the time this method is called. DCHECK(thread != nullptr); DCHECK(thread->GetWaitNext() == nullptr) << thread->GetWaitNext(); if (wait_set_ == nullptr) { wait_set_ = thread; return; } // push_back. Thread* t = wait_set_; while (t->GetWaitNext() != nullptr) { t = t->GetWaitNext(); } t->SetWaitNext(thread); } void Monitor::RemoveFromWaitSet(Thread *thread) { DCHECK(owner_ == Thread::Current()); DCHECK(thread != nullptr); auto remove = [&](Thread*& set){ if (set != nullptr) { if (set == thread) { set = thread->GetWaitNext(); thread->SetWaitNext(nullptr); return true; } Thread* t = set; while (t->GetWaitNext() != nullptr) { if (t->GetWaitNext() == thread) { t->SetWaitNext(thread->GetWaitNext()); thread->SetWaitNext(nullptr); return true; } t = t->GetWaitNext(); } } return false; }; if (remove(wait_set_)) { return; } remove(wake_set_); } void Monitor::SetObject(ObjPtr object) { obj_ = GcRoot(object); } // This function is inlined and just helps to not have the VLOG and ATRACE check at all the // potential tracing points. void Monitor::AtraceMonitorLock(Thread* self, ObjPtr obj, bool is_wait) { if (UNLIKELY(VLOG_IS_ON(systrace_lock_logging) && ATraceEnabled())) { AtraceMonitorLockImpl(self, obj, is_wait); } } void Monitor::AtraceMonitorLockImpl(Thread* self, ObjPtr obj, bool is_wait) { // Wait() requires a deeper call stack to be useful. Otherwise you'll see "Waiting at // Object.java". Assume that we'll wait a nontrivial amount, so it's OK to do a longer // stack walk than if !is_wait. const size_t wanted_frame_number = is_wait ? 1U : 0U; ArtMethod* method = nullptr; uint32_t dex_pc = 0u; size_t current_frame_number = 0u; StackVisitor::WalkStack( // Note: Adapted from CurrentMethodVisitor in thread.cc. We must not resolve here. [&](const art::StackVisitor* stack_visitor) REQUIRES_SHARED(Locks::mutator_lock_) { ArtMethod* m = stack_visitor->GetMethod(); if (m == nullptr || m->IsRuntimeMethod()) { // Runtime method, upcall, or resolution issue. Skip. return true; } // Is this the requested frame? if (current_frame_number == wanted_frame_number) { method = m; dex_pc = stack_visitor->GetDexPc(false /* abort_on_error*/); return false; } // Look for more. current_frame_number++; return true; }, self, /* context= */ nullptr, art::StackVisitor::StackWalkKind::kIncludeInlinedFrames); const char* prefix = is_wait ? "Waiting on " : "Locking "; const char* filename; int32_t line_number; TranslateLocation(method, dex_pc, &filename, &line_number); // It would be nice to have a stable "ID" for the object here. However, the only stable thing // would be the identity hashcode. But we cannot use IdentityHashcode here: For one, there are // times when it is unsafe to make that call (see stack dumping for an explanation). More // importantly, we would have to give up on thin-locking when adding systrace locks, as the // identity hashcode is stored in the lockword normally (so can't be used with thin-locks). // // Because of thin-locks we also cannot use the monitor id (as there is no monitor). Monitor ids // also do not have to be stable, as the monitor may be deflated. std::string tmp = StringPrintf("%s %d at %s:%d", prefix, (obj == nullptr ? -1 : static_cast(reinterpret_cast(obj.Ptr()))), (filename != nullptr ? filename : "null"), line_number); ATraceBegin(tmp.c_str()); } void Monitor::AtraceMonitorUnlock() { if (UNLIKELY(VLOG_IS_ON(systrace_lock_logging))) { ATraceEnd(); } } std::string Monitor::PrettyContentionInfo(const std::string& owner_name, pid_t owner_tid, ArtMethod* owners_method, uint32_t owners_dex_pc, size_t num_waiters) { Locks::mutator_lock_->AssertSharedHeld(Thread::Current()); const char* owners_filename; int32_t owners_line_number = 0; if (owners_method != nullptr) { TranslateLocation(owners_method, owners_dex_pc, &owners_filename, &owners_line_number); } std::ostringstream oss; oss << "monitor contention with owner " << owner_name << " (" << owner_tid << ")"; if (owners_method != nullptr) { oss << " at " << owners_method->PrettyMethod(); oss << "(" << owners_filename << ":" << owners_line_number << ")"; } oss << " waiters=" << num_waiters; return oss.str(); } bool Monitor::TryLock(Thread* self, bool spin) { Thread *owner = owner_.load(std::memory_order_relaxed); if (owner == self) { lock_count_++; CHECK_NE(lock_count_, 0u); // Abort on overflow. } else { bool success = spin ? monitor_lock_.ExclusiveTryLockWithSpinning(self) : monitor_lock_.ExclusiveTryLock(self); if (!success) { return false; } DCHECK(owner_.load(std::memory_order_relaxed) == nullptr); owner_.store(self, std::memory_order_relaxed); CHECK_EQ(lock_count_, 0u); if (ATraceEnabled()) { SetLockingMethodNoProxy(self); } } DCHECK(monitor_lock_.IsExclusiveHeld(self)); AtraceMonitorLock(self, GetObject(), /* is_wait= */ false); return true; } template void Monitor::Lock(Thread* self) { bool called_monitors_callback = false; if (TryLock(self, /*spin=*/ true)) { // TODO: This preserves original behavior. Correct? if (called_monitors_callback) { CHECK(reason == LockReason::kForLock); Runtime::Current()->GetRuntimeCallbacks()->MonitorContendedLocked(this); } return; } // Contended; not reentrant. We hold no locks, so tread carefully. const bool log_contention = (lock_profiling_threshold_ != 0); uint64_t wait_start_ms = log_contention ? MilliTime() : 0; Thread *orig_owner = nullptr; ArtMethod* owners_method; uint32_t owners_dex_pc; // Do this before releasing the mutator lock so that we don't get deflated. size_t num_waiters = num_waiters_.fetch_add(1, std::memory_order_relaxed); bool started_trace = false; if (ATraceEnabled() && owner_.load(std::memory_order_relaxed) != nullptr) { // Acquiring thread_list_lock_ ensures that owner doesn't disappear while // we're looking at it. Locks::thread_list_lock_->ExclusiveLock(self); orig_owner = owner_.load(std::memory_order_relaxed); if (orig_owner != nullptr) { // Did the owner_ give the lock up? const uint32_t orig_owner_thread_id = orig_owner->GetThreadId(); GetLockOwnerInfo(&owners_method, &owners_dex_pc, orig_owner); std::ostringstream oss; std::string name; orig_owner->GetThreadName(name); oss << PrettyContentionInfo(name, orig_owner_thread_id, owners_method, owners_dex_pc, num_waiters); Locks::thread_list_lock_->ExclusiveUnlock(self); // Add info for contending thread. uint32_t pc; ArtMethod* m = self->GetCurrentMethod(&pc); const char* filename; int32_t line_number; TranslateLocation(m, pc, &filename, &line_number); oss << " blocking from " << ArtMethod::PrettyMethod(m) << "(" << (filename != nullptr ? filename : "null") << ":" << line_number << ")"; ATraceBegin(oss.str().c_str()); started_trace = true; } else { Locks::thread_list_lock_->ExclusiveUnlock(self); } } if (log_contention) { // Request the current holder to set lock_owner_info. // Do this even if tracing is enabled, so we semi-consistently get the information // corresponding to MonitorExit. // TODO: Consider optionally obtaining a stack trace here via a checkpoint. That would allow // us to see what the other thread is doing while we're waiting. orig_owner = owner_.load(std::memory_order_relaxed); lock_owner_request_.store(orig_owner, std::memory_order_relaxed); } // Call the contended locking cb once and only once. Also only call it if we are locking for // the first time, not during a Wait wakeup. if (reason == LockReason::kForLock && !called_monitors_callback) { called_monitors_callback = true; Runtime::Current()->GetRuntimeCallbacks()->MonitorContendedLocking(this); } self->SetMonitorEnterObject(GetObject().Ptr()); { ScopedThreadSuspension tsc(self, kBlocked); // Change to blocked and give up mutator_lock_. // Acquire monitor_lock_ without mutator_lock_, expecting to block this time. // We already tried spinning above. The shutdown procedure currently assumes we stop // touching monitors shortly after we suspend, so don't spin again here. monitor_lock_.ExclusiveLock(self); if (log_contention && orig_owner != nullptr) { // Woken from contention. uint64_t wait_ms = MilliTime() - wait_start_ms; uint32_t sample_percent; if (wait_ms >= lock_profiling_threshold_) { sample_percent = 100; } else { sample_percent = 100 * wait_ms / lock_profiling_threshold_; } if (sample_percent != 0 && (static_cast(rand() % 100) < sample_percent)) { // Do this unconditionally for consistency. It's possible another thread // snuck in in the middle, and tracing was enabled. In that case, we may get its // MonitorEnter information. We can live with that. GetLockOwnerInfo(&owners_method, &owners_dex_pc, orig_owner); // Reacquire mutator_lock_ for logging. ScopedObjectAccess soa(self); const bool should_dump_stacks = stack_dump_lock_profiling_threshold_ > 0 && wait_ms > stack_dump_lock_profiling_threshold_; // Acquire thread-list lock to find thread and keep it from dying until we've got all // the info we need. Locks::thread_list_lock_->ExclusiveLock(self); // Is there still a thread at the same address as the original owner? // We tolerate the fact that it may occasionally be the wrong one. if (Runtime::Current()->GetThreadList()->Contains(orig_owner)) { uint32_t original_owner_tid = orig_owner->GetTid(); // System thread id. std::string original_owner_name; orig_owner->GetThreadName(original_owner_name); std::string owner_stack_dump; if (should_dump_stacks) { // Very long contention. Dump stacks. struct CollectStackTrace : public Closure { void Run(art::Thread* thread) override REQUIRES_SHARED(art::Locks::mutator_lock_) { thread->DumpJavaStack(oss); } std::ostringstream oss; }; CollectStackTrace owner_trace; // RequestSynchronousCheckpoint releases the thread_list_lock_ as a part of its // execution. orig_owner->RequestSynchronousCheckpoint(&owner_trace); owner_stack_dump = owner_trace.oss.str(); } else { Locks::thread_list_lock_->ExclusiveUnlock(self); } // This is all the data we need. We dropped the thread-list lock, it's OK for the // owner to go away now. if (should_dump_stacks) { // Give the detailed traces for really long contention. // This must be here (and not above) because we cannot hold the thread-list lock // while running the checkpoint. std::ostringstream self_trace_oss; self->DumpJavaStack(self_trace_oss); uint32_t pc; ArtMethod* m = self->GetCurrentMethod(&pc); LOG(WARNING) << "Long " << PrettyContentionInfo(original_owner_name, original_owner_tid, owners_method, owners_dex_pc, num_waiters) << " in " << ArtMethod::PrettyMethod(m) << " for " << PrettyDuration(MsToNs(wait_ms)) << "\n" << "Current owner stack:\n" << owner_stack_dump << "Contender stack:\n" << self_trace_oss.str(); } else if (wait_ms > kLongWaitMs && owners_method != nullptr) { uint32_t pc; ArtMethod* m = self->GetCurrentMethod(&pc); // TODO: We should maybe check that original_owner is still a live thread. LOG(WARNING) << "Long " << PrettyContentionInfo(original_owner_name, original_owner_tid, owners_method, owners_dex_pc, num_waiters) << " in " << ArtMethod::PrettyMethod(m) << " for " << PrettyDuration(MsToNs(wait_ms)); } LogContentionEvent(self, wait_ms, sample_percent, owners_method, owners_dex_pc); } else { Locks::thread_list_lock_->ExclusiveUnlock(self); } } } } // We've successfully acquired monitor_lock_, released thread_list_lock, and are runnable. // We avoided touching monitor fields while suspended, so set owner_ here. owner_.store(self, std::memory_order_relaxed); DCHECK_EQ(lock_count_, 0u); if (ATraceEnabled()) { SetLockingMethodNoProxy(self); } if (started_trace) { ATraceEnd(); } self->SetMonitorEnterObject(nullptr); num_waiters_.fetch_sub(1, std::memory_order_relaxed); DCHECK(monitor_lock_.IsExclusiveHeld(self)); // We need to pair this with a single contended locking call. NB we match the RI behavior and call // this even if MonitorEnter failed. if (called_monitors_callback) { CHECK(reason == LockReason::kForLock); Runtime::Current()->GetRuntimeCallbacks()->MonitorContendedLocked(this); } } template void Monitor::Lock(Thread* self); template void Monitor::Lock(Thread* self); static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...) __attribute__((format(printf, 1, 2))); static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...) REQUIRES_SHARED(Locks::mutator_lock_) { va_list args; va_start(args, fmt); Thread* self = Thread::Current(); self->ThrowNewExceptionV("Ljava/lang/IllegalMonitorStateException;", fmt, args); if (!Runtime::Current()->IsStarted() || VLOG_IS_ON(monitor)) { std::ostringstream ss; self->Dump(ss); LOG(Runtime::Current()->IsStarted() ? ::android::base::INFO : ::android::base::ERROR) << self->GetException()->Dump() << "\n" << ss.str(); } va_end(args); } static std::string ThreadToString(Thread* thread) { if (thread == nullptr) { return "nullptr"; } std::ostringstream oss; // TODO: alternatively, we could just return the thread's name. oss << *thread; return oss.str(); } void Monitor::FailedUnlock(ObjPtr o, uint32_t expected_owner_thread_id, uint32_t found_owner_thread_id, Monitor* monitor) { std::string current_owner_string; std::string expected_owner_string; std::string found_owner_string; uint32_t current_owner_thread_id = 0u; { MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); ThreadList* const thread_list = Runtime::Current()->GetThreadList(); Thread* expected_owner = thread_list->FindThreadByThreadId(expected_owner_thread_id); Thread* found_owner = thread_list->FindThreadByThreadId(found_owner_thread_id); // Re-read owner now that we hold lock. Thread* current_owner = (monitor != nullptr) ? monitor->GetOwner() : nullptr; if (current_owner != nullptr) { current_owner_thread_id = current_owner->GetThreadId(); } // Get short descriptions of the threads involved. current_owner_string = ThreadToString(current_owner); expected_owner_string = expected_owner != nullptr ? ThreadToString(expected_owner) : "unnamed"; found_owner_string = found_owner != nullptr ? ThreadToString(found_owner) : "unnamed"; } if (current_owner_thread_id == 0u) { if (found_owner_thread_id == 0u) { ThrowIllegalMonitorStateExceptionF("unlock of unowned monitor on object of type '%s'" " on thread '%s'", mirror::Object::PrettyTypeOf(o).c_str(), expected_owner_string.c_str()); } else { // Race: the original read found an owner but now there is none ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'" " (where now the monitor appears unowned) on thread '%s'", found_owner_string.c_str(), mirror::Object::PrettyTypeOf(o).c_str(), expected_owner_string.c_str()); } } else { if (found_owner_thread_id == 0u) { // Race: originally there was no owner, there is now ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'" " (originally believed to be unowned) on thread '%s'", current_owner_string.c_str(), mirror::Object::PrettyTypeOf(o).c_str(), expected_owner_string.c_str()); } else { if (found_owner_thread_id != current_owner_thread_id) { // Race: originally found and current owner have changed ThrowIllegalMonitorStateExceptionF("unlock of monitor originally owned by '%s' (now" " owned by '%s') on object of type '%s' on thread '%s'", found_owner_string.c_str(), current_owner_string.c_str(), mirror::Object::PrettyTypeOf(o).c_str(), expected_owner_string.c_str()); } else { ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'" " on thread '%s", current_owner_string.c_str(), mirror::Object::PrettyTypeOf(o).c_str(), expected_owner_string.c_str()); } } } } bool Monitor::Unlock(Thread* self) { DCHECK(self != nullptr); Thread* owner = owner_.load(std::memory_order_relaxed); if (owner == self) { // We own the monitor, so nobody else can be in here. CheckLockOwnerRequest(self); AtraceMonitorUnlock(); if (lock_count_ == 0) { owner_.store(nullptr, std::memory_order_relaxed); SignalWaiterAndReleaseMonitorLock(self); } else { --lock_count_; DCHECK(monitor_lock_.IsExclusiveHeld(self)); DCHECK_EQ(owner_.load(std::memory_order_relaxed), self); // Keep monitor_lock_, but pretend we released it. FakeUnlockMonitorLock(); } return true; } // We don't own this, so we're not allowed to unlock it. // The JNI spec says that we should throw IllegalMonitorStateException in this case. uint32_t owner_thread_id = 0u; { MutexLock mu(self, *Locks::thread_list_lock_); owner = owner_.load(std::memory_order_relaxed); if (owner != nullptr) { owner_thread_id = owner->GetThreadId(); } } FailedUnlock(GetObject(), self->GetThreadId(), owner_thread_id, this); // Pretend to release monitor_lock_, which we should not. FakeUnlockMonitorLock(); return false; } void Monitor::SignalWaiterAndReleaseMonitorLock(Thread* self) { // We want to release the monitor and signal up to one thread that was waiting // but has since been notified. DCHECK_EQ(lock_count_, 0u); DCHECK(monitor_lock_.IsExclusiveHeld(self)); while (wake_set_ != nullptr) { // No risk of waking ourselves here; since monitor_lock_ is not released until we're ready to // return, notify can't move the current thread from wait_set_ to wake_set_ until this // method is done checking wake_set_. Thread* thread = wake_set_; wake_set_ = thread->GetWaitNext(); thread->SetWaitNext(nullptr); DCHECK(owner_.load(std::memory_order_relaxed) == nullptr); // Check to see if the thread is still waiting. { // In the case of wait(), we'll be acquiring another thread's GetWaitMutex with // self's GetWaitMutex held. This does not risk deadlock, because we only acquire this lock // for threads in the wake_set_. A thread can only enter wake_set_ from Notify or NotifyAll, // and those hold monitor_lock_. Thus, the threads whose wait mutexes we acquire here must // have already been released from wait(), since we have not released monitor_lock_ until // after we've chosen our thread to wake, so there is no risk of the following lock ordering // leading to deadlock: // Thread 1 waits // Thread 2 waits // Thread 3 moves threads 1 and 2 from wait_set_ to wake_set_ // Thread 1 enters this block, and attempts to acquire Thread 2's GetWaitMutex to wake it // Thread 2 enters this block, and attempts to acquire Thread 1's GetWaitMutex to wake it // // Since monitor_lock_ is not released until the thread-to-be-woken-up's GetWaitMutex is // acquired, two threads cannot attempt to acquire each other's GetWaitMutex while holding // their own and cause deadlock. MutexLock wait_mu(self, *thread->GetWaitMutex()); if (thread->GetWaitMonitor() != nullptr) { // Release the lock, so that a potentially awakened thread will not // immediately contend on it. The lock ordering here is: // monitor_lock_, self->GetWaitMutex, thread->GetWaitMutex monitor_lock_.Unlock(self); // Releases contenders. thread->GetWaitConditionVariable()->Signal(self); return; } } } monitor_lock_.Unlock(self); DCHECK(!monitor_lock_.IsExclusiveHeld(self)); } void Monitor::Wait(Thread* self, int64_t ms, int32_t ns, bool interruptShouldThrow, ThreadState why) { DCHECK(self != nullptr); DCHECK(why == kTimedWaiting || why == kWaiting || why == kSleeping); // Make sure that we hold the lock. if (owner_.load(std::memory_order_relaxed) != self) { ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()"); return; } // We need to turn a zero-length timed wait into a regular wait because // Object.wait(0, 0) is defined as Object.wait(0), which is defined as Object.wait(). if (why == kTimedWaiting && (ms == 0 && ns == 0)) { why = kWaiting; } // Enforce the timeout range. if (ms < 0 || ns < 0 || ns > 999999) { self->ThrowNewExceptionF("Ljava/lang/IllegalArgumentException;", "timeout arguments out of range: ms=%" PRId64 " ns=%d", ms, ns); return; } CheckLockOwnerRequest(self); /* * Release our hold - we need to let it go even if we're a few levels * deep in a recursive lock, and we need to restore that later. */ unsigned int prev_lock_count = lock_count_; lock_count_ = 0; AtraceMonitorUnlock(); // For the implict Unlock() just above. This will only end the deepest // nesting, but that is enough for the visualization, and corresponds to // the single Lock() we do afterwards. AtraceMonitorLock(self, GetObject(), /* is_wait= */ true); bool was_interrupted = false; bool timed_out = false; // Update monitor state now; it's not safe once we're "suspended". owner_.store(nullptr, std::memory_order_relaxed); num_waiters_.fetch_add(1, std::memory_order_relaxed); { // Update thread state. If the GC wakes up, it'll ignore us, knowing // that we won't touch any references in this state, and we'll check // our suspend mode before we transition out. ScopedThreadSuspension sts(self, why); // Pseudo-atomically wait on self's wait_cond_ and release the monitor lock. MutexLock mu(self, *self->GetWaitMutex()); /* * Add ourselves to the set of threads waiting on this monitor. * It's important that we are only added to the wait set after * acquiring our GetWaitMutex, so that calls to Notify() that occur after we * have released monitor_lock_ will not move us from wait_set_ to wake_set_ * until we've signalled contenders on this monitor. */ AppendToWaitSet(self); // Set wait_monitor_ to the monitor object we will be waiting on. When wait_monitor_ is // non-null a notifying or interrupting thread must signal the thread's wait_cond_ to wake it // up. DCHECK(self->GetWaitMonitor() == nullptr); self->SetWaitMonitor(this); // Release the monitor lock. DCHECK(monitor_lock_.IsExclusiveHeld(self)); SignalWaiterAndReleaseMonitorLock(self); // Handle the case where the thread was interrupted before we called wait(). if (self->IsInterrupted()) { was_interrupted = true; } else { // Wait for a notification or a timeout to occur. if (why == kWaiting) { self->GetWaitConditionVariable()->Wait(self); } else { DCHECK(why == kTimedWaiting || why == kSleeping) << why; timed_out = self->GetWaitConditionVariable()->TimedWait(self, ms, ns); } was_interrupted = self->IsInterrupted(); } } { // We reset the thread's wait_monitor_ field after transitioning back to runnable so // that a thread in a waiting/sleeping state has a non-null wait_monitor_ for debugging // and diagnostic purposes. (If you reset this earlier, stack dumps will claim that threads // are waiting on "null".) MutexLock mu(self, *self->GetWaitMutex()); DCHECK(self->GetWaitMonitor() != nullptr); self->SetWaitMonitor(nullptr); } // Allocate the interrupted exception not holding the monitor lock since it may cause a GC. // If the GC requires acquiring the monitor for enqueuing cleared references, this would // cause a deadlock if the monitor is held. if (was_interrupted && interruptShouldThrow) { /* * We were interrupted while waiting, or somebody interrupted an * un-interruptible thread earlier and we're bailing out immediately. * * The doc sayeth: "The interrupted status of the current thread is * cleared when this exception is thrown." */ self->SetInterrupted(false); self->ThrowNewException("Ljava/lang/InterruptedException;", nullptr); } AtraceMonitorUnlock(); // End Wait(). // We just slept, tell the runtime callbacks about this. Runtime::Current()->GetRuntimeCallbacks()->MonitorWaitFinished(this, timed_out); // Re-acquire the monitor and lock. Lock(self); lock_count_ = prev_lock_count; DCHECK(monitor_lock_.IsExclusiveHeld(self)); self->GetWaitMutex()->AssertNotHeld(self); num_waiters_.fetch_sub(1, std::memory_order_relaxed); RemoveFromWaitSet(self); } void Monitor::Notify(Thread* self) { DCHECK(self != nullptr); // Make sure that we hold the lock. if (owner_.load(std::memory_order_relaxed) != self) { ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()"); return; } // Move one thread from waiters to wake set Thread* to_move = wait_set_; if (to_move != nullptr) { wait_set_ = to_move->GetWaitNext(); to_move->SetWaitNext(wake_set_); wake_set_ = to_move; } } void Monitor::NotifyAll(Thread* self) { DCHECK(self != nullptr); // Make sure that we hold the lock. if (owner_.load(std::memory_order_relaxed) != self) { ThrowIllegalMonitorStateExceptionF("object not locked by thread before notifyAll()"); return; } // Move all threads from waiters to wake set Thread* to_move = wait_set_; if (to_move != nullptr) { wait_set_ = nullptr; Thread* move_to = wake_set_; if (move_to == nullptr) { wake_set_ = to_move; return; } while (move_to->GetWaitNext() != nullptr) { move_to = move_to->GetWaitNext(); } move_to->SetWaitNext(to_move); } } bool Monitor::Deflate(Thread* self, ObjPtr obj) { DCHECK(obj != nullptr); // Don't need volatile since we only deflate with mutators suspended. LockWord lw(obj->GetLockWord(false)); // If the lock isn't an inflated monitor, then we don't need to deflate anything. if (lw.GetState() == LockWord::kFatLocked) { Monitor* monitor = lw.FatLockMonitor(); DCHECK(monitor != nullptr); // Can't deflate if we have anybody waiting on the CV or trying to acquire the monitor. if (monitor->num_waiters_.load(std::memory_order_relaxed) > 0) { return false; } if (!monitor->monitor_lock_.ExclusiveTryLock(self)) { // We cannot deflate a monitor that's currently held. It's unclear whether we should if // we could. return false; } DCHECK_EQ(monitor->lock_count_, 0u); DCHECK_EQ(monitor->owner_.load(std::memory_order_relaxed), static_cast(nullptr)); if (monitor->HasHashCode()) { LockWord new_lw = LockWord::FromHashCode(monitor->GetHashCode(), lw.GCState()); // Assume no concurrent read barrier state changes as mutators are suspended. obj->SetLockWord(new_lw, false); VLOG(monitor) << "Deflated " << obj << " to hash monitor " << monitor->GetHashCode(); } else { // No lock and no hash, just put an empty lock word inside the object. LockWord new_lw = LockWord::FromDefault(lw.GCState()); // Assume no concurrent read barrier state changes as mutators are suspended. obj->SetLockWord(new_lw, false); VLOG(monitor) << "Deflated" << obj << " to empty lock word"; } monitor->monitor_lock_.ExclusiveUnlock(self); DCHECK(!(monitor->monitor_lock_.IsExclusiveHeld(self))); // The monitor is deflated, mark the object as null so that we know to delete it during the // next GC. monitor->obj_ = GcRoot(nullptr); } return true; } void Monitor::Inflate(Thread* self, Thread* owner, ObjPtr obj, int32_t hash_code) { DCHECK(self != nullptr); DCHECK(obj != nullptr); // Allocate and acquire a new monitor. Monitor* m = MonitorPool::CreateMonitor(self, owner, obj, hash_code); DCHECK(m != nullptr); if (m->Install(self)) { if (owner != nullptr) { VLOG(monitor) << "monitor: thread" << owner->GetThreadId() << " created monitor " << m << " for object " << obj; } else { VLOG(monitor) << "monitor: Inflate with hashcode " << hash_code << " created monitor " << m << " for object " << obj; } Runtime::Current()->GetMonitorList()->Add(m); CHECK_EQ(obj->GetLockWord(true).GetState(), LockWord::kFatLocked); } else { MonitorPool::ReleaseMonitor(self, m); } } void Monitor::InflateThinLocked(Thread* self, Handle obj, LockWord lock_word, uint32_t hash_code) { DCHECK_EQ(lock_word.GetState(), LockWord::kThinLocked); uint32_t owner_thread_id = lock_word.ThinLockOwner(); if (owner_thread_id == self->GetThreadId()) { // We own the monitor, we can easily inflate it. Inflate(self, self, obj.Get(), hash_code); } else { ThreadList* thread_list = Runtime::Current()->GetThreadList(); // Suspend the owner, inflate. First change to blocked and give up mutator_lock_. self->SetMonitorEnterObject(obj.Get()); bool timed_out; Thread* owner; { ScopedThreadSuspension sts(self, kWaitingForLockInflation); owner = thread_list->SuspendThreadByThreadId(owner_thread_id, SuspendReason::kInternal, &timed_out); } if (owner != nullptr) { // We succeeded in suspending the thread, check the lock's status didn't change. lock_word = obj->GetLockWord(true); if (lock_word.GetState() == LockWord::kThinLocked && lock_word.ThinLockOwner() == owner_thread_id) { // Go ahead and inflate the lock. Inflate(self, owner, obj.Get(), hash_code); } bool resumed = thread_list->Resume(owner, SuspendReason::kInternal); DCHECK(resumed); } self->SetMonitorEnterObject(nullptr); } } // Fool annotalysis into thinking that the lock on obj is acquired. static ObjPtr FakeLock(ObjPtr obj) EXCLUSIVE_LOCK_FUNCTION(obj.Ptr()) NO_THREAD_SAFETY_ANALYSIS { return obj; } // Fool annotalysis into thinking that the lock on obj is release. static ObjPtr FakeUnlock(ObjPtr obj) UNLOCK_FUNCTION(obj.Ptr()) NO_THREAD_SAFETY_ANALYSIS { return obj; } ObjPtr Monitor::MonitorEnter(Thread* self, ObjPtr obj, bool trylock) { DCHECK(self != nullptr); DCHECK(obj != nullptr); self->AssertThreadSuspensionIsAllowable(); obj = FakeLock(obj); uint32_t thread_id = self->GetThreadId(); size_t contention_count = 0; constexpr size_t kExtraSpinIters = 100; StackHandleScope<1> hs(self); Handle h_obj(hs.NewHandle(obj)); while (true) { // We initially read the lockword with ordinary Java/relaxed semantics. When stronger // semantics are needed, we address it below. Since GetLockWord bottoms out to a relaxed load, // we can fix it later, in an infrequently executed case, with a fence. LockWord lock_word = h_obj->GetLockWord(false); switch (lock_word.GetState()) { case LockWord::kUnlocked: { // No ordering required for preceding lockword read, since we retest. LockWord thin_locked(LockWord::FromThinLockId(thread_id, 0, lock_word.GCState())); if (h_obj->CasLockWord(lock_word, thin_locked, CASMode::kWeak, std::memory_order_acquire)) { AtraceMonitorLock(self, h_obj.Get(), /* is_wait= */ false); return h_obj.Get(); // Success! } continue; // Go again. } case LockWord::kThinLocked: { uint32_t owner_thread_id = lock_word.ThinLockOwner(); if (owner_thread_id == thread_id) { // No ordering required for initial lockword read. // We own the lock, increase the recursion count. uint32_t new_count = lock_word.ThinLockCount() + 1; if (LIKELY(new_count <= LockWord::kThinLockMaxCount)) { LockWord thin_locked(LockWord::FromThinLockId(thread_id, new_count, lock_word.GCState())); // Only this thread pays attention to the count. Thus there is no need for stronger // than relaxed memory ordering. if (!kUseReadBarrier) { h_obj->SetLockWord(thin_locked, /* as_volatile= */ false); AtraceMonitorLock(self, h_obj.Get(), /* is_wait= */ false); return h_obj.Get(); // Success! } else { // Use CAS to preserve the read barrier state. if (h_obj->CasLockWord(lock_word, thin_locked, CASMode::kWeak, std::memory_order_relaxed)) { AtraceMonitorLock(self, h_obj.Get(), /* is_wait= */ false); return h_obj.Get(); // Success! } } continue; // Go again. } else { // We'd overflow the recursion count, so inflate the monitor. InflateThinLocked(self, h_obj, lock_word, 0); } } else { if (trylock) { return nullptr; } // Contention. contention_count++; Runtime* runtime = Runtime::Current(); if (contention_count <= kExtraSpinIters + runtime->GetMaxSpinsBeforeThinLockInflation()) { // TODO: Consider switching the thread state to kWaitingForLockInflation when we are // yielding. Use sched_yield instead of NanoSleep since NanoSleep can wait much longer // than the parameter you pass in. This can cause thread suspension to take excessively // long and make long pauses. See b/16307460. if (contention_count > kExtraSpinIters) { sched_yield(); } } else { contention_count = 0; // No ordering required for initial lockword read. Install rereads it anyway. InflateThinLocked(self, h_obj, lock_word, 0); } } continue; // Start from the beginning. } case LockWord::kFatLocked: { // We should have done an acquire read of the lockword initially, to ensure // visibility of the monitor data structure. Use an explicit fence instead. std::atomic_thread_fence(std::memory_order_acquire); Monitor* mon = lock_word.FatLockMonitor(); if (trylock) { return mon->TryLock(self) ? h_obj.Get() : nullptr; } else { mon->Lock(self); DCHECK(mon->monitor_lock_.IsExclusiveHeld(self)); return h_obj.Get(); // Success! } } case LockWord::kHashCode: // Inflate with the existing hashcode. // Again no ordering required for initial lockword read, since we don't rely // on the visibility of any prior computation. Inflate(self, nullptr, h_obj.Get(), lock_word.GetHashCode()); continue; // Start from the beginning. default: { LOG(FATAL) << "Invalid monitor state " << lock_word.GetState(); UNREACHABLE(); } } } } bool Monitor::MonitorExit(Thread* self, ObjPtr obj) { DCHECK(self != nullptr); DCHECK(obj != nullptr); self->AssertThreadSuspensionIsAllowable(); obj = FakeUnlock(obj); StackHandleScope<1> hs(self); Handle h_obj(hs.NewHandle(obj)); while (true) { LockWord lock_word = obj->GetLockWord(true); switch (lock_word.GetState()) { case LockWord::kHashCode: // Fall-through. case LockWord::kUnlocked: FailedUnlock(h_obj.Get(), self->GetThreadId(), 0u, nullptr); return false; // Failure. case LockWord::kThinLocked: { uint32_t thread_id = self->GetThreadId(); uint32_t owner_thread_id = lock_word.ThinLockOwner(); if (owner_thread_id != thread_id) { FailedUnlock(h_obj.Get(), thread_id, owner_thread_id, nullptr); return false; // Failure. } else { // We own the lock, decrease the recursion count. LockWord new_lw = LockWord::Default(); if (lock_word.ThinLockCount() != 0) { uint32_t new_count = lock_word.ThinLockCount() - 1; new_lw = LockWord::FromThinLockId(thread_id, new_count, lock_word.GCState()); } else { new_lw = LockWord::FromDefault(lock_word.GCState()); } if (!kUseReadBarrier) { DCHECK_EQ(new_lw.ReadBarrierState(), 0U); // TODO: This really only needs memory_order_release, but we currently have // no way to specify that. In fact there seem to be no legitimate uses of SetLockWord // with a final argument of true. This slows down x86 and ARMv7, but probably not v8. h_obj->SetLockWord(new_lw, true); AtraceMonitorUnlock(); // Success! return true; } else { // Use CAS to preserve the read barrier state. if (h_obj->CasLockWord(lock_word, new_lw, CASMode::kWeak, std::memory_order_release)) { AtraceMonitorUnlock(); // Success! return true; } } continue; // Go again. } } case LockWord::kFatLocked: { Monitor* mon = lock_word.FatLockMonitor(); return mon->Unlock(self); } default: { LOG(FATAL) << "Invalid monitor state " << lock_word.GetState(); UNREACHABLE(); } } } } void Monitor::Wait(Thread* self, ObjPtr obj, int64_t ms, int32_t ns, bool interruptShouldThrow, ThreadState why) { DCHECK(self != nullptr); DCHECK(obj != nullptr); StackHandleScope<1> hs(self); Handle h_obj(hs.NewHandle(obj)); Runtime::Current()->GetRuntimeCallbacks()->ObjectWaitStart(h_obj, ms); if (UNLIKELY(self->ObserveAsyncException() || self->IsExceptionPending())) { // See b/65558434 for information on handling of exceptions here. return; } LockWord lock_word = h_obj->GetLockWord(true); while (lock_word.GetState() != LockWord::kFatLocked) { switch (lock_word.GetState()) { case LockWord::kHashCode: // Fall-through. case LockWord::kUnlocked: ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()"); return; // Failure. case LockWord::kThinLocked: { uint32_t thread_id = self->GetThreadId(); uint32_t owner_thread_id = lock_word.ThinLockOwner(); if (owner_thread_id != thread_id) { ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()"); return; // Failure. } else { // We own the lock, inflate to enqueue ourself on the Monitor. May fail spuriously so // re-load. Inflate(self, self, h_obj.Get(), 0); lock_word = h_obj->GetLockWord(true); } break; } case LockWord::kFatLocked: // Unreachable given the loop condition above. Fall-through. default: { LOG(FATAL) << "Invalid monitor state " << lock_word.GetState(); UNREACHABLE(); } } } Monitor* mon = lock_word.FatLockMonitor(); mon->Wait(self, ms, ns, interruptShouldThrow, why); } void Monitor::DoNotify(Thread* self, ObjPtr obj, bool notify_all) { DCHECK(self != nullptr); DCHECK(obj != nullptr); LockWord lock_word = obj->GetLockWord(true); switch (lock_word.GetState()) { case LockWord::kHashCode: // Fall-through. case LockWord::kUnlocked: ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()"); return; // Failure. case LockWord::kThinLocked: { uint32_t thread_id = self->GetThreadId(); uint32_t owner_thread_id = lock_word.ThinLockOwner(); if (owner_thread_id != thread_id) { ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()"); return; // Failure. } else { // We own the lock but there's no Monitor and therefore no waiters. return; // Success. } } case LockWord::kFatLocked: { Monitor* mon = lock_word.FatLockMonitor(); if (notify_all) { mon->NotifyAll(self); } else { mon->Notify(self); } return; // Success. } default: { LOG(FATAL) << "Invalid monitor state " << lock_word.GetState(); UNREACHABLE(); } } } uint32_t Monitor::GetLockOwnerThreadId(ObjPtr obj) { DCHECK(obj != nullptr); LockWord lock_word = obj->GetLockWord(true); switch (lock_word.GetState()) { case LockWord::kHashCode: // Fall-through. case LockWord::kUnlocked: return ThreadList::kInvalidThreadId; case LockWord::kThinLocked: return lock_word.ThinLockOwner(); case LockWord::kFatLocked: { Monitor* mon = lock_word.FatLockMonitor(); return mon->GetOwnerThreadId(); } default: { LOG(FATAL) << "Unreachable"; UNREACHABLE(); } } } ThreadState Monitor::FetchState(const Thread* thread, /* out */ ObjPtr* monitor_object, /* out */ uint32_t* lock_owner_tid) { DCHECK(monitor_object != nullptr); DCHECK(lock_owner_tid != nullptr); *monitor_object = nullptr; *lock_owner_tid = ThreadList::kInvalidThreadId; ThreadState state = thread->GetState(); switch (state) { case kWaiting: case kTimedWaiting: case kSleeping: { Thread* self = Thread::Current(); MutexLock mu(self, *thread->GetWaitMutex()); Monitor* monitor = thread->GetWaitMonitor(); if (monitor != nullptr) { *monitor_object = monitor->GetObject(); } } break; case kBlocked: case kWaitingForLockInflation: { ObjPtr lock_object = thread->GetMonitorEnterObject(); if (lock_object != nullptr) { if (kUseReadBarrier && Thread::Current()->GetIsGcMarking()) { // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack // may have not been flipped yet and "pretty_object" may be a from-space (stale) ref, in // which case the GetLockOwnerThreadId() call below will crash. So explicitly mark/forward // it here. lock_object = ReadBarrier::Mark(lock_object.Ptr()); } *monitor_object = lock_object; *lock_owner_tid = lock_object->GetLockOwnerThreadId(); } } break; default: break; } return state; } ObjPtr Monitor::GetContendedMonitor(Thread* thread) { // This is used to implement JDWP's ThreadReference.CurrentContendedMonitor, and has a bizarre // definition of contended that includes a monitor a thread is trying to enter... ObjPtr result = thread->GetMonitorEnterObject(); if (result == nullptr) { // ...but also a monitor that the thread is waiting on. MutexLock mu(Thread::Current(), *thread->GetWaitMutex()); Monitor* monitor = thread->GetWaitMonitor(); if (monitor != nullptr) { result = monitor->GetObject(); } } return result; } void Monitor::VisitLocks(StackVisitor* stack_visitor, void (*callback)(ObjPtr, void*), void* callback_context, bool abort_on_failure) { ArtMethod* m = stack_visitor->GetMethod(); CHECK(m != nullptr); // Native methods are an easy special case. // TODO: use the JNI implementation's table of explicit MonitorEnter calls and dump those too. if (m->IsNative()) { if (m->IsSynchronized()) { DCHECK(!m->IsCriticalNative()); DCHECK(!m->IsFastNative()); ObjPtr lock; if (m->IsStatic()) { // Static methods synchronize on the declaring class object. lock = m->GetDeclaringClass(); } else { // Instance methods synchronize on the `this` object. // The `this` reference is stored in the first out vreg in the caller's frame. uint8_t* sp = reinterpret_cast(stack_visitor->GetCurrentQuickFrame()); size_t frame_size = stack_visitor->GetCurrentQuickFrameInfo().FrameSizeInBytes(); lock = reinterpret_cast*>( sp + frame_size + static_cast(kRuntimePointerSize))->AsMirrorPtr(); } callback(lock, callback_context); } return; } // Proxy methods should not be synchronized. if (m->IsProxyMethod()) { CHECK(!m->IsSynchronized()); return; } // Is there any reason to believe there's any synchronization in this method? CHECK(m->GetCodeItem() != nullptr) << m->PrettyMethod(); CodeItemDataAccessor accessor(m->DexInstructionData()); if (accessor.TriesSize() == 0) { return; // No "tries" implies no synchronization, so no held locks to report. } // Get the dex pc. If abort_on_failure is false, GetDexPc will not abort in the case it cannot // find the dex pc, and instead return kDexNoIndex. Then bail out, as it indicates we have an // inconsistent stack anyways. uint32_t dex_pc = stack_visitor->GetDexPc(abort_on_failure); if (!abort_on_failure && dex_pc == dex::kDexNoIndex) { LOG(ERROR) << "Could not find dex_pc for " << m->PrettyMethod(); return; } // Ask the verifier for the dex pcs of all the monitor-enter instructions corresponding to // the locks held in this stack frame. std::vector monitor_enter_dex_pcs; verifier::MethodVerifier::FindLocksAtDexPc(m, dex_pc, &monitor_enter_dex_pcs, Runtime::Current()->GetTargetSdkVersion()); for (verifier::MethodVerifier::DexLockInfo& dex_lock_info : monitor_enter_dex_pcs) { // As a debug check, check that dex PC corresponds to a monitor-enter. if (kIsDebugBuild) { const Instruction& monitor_enter_instruction = accessor.InstructionAt(dex_lock_info.dex_pc); CHECK_EQ(monitor_enter_instruction.Opcode(), Instruction::MONITOR_ENTER) << "expected monitor-enter @" << dex_lock_info.dex_pc << "; was " << reinterpret_cast(&monitor_enter_instruction); } // Iterate through the set of dex registers, as the compiler may not have held all of them // live. bool success = false; for (uint32_t dex_reg : dex_lock_info.dex_registers) { uint32_t value; // For optimized code we expect the DexRegisterMap to be present - monitor information // not be optimized out. success = stack_visitor->GetVReg(m, dex_reg, kReferenceVReg, &value); if (success) { ObjPtr o = reinterpret_cast(value); callback(o, callback_context); break; } } DCHECK(success) << "Failed to find/read reference for monitor-enter at dex pc " << dex_lock_info.dex_pc << " in method " << m->PrettyMethod(); if (!success) { LOG(WARNING) << "Had a lock reported for dex pc " << dex_lock_info.dex_pc << " but was not able to fetch a corresponding object!"; } } } bool Monitor::IsValidLockWord(LockWord lock_word) { switch (lock_word.GetState()) { case LockWord::kUnlocked: // Nothing to check. return true; case LockWord::kThinLocked: // Basic consistency check of owner. return lock_word.ThinLockOwner() != ThreadList::kInvalidThreadId; case LockWord::kFatLocked: { // Check the monitor appears in the monitor list. Monitor* mon = lock_word.FatLockMonitor(); MonitorList* list = Runtime::Current()->GetMonitorList(); MutexLock mu(Thread::Current(), list->monitor_list_lock_); for (Monitor* list_mon : list->list_) { if (mon == list_mon) { return true; // Found our monitor. } } return false; // Fail - unowned monitor in an object. } case LockWord::kHashCode: return true; default: LOG(FATAL) << "Unreachable"; UNREACHABLE(); } } bool Monitor::IsLocked() REQUIRES_SHARED(Locks::mutator_lock_) { return GetOwner() != nullptr; } void Monitor::TranslateLocation(ArtMethod* method, uint32_t dex_pc, const char** source_file, int32_t* line_number) { // If method is null, location is unknown if (method == nullptr) { *source_file = ""; *line_number = 0; return; } *source_file = method->GetDeclaringClassSourceFile(); if (*source_file == nullptr) { *source_file = ""; } *line_number = method->GetLineNumFromDexPC(dex_pc); } uint32_t Monitor::GetOwnerThreadId() { // Make sure owner is not deallocated during access. MutexLock mu(Thread::Current(), *Locks::thread_list_lock_); Thread* owner = GetOwner(); if (owner != nullptr) { return owner->GetThreadId(); } else { return ThreadList::kInvalidThreadId; } } MonitorList::MonitorList() : allow_new_monitors_(true), monitor_list_lock_("MonitorList lock", kMonitorListLock), monitor_add_condition_("MonitorList disallow condition", monitor_list_lock_) { } MonitorList::~MonitorList() { Thread* self = Thread::Current(); MutexLock mu(self, monitor_list_lock_); // Release all monitors to the pool. // TODO: Is it an invariant that *all* open monitors are in the list? Then we could // clear faster in the pool. MonitorPool::ReleaseMonitors(self, &list_); } void MonitorList::DisallowNewMonitors() { CHECK(!kUseReadBarrier); MutexLock mu(Thread::Current(), monitor_list_lock_); allow_new_monitors_ = false; } void MonitorList::AllowNewMonitors() { CHECK(!kUseReadBarrier); Thread* self = Thread::Current(); MutexLock mu(self, monitor_list_lock_); allow_new_monitors_ = true; monitor_add_condition_.Broadcast(self); } void MonitorList::BroadcastForNewMonitors() { Thread* self = Thread::Current(); MutexLock mu(self, monitor_list_lock_); monitor_add_condition_.Broadcast(self); } void MonitorList::Add(Monitor* m) { Thread* self = Thread::Current(); MutexLock mu(self, monitor_list_lock_); // CMS needs this to block for concurrent reference processing because an object allocated during // the GC won't be marked and concurrent reference processing would incorrectly clear the JNI weak // ref. But CC (kUseReadBarrier == true) doesn't because of the to-space invariant. while (!kUseReadBarrier && UNLIKELY(!allow_new_monitors_)) { // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the // presence of threads blocking for weak ref access. self->CheckEmptyCheckpointFromWeakRefAccess(&monitor_list_lock_); monitor_add_condition_.WaitHoldingLocks(self); } list_.push_front(m); } void MonitorList::SweepMonitorList(IsMarkedVisitor* visitor) { Thread* self = Thread::Current(); MutexLock mu(self, monitor_list_lock_); for (auto it = list_.begin(); it != list_.end(); ) { Monitor* m = *it; // Disable the read barrier in GetObject() as this is called by GC. ObjPtr obj = m->GetObject(); // The object of a monitor can be null if we have deflated it. ObjPtr new_obj = obj != nullptr ? visitor->IsMarked(obj.Ptr()) : nullptr; if (new_obj == nullptr) { VLOG(monitor) << "freeing monitor " << m << " belonging to unmarked object " << obj; MonitorPool::ReleaseMonitor(self, m); it = list_.erase(it); } else { m->SetObject(new_obj); ++it; } } } size_t MonitorList::Size() { Thread* self = Thread::Current(); MutexLock mu(self, monitor_list_lock_); return list_.size(); } class MonitorDeflateVisitor : public IsMarkedVisitor { public: MonitorDeflateVisitor() : self_(Thread::Current()), deflate_count_(0) {} mirror::Object* IsMarked(mirror::Object* object) override REQUIRES_SHARED(Locks::mutator_lock_) { if (Monitor::Deflate(self_, object)) { DCHECK_NE(object->GetLockWord(true).GetState(), LockWord::kFatLocked); ++deflate_count_; // If we deflated, return null so that the monitor gets removed from the array. return nullptr; } return object; // Monitor was not deflated. } Thread* const self_; size_t deflate_count_; }; size_t MonitorList::DeflateMonitors() { MonitorDeflateVisitor visitor; Locks::mutator_lock_->AssertExclusiveHeld(visitor.self_); SweepMonitorList(&visitor); return visitor.deflate_count_; } MonitorInfo::MonitorInfo(ObjPtr obj) : owner_(nullptr), entry_count_(0) { DCHECK(obj != nullptr); LockWord lock_word = obj->GetLockWord(true); switch (lock_word.GetState()) { case LockWord::kUnlocked: // Fall-through. case LockWord::kForwardingAddress: // Fall-through. case LockWord::kHashCode: break; case LockWord::kThinLocked: owner_ = Runtime::Current()->GetThreadList()->FindThreadByThreadId(lock_word.ThinLockOwner()); DCHECK(owner_ != nullptr) << "Thin-locked without owner!"; entry_count_ = 1 + lock_word.ThinLockCount(); // Thin locks have no waiters. break; case LockWord::kFatLocked: { Monitor* mon = lock_word.FatLockMonitor(); owner_ = mon->owner_.load(std::memory_order_relaxed); // Here it is okay for the owner to be null since we don't reset the LockWord back to // kUnlocked until we get a GC. In cases where this hasn't happened yet we will have a fat // lock without an owner. // Neither owner_ nor entry_count_ is touched by threads in "suspended" state, so // we must see consistent values. if (owner_ != nullptr) { entry_count_ = 1 + mon->lock_count_; } else { DCHECK_EQ(mon->lock_count_, 0u) << "Monitor is fat-locked without any owner!"; } for (Thread* waiter = mon->wait_set_; waiter != nullptr; waiter = waiter->GetWaitNext()) { waiters_.push_back(waiter); } break; } } } void Monitor::MaybeEnableTimeout() { std::string current_package = Runtime::Current()->GetProcessPackageName(); bool enabled_for_app = android::base::GetBoolProperty("debug.art.monitor.app", false); if (current_package == "android" || enabled_for_app) { monitor_lock_.setEnableMonitorTimeout(); monitor_lock_.setMonitorId(monitor_id_); } } } // namespace art